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Abstract. Folklore suggests that policy gradient can be more robust to misspecification than 
its relative, approximate policy iteration. This paper studies the case of state-aggregated repre-
sentations, in which the state space is partitioned and either the policy or value function 
approximation is held constant over partitions. This paper shows a policy gradient method 
converges to a policy whose regret per period is bounded by ɛ, the largest difference between 
two elements of the state-action value function belonging to a common partition. With the 
same representation, both approximate policy iteration and approximate value iteration can 
produce policies whose per-period regret scales as ɛ=(1� γ), where γ�is a discount factor. 
Faced with inherent approximation error, methods that locally optimize the true decision 
objective can be far more robust.
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1. Introduction
The fields of approximate dynamic programming and 
reinforcement learning (RL) offer algorithms that can 
produce effective performance in complex control pro-
blems in which large state spaces render exact computa-
tion intractable. Two of the classic methods in this area, 
approximate value iteration (AVI) and approximate pol-
icy iteration (API), modify value and policy iteration by 
fitting parametric approximation to the value function. 
In recent years, an alternative class of algorithms known 
as policy gradient methods has surged in popularity. 
These algorithms search directly over a parameterized 
subclass of policies by applying variants of gradient 
ascent to an objective function measuring the total 
expected reward accrued. An appealing feature of these 
methods is that, even though parametric approxima-
tions may introduce unavoidable error, they still directly 
optimize the true decision objective. AVI and API, by 
contrast, pick parameters by minimizing a measure of 
error in the value function approximation that may not 
be well-aligned with the decision objective.

Numerous papers find empirically that direct policy 
search eventually converges to superior policies. For 
example, consider a long sequence of works that apply 
approximate dynamic programming techniques to 
Tetris.1 After Bertsekas and Ioffe (1996) applied approxi-
mate policy iteration to the problem, Kakade (2002), 
Szita and Lörincz (2006), and Furmston and Barber 
(2012) attained much higher scores using methods that 
directly search over a class of policies. This is not unique to 

Tetris. A similar phenomenon was observed in an am-
bulance redeployment problem by Maxwell et al. (2013) 
and a battery storage problem by Scott et al. (2014). Experi-
ments with deep reinforcement learning tend to be less 
transparent, but policy gradient methods are extremely 
popular (see, e.g., Schulman et al. 2015, 2017b).

Kakade (2002), Szita and Lörincz (2006), Furmston and 
Barber (2012), Maxwell et al. (2013), and Scott et al. (2014) 
all search over the class of policies that are induced by 
(soft) maximization with respect to some parameterized 
value function. In a sense, these methods tune the para-
meters of the value function approximation but do so 
aiming to directly improve the total expected reward 
earned rather than to minimize a measure of prediction 
error. As a result, any gap in performance cannot be due 
to the approximation architecture and instead is caused 
by the procedure that sets the parameters.

There is very limited theory formalizing this phenome-
non. Several works provide broad performance guarantees 
for each type of algorithm. In the case of API, Munos 
(2003), Antos et al. (2008), and Lazaric et al. (2012) build on 
the original analysis of Bertsekas and Tsitsiklis (1996). An 
intellectual foundation for studying policy gradient meth-
ods is laid by Kakade and Langford (2002), who analyze a 
conservative policy iteration algorithm (CPI). Scherrer and 
Geist (2014) observe that guarantees similar to those for 
CPI can be provided for some idealized policy gradient 
methods, and recently Agarwal et al. (2019b) develop 
approximation guarantees and convergence rates for a 
much broader class of policy gradient algorithms. There 
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are few lower bounds, but comparing available upper 
bounds is suggestive. The results for incremental algo-
rithms such as CPI depend on a certain distribution shift 
term that is typically smaller than the so-called concentr-
ability coefficients in Munos (2003), Antos et al. (2008), and 
Lazaric et al. (2012). See Scherrer (2014).

This paper provides a specialized study of algorithms 
that use state-aggregated representations, under which 
the state space is partitioned and either the policy or 
value function approximation does not distinguish bet-
ween states in a common partition. State aggregation is a 
very old idea in approximate dynamic programming 
and reinforcement learning (Whitt 1978, Bean et al. 1987, 
Gordon 1995, Singh et al. 1995, Tsitsiklis and Van Roy 
1996, Rust 1997, Li et al. 2006, Jiang et al. 2015, Abel et al. 
2016), leading to tractable algorithms for problems with 
low-dimensional continuous state spaces in which it is 
believed that nearby states are similar. We measure the 
inherent error of a state aggregation procedure by the larg-
est difference between two elements of the state-action 
value function belonging to a common partition, denoted 
ɛφ. (Here φ�denotes a particular state aggregation.)

We show that any policy that is a stationary point of the 
policy gradient objective function has per-period regret 
less than ɛφ. Many variants of policy gradient algorithms, 
being first order methods, are ensured to converge (often 
efficiently) to stationary points, so this provides a guaran-
tee on the quality of an ultimate policy produced with this 
approximation architecture. This guarantee is a substantial 
improvement over past work. The recent results of Bhan-
dari and Russo (2019) translate into limiting per-period 
regret of κρɛφ=(1� γ), where γ�is a discount factor and κρ�
is a complex term that captures distribution shift. Critically, 
here, even per-period regret scales with the effective hori-
zon. Other available bounds (Kakade and Langford 2002, 
Scherrer and Geist 2014, Agarwal et al. 2019b) are at least 
as bad.2 Building on an example of Bertsekas and Tsitsiklis 
(1996), we give an example in which API produces policies 
whose per-period regret scales as ɛφ=(1� γ), hence estab-
lishing formally that policy gradient methods converge to a 
far better policy with the same approximation architecture.

The large performance gap between API and policy 
gradient is surprising because they are known to be 
closely related (Konda and Tsitsiklis 2000, Sutton et al. 
2000). There is a particularly precise and simple connec-
tion in the case of state aggregation: Theorem 8 shows 
that a Frank–Wolfe (Frank and Wolfe 1956) policy gradi-
ent method is equivalent to a version of API that (i) esti-
mates an approximate value function by minimizing a 
loss function that weighs errors at states in proportion to 
how often those states are visited under the current policy 
and (ii) makes soft or local updates to the policy in each 
iteration. With these modifications, each iteration of API 
locally optimizes a first order approximation to the true 
decision objective, leading to much greater robustness 
to approximation errors. See Section 6. Section 5 also 

studies a version of API that makes only the first change— 
using an on-policy state weighting—but not the second. 
A different counterexample (Example 2) is constructed to 
show that this variant can be as brittle as a standard version 
of API that makes neither change.

The limited scope of this work should be highlighted. 
We have in mind settings in which policy gradient is 
applied in simulation, which is how they are currently 
employed in nearly all applications. In this case, it is fea-
sible to employ an exploratory initial distribution as is 
assumed in this work. This choice can have a critical 
impact on the optimization landscape (see, e.g., Agarwal 
et al. 2019b). By focusing on the quality of stationary 
points, the paper sidesteps issues of (i) optimization 
error (i.e., error because of executing only a finite num-
ber of gradient steps), (ii) statistical error (i.e., error 
because of estimating gradients with limited simulated 
rollouts), and (iii) precisely which policy gradient variant 
and step sizes are employed. The treatment of API is 
similarly stylized. This choice allows for a crisp presenta-
tion focused on one insight that is missing in the current 
literature.

1.1. Further Discussion of Related Literature
Dong et al. (2019) prove that a state-aggregated and opti-
mistic variant of Q-learning efficiently approaches limit-
ing per-period regret smaller than a measure of inherent 
aggregation error similar to ɛφ. Van Roy (2006) previ-
ously shows that approximate value iteration with fixed 
state-relevance weights could suffer per-period regret 
that scales with the effective time horizon. Van Roy 
(2006) also observes that the robustness of policies 
derived from solutions of state-aggregated Bellman eq-
uations can depend critically on the choice of state- 
relevance weights. Whereas this paper studies different 
algorithms and gives proofs that bear little resemblance 
to Van Roy (2006) and Dong et al. (2019), their study of 
the robustness difference between two closely related 
algorithms inspired my own.

A number of recent works study the convergence rates 
of policy gradient methods in Markov decision processes 
(MDPs) with finite state and action spaces under the 
assumption that the policy class can represent all stochas-
tic policies. Examples include Agarwal et al. (2019b), Mei 
et al. (2020), Zhang et al. (2021), Cen et al. (2021), Bhandari 
and Russo (2021), and Khodadadian et al. (2021). The fast-
est convergence rates seem to be attained by policy gradi-
ent variants that behave just like policy iteration (Bhandari 
and Russo 2021). Such theory, therefore, does not offer 
insight into the advantages of policy gradient methods 
over classic algorithms. This paper helps close that intellec-
tual gap in the literature.

In a fascinating paper, Scherrer and Lesner (2012) 
observe that the horizon dependence of approximate 
value and policy iteration can be improved by modifying 
them to use nonstationary policies. It is unclear if there is 
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a connection between their work and this paper’s finding 
about policy gradient methods for optimizing over the 
class of stationary policies.

What is called state aggregation in this paper is some-
times called “hard” state aggregation. Generalizations 
allow a state to have an affinity or partial association 
with several different regions of the state space. Singh 
et al. (1995) propose a soft state aggregation method, 
which avoids discontinuities in the approximate value 
function at the boundaries of partitions. The theory of 
Tsitsiklis and Van Roy (1996) holds for a related class of 
approximations they call interpolators. A popular appro-
ximation method called tile coding, which is closely 
related to state aggregation, is discussed in the textbook 
of Sutton and Barto (2018). This paper does not pursue 
such extensions, focusing on the simplest variant of state 
aggregation. The current proof significantly relies on the 
structure of hard state aggregation.

The current paper assumes a state-aggregation rule is 
fixed and given, then studying the quality of the policies 
various algorithms produce with this approximation. A 
long series of works focus on how a state aggregation can 
be learned or adaptively constructed (Bertsekas and Cas-
tanon 1989, Singh et al. 1995, Dean and Givan 1997, Jiang 
et al. 2015, Duan et al. 2019, Misra et al. 2020).

The bounds for policy gradient provided in this work 
depend on a notion of maximal error because of state 
aggregation (see Definition 2). Contemporaneously, Agar-
wal et al. (2020) looked at policy gradient with state aggre-
gated representations. Dependence on the time horizon is 
not a focus of their work. Instead, they focus on providing 
an upper bound that depends on a softer notion of approxi-
mation error that averages across partitions. It seems that 
the two measures coincide in Example 1, but the measure 
of Agarwal et al. (2020) can offer an important improve-
ment in other examples. Their upper bounds are not 
matched by those previously established for alternative 
algorithms and are suggestive of another provable benefit 
of using policy gradient methods in this setting.

2. Problem Formulation
We consider a Markov decision process M � (S,A, r, 
P,γ,ρ), which consists of a finite state space S � {1, : : : , 
|S | }, finite action space A � {1, : : : , |A | }, reward func-
tion r, transition kernel P, discount factor γ ∈ (0, 1), and 
initial distribution ρ. For any finite set X � {1, : : : , |X | }, 
we let ∆(X ) � {d ∈R |X |+ :

P
x∈X dx � 1} denote the set of 

probability distributions over X . A stationary random-
ized policy is a mapping π : S→ ∆(A). We use π(s, a) to 
denote the ath component of π(s). Let Π�denote the set of 
all stationary randomized policies. Conditioned on the his-
tory up to that point, an agent who selects action a in state 
s ∈ S earns a reward in that period with expected value r(s, 
a) and transitions randomly to a next state, in which 
P(s′ |s, a) denotes the probability of transitioning to state 

s′ ∈ S. To treat randomized policies, we overload no-
tation, defining for d ∈ ∆(A), r(s, d) �

P |A |
a�1 r(s, a)da and 

P(s′ |s, d) �
P |A |

a�1 P(s′ |s, a)da. Notice that, if ea ∈ ∆(A) is 
the ath standard basis vector, then r(s, ea) � r(s, a).

2.1. Value Functions and Bellman Operators
We define, respectively, the value function associated 
with a policy π�and the optimal value function by

Vπ(s) � Eπs

�
X∞

t�0
γtr(st, at)

�

, V∗(s) � max
π∈Π

Vπ(s):

The notation Eπs [·] denotes expectations taken over the 
sequence of states when s0 � s and policy π�is applied. A 
policy π∗ is said to be optimal if Vπ∗ (s) � V∗(s) for every 
s ∈ S. It is known that an optimal deterministic policy 
exists. Throughout this paper, we use π∗ to denote some 
optimal policy. There could be multiples, but this does not 
change the results. The Bellman operator Tπ : Rn→Rn 

associated with a policy π ∈Π�maps a value function V ∈
Rn to a new value function TπV ∈Rn defined by (TπV)
(s) � r(s,π(s)) + γ

P
s′∈SP(s′ |s,π(s))V(s′). The Bellman 

optimality operator T : Rn→Rn is defined by

TV(s) �max
π∈Π
(TπV)(s) � max

d∈∆(A)
r(s, d) + γ

X

s′∈S
P(s′ |s, d)V(s′):

It is well-known that T and Tπ�are contraction mappings 
with respect to the maximum norm. Their unique fixed 
points are V∗ and Vπ, respectively. For a state s ∈ S, policy 
π ∈Π, and action distribution d ∈ ∆(A), define the state- 
action value function Qπ(s, d) � r(s, d) + γ

P
s′∈S P(s′ |s, d)

Vπ(s), which measures the expected total discounted 
reward of sampling an action from d in state s and applying 
π�thereafter. When d is deterministic, meaning da�1 for 
some a ∈A, we denote this simply by Qπ(s, a). Define 
Q∗(s, d) �Qπ∗ (s, d) for some optimal policy π∗. These obey 
the relations
Qπ(s,π′(s)) � (Tπ′Vπ)(s) max

d∈∆(A)
Qπ(s, d) � (TVπ)(s): (1) 

2.2. Geometric Average Rewards 
and Occupancies

Policy gradient methods are first order optimization algo-
rithms applied to optimize a scalar objective that mea-
sures expected discounted reward earned from a random 
initial state given by

J(π) � (1� γ)
X

s∈S
ρ(s)Vπ(s): (2) 

Another critical object is the discounted state occupancy 
measure

ηπ � (1� γ)
X∞

t�0
γtρPt

π ∈ ∆(S), 

where Pπ ∈R |S | × |S | is the Markov transition matrix 
under policy π�and ρ ∈R |S | is viewed as a row vector. 
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Here, ηπ(s) gives the geometric average time spent in state 
s when the initial state is drawn from ρ. These two are 
related as J(π) �

P
s∈Sηπ(s)r(s,π(s)).

The factor of (1� γ) in the definitions of ηπ�and J(π)
serves to normalize these quantities and gives them a nat-
ural interpretation in terms of average reward problems. 
In particular, consider, just for the moment, a problem 
with modified transition probabilities P̃(s′ |s, a) � (1� γ)
ρ(s′) + γP(s′ |s, a). That is, in each period, there is a 1� γ�
chance that the system resets in a random state drawn 
from ρ. Otherwise, the problem continues with the next 
state drawn according to P. One can show that J(π) de-
notes the average reward earned by π�and ηπ(s) is average 
fraction of time spent in state s under policy π�in this epi-
sodic problem. Undiscounted average reward problems 
are often constructed by studying J(π) as the discount fac-
tor approaches one (Bertsekas 1995, Puterman 2014).

3. State Aggregation
A state aggregation is defined by a function φ : S→

{1, : : : , m} that partitions the state space into m segments. 
We call φ�1(j) � {s ∈ S : φ(s) � j} the jth segment of the 
partition. Typically, we have in mind problems in which 
the state space is enormous (effectively infinite), but it is 
tractable to store and loop over vectors of length m. Tracta-
ble algorithms can then be derived by searching over 
approximate transition kernels, value functions, or policies 
that don’t distinguish between states belonging to a com-
mon segment. Our hope is that states in a common segment 
are sufficiently similar, for example, because of smoothness 
in the transition dynamics and rewards so that these 
approximations still allow for effective decision making.

To make this idea formal, let us define the set of 
approximate value functions and policies induced by a 
state aggregation φ,

Qφ � {Q ∈R |S | × |A | : Q(s, a) �Q(s′, a) for all a ∈A,
and all s, s′ ∈ S such that φ(s) � φ(s′)}

Πφ � {π ∈Π : π(s) � π(s′) for all s, s′ ∈ S

such that φ(s) � φ(s′)}:

It should be emphasized that practical algorithms do not 
require, for example, actually storing |S | · |A | numbers 
in order to represent an element Q ∈Qφ ⊂R |S | · |A | . In-
stead, one stores just m · |A | numbers, one per segment.

Should we approximate the value function or the pol-
icy? In this setting, there is a broad equivalence. This is 
important to the interpretation of the paper’s results 
because it implies that any benefit of policy gradient 
methods is not attributable to its approximation architec-
ture, but instead is attributable to the way it searches over 
the parameters of an approximation. A complete proof of 
these statements is omitted, but some details are given 
Appendix B.

Remark 1 (Equivalence of Aggregated-State Approx-
imations). The set of randomized state-aggregated pol-
icies Πφ�is equal to the set of policies formed by 
softmax optimization with respect to state-aggregated 
value functions:

Πφ � closure{π ∈Π : Q ∈Qφ, π(s, a)

� eQ(s, a)=
X

a′∈A
eQ(s, a′) ∀s ∈ S, a ∈A}: (3) 

Moreover, the set of deterministic policies contained 
in Πφ�is isomorphic to

{f ∈A |S | : Q ∈Qφ, f (s) �min
�

argmax
a∈A

Q(s, a)}
�

, (4) 

the set of greedy policies3 with respect to some state- 
aggregated value function.

4. Approximation via Policy Gradient with 
State-Aggregated Policy Classes

4.1. Convergence to Stationary Points
Policy gradient methods are first order optimization me-
thods applied to maximize J(π) over the constrained pol-
icy class Πφ. Of course, just as there is an ever-growing 
list of first order optimization procedures, there are many 
policy gradient variants. How do we provide insights rel-
evant to this whole family of algorithms? Were J(π) con-
cave, we would expect that sensible optimization method 
to converge to the solution of maxπ∈ΠφJ(π), allowing us to 
abstract away the details of the optimization procedure 
and study instead the quality of decisions that can be 
made using a certain constrained policy class. Unfortu-
nately, J(π) is nonconcave (Agarwal et al. 2019b, Bhandari 
and Russo 2019). It is, however, smooth (see Lemma 1). In 
smooth nonconcave optimization, we expect sensible first 
order methods to converge to a first order stationary point 
(Bertsekas 1997). Studying the quality of policies that are 
stationary points of J(·) then gives broad insight into how 
the use of restricted policy classes affects the limiting per-
formance reached by policy gradient methods.

As defined, a policy is a first order stationary point if, 
based on a first order approximation to J(·), there is no fea-
sible direction that improves the objective value. Local 
search algorithms generally continue to increase the objec-
tive value until reaching a stationary point. A first order 
stationary point could be a local maximum or a saddle 
point. The latter presents no additional complications for 
applying Theorem 3. Throughout this section, we view 
each π ∈Π�as a stacked vector π � (π(s, a) : s ∈ S, a ∈A) ∈

R |S | · |A | . It may also be natural to view π�as an |S | × |A |
dimensional matrix whose rows are probability vectors. 
In that case, all results are equivalent if one views inner 
products as the standard inner product on square matri-
ces given by 〈A, B〉 � Trace(A⊤B) and all norms as the 
Frobenius norm.

Russo: Approximation Benefits of Policy Gradient Methods 
4 Management Science, Articles in Advance, pp. 1–14, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

59
.2

22
.1

07
] 

on
 2

5 
Ju

ly
 2

02
3,

 a
t 0

7:
11

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Definition 1. A policy π ∈Π�is a first order stationary 
point of J :Π→R on the subset Πφ ⊂Π�if

〈∇J(π) , π′�π〉 ≤ 0 ∀π′ ∈Πφ:

The following smoothness result is shown by a short 
calculation4 in Agarwal et al. (2019b).

Lemma 1. For every π,π′ ∈Π, ‖∇J(π)�∇J(π′)‖2 ≤ L 
‖π�π′‖2, where L � 2γ |A | ‖r‖∞

(1�γ)2
:

We’ve claimed that we expect first order methods 
applied to smooth nonconvex optimization are expected 
to converge to first order stationary points. This is a stan-
dard subject in nonlinear optimization (see, e.g., Bertsekas 
1997), and the recent literature proposes stochastic first 
order methods with fast convergence rates to stationary 
points (see e.g. Ghadimi and Lan 2013, 2016; Defazio et al. 
2014; Xiao and Zhang 2014; Reddi et al. 2016a, b, c; Davis 
and Grimmer 2019). As an illustration, we show a conver-
gence result for an idealized policy gradient method with 
exact gradient evaluations and a direct parameterization. 
Armed with such a result, we focus on the quality of sta-
tionary points.

Recall that a point π∞ is a limit point of a sequence if 
some subsequence converges to π∞. Bounded sequences 
have convergent subsequences, so limit points exist for the 
sequence {πt} in Lemma 2. The operator Proj2,Πφ(π) �
argminπ′∈Πφ‖π

′�π‖22 denotes orthogonal projection onto 
the convex set Πφ. This exact lemma statement can be 
found in Bhandari and Russo (2019), and similar state-
ments appear in nonlinear optimization textbooks (Bertse-
kas 1997, Beck 2017).

Lemma 2 (Convergence to Stationary Points). For any 
π1 ∈Π�and α ∈ 0, 1

L
� �

, let
πt+1 � Proj2,Πφ(πt + α∇J(πt)) t � 1, 2, 3: : : (5) 

If π∞ is a limit point of {πt : t ∈N}, then π∞ is a station-
ary point of J(·) on Πφ�and

lim
t→∞

J(πt) � J(π∞):

Remark 2 (Steepest Feasible Ascent). It is well-known 
(see, e.g., Beck 2017) that policies generated by (5) sat-
isfy πt+1 � argminπ∈Πφ (π

t + 〈∇J(πt) , π�πt〉 + 1
2α ‖π�π

t‖22). 
When the step size α�is small, a projected gradient up-
date essentially moves in the steepest feasible ascent 
direction until reaching a stationary point from which 
there are no feasible ascents.

Remark 3 (Practical Implementation). The appendix 
provides many extra details related to this algorithm. 
It explains that this projection can be computed using 
simple soft-thresholding operations and the whole 
algorithm can be implemented efficiently when stor-
ing only a parameter θ ∈Rm· |A | . This stores one value 
per state segment and action rather than one per state. 
The appendix also shows how to generate unbiased 

stochastic gradients of J(·). The body of this paper 
instead focuses on the quality of the stationary points 
of J(·), abstracting away the specifics of which policy 
gradient method is used.

4.2. Quality of Stationary Points
We measure the accuracy of a state-aggregation φ(·)
through the maximal difference between state-action 
values with states belonging to the same segment of the 
state space. This notion is weaker than alternatives that 
explicitly assume transition probabilities, and rewards are 
uniformly close within segments—usually by imposing a 
smoothness condition (see, e.g., Rust 1996). But it is a stron-
ger requirement than the recent one in Dong et al. (2019), 
which only looks at the gap between state-action values 
under the optimal value function. The current proof 
requires bounding the aggregation error of some policy 
π∞ that is a stationary point of J(·), so it does not seem pos-
sible to give guarantees for policy gradient methods if we 
replace Qπ�with Q∗ in the following definition. At the 
same time, performance bounds that depend on ɛφ�can be 
quite conservative. See, for instance, Figures 2 and 4. It is 
an open question whether this definition can be relaxed in 
a meaningful way. Li et al. (2006) provides a comparison 
of different measures of the approximation error of a state- 
aggregated representation.

Figure 2. (Color online) Performance of Approximate Policy 
Iteration and Policy Gradient in Example 1 with n � 200 
States, Discount Factor γ � 0:99 and ɛφ � 1 

Figure 1. (Color online) A Bad Example for API 

Note. The actions move and stay are denoted by M and S.
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Definition 2 (Inherent State Aggregation Error). Let 
ɛφ ∈R be the smallest scalar satisfying

|Qπ(s, a)�Qπ(s′, a) | ≤ ɛφ�

for every π ∈Πφ, a ∈A and all s, s′ ∈ S such that φ(s) �
φ(s′).

Despite the nonconcavity of J(·), one can give guar-
antees on the quality of its stationary points. The next 
result does so under the requirement that each state- 
space segment has positive probability under the 
initial weighting ρ. Similar assumptions appear in 
Bhandari and Russo (2019) and Agarwal et al. (2019b), 
and they each discuss its necessity at some length. 
Whereas the next result holds for ρ�that is nearly de-
generate, it should be emphasized that the conver-
gence rates of many policy gradient methods depend 
inversely on miniρ(φ

�1(i)). An exploratory initial dis-
tribution is critical to these algorithm’s practical suc-
cess. Recall that J(·), as defined in (2), is normalized so 
that it represents the average rather than cumulative 
reward earned. Recall also that π∗ ∈Π�denotes some 
optimal policy, which, by definition, satisfies Vπ∗ (s) �

V∗(s) ∀s ∈ S. Such a π∗ is also an unconstrained maxi-
mizer of the policy gradient objective J(·).

Theorem 3 (Quality of Stationary Points). Suppose ρ(φ�1 

(i)) > 0 for each i ∈ {1, : : : , m}. If π∞ is a stationary point of 
J(·) on Πφ, then

J(π∗)� J(π∞) ≤ (1� γ)‖Vπ∞ �V∗‖∞ ≤ 2ɛφ:
For purposes of comparison, let us provide an alternative 
result, which can be derived by specializing a result in 
Bhandari and Russo (2019). At the time when this paper 
was initially written and posted, the following result was 
the best available bound. See the subsequent remark for a 
detailed comparison with a contemporaneous statement 
by Agarwal et al. (2019b). See the conclusion for discus-
sion around how the special structure of state aggregation 
seems to drive the improvements in Theorem 3.

Theorem 4 (Earlier Result by Bhandari and Russo 
(2019)). If π∞ is a stationary point of J(·) on Πφ, then

J(π∗)� J(π∞) ≤ κρ
ɛφ

(1� γ) , where

κρ ≤ max
i∈{1, : : : ,m}

ηπ∗ (φ
�1(i))

ρ(φ�1(i))
:

Here, κρ�captures whether the weight the initial distribu-
tion ρ�places on each segment of the state partition is 
aligned with the occupancy measure under an optimal 
policy. The form here is somewhat stronger than the sim-
ple one in Kakade and Langford (2002), which does not 
aggregate across segments, but it is still problematic. 
Without special knowledge about the optimal policy, it is 
impossible to guarantee that κρ�is smaller than the num-
ber of segments m. Worse perhaps is the dependence on 
the effective horizon 1=(1� γ). Recall from Section 2 that 
J(π) ∈ [0, 1] has the interpretation of a geometric average 
reward per decision. The optimality gap J(π∗)� J(π∞)
then represents a kind of average per-decision regret pro-
duced by a limiting policy. The dependence on 1=(1� γ)
on the right-hand side is then highly problematic, sug-
gesting performance degrades entirely in a long-horizon 
regime. Whereas undesirable, this horizon dependence is 
unavoidable under some classic approximate dynamic 
programming procedures. This is shown for approximate 
value iteration (with a fixed state-weighting) by Van Roy 
(2006). In the next section, we show this is true for approx-
imate policy iteration as well.

Remark 4 (Strengthened Results in Agarwal et al. 
(2019b)). Initially, a similar result to Theorem 4 could 
be found in Agarwal et al. (2019b) although with an 
even worse dependence on the discount factor. However, 
contemporaneously with this paper, their paper’s results 
were updated and stated in terms of a notion called trans-
fer error. Specializing this bound to our setting shows that 
the limiting optimality gap is bounded by 2ɛφ

ffiffiffi
k
√

under a 
state-aggregated natural policy gradient method. That 

Figure 4. (Color online) Performance of Algorithm 2 and Pol-
icy Gradient in Example 2 with n � 400 States, Discount Fac-
tor γ � 0:99, ɛφ � 1, and c � 1/3 

Note. The initial distribution has the form ρ(s) � C · 20s and ρ(s +
m) � C · s, where s ∈ {1, : : : , m} and C is a normalizing constant.

Figure 3. (Color online) A Bad Example for API with Adap-
tive Weights 

Note. The actions move and stay are denoted by M and S.
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bound avoids poor dependence on the problem’s time 
horizon. However, relative to Theorem 3, it still has a 
poor dependence on the number of actions. Such an 
upper bound cannot be compared cleanly against the 
lower bound for API that we provide in Theorem 7, so 
for the purposes of this paper, the tighter result in The-
orem 3 is critical.

Proof of Theorem 3. The next lemma is a version of the 
policy gradient theorem (Sutton and Barto 2018) that 
applies with directly parameterized policies. It is easy to 
deduce this formula from ones in Agarwal et al. (2019b) 
for example. The inner product interpretation in the 
statement is inspired by Konda and Tsitsiklis (2000). For 
any given state-relevance weights w ∈R |S | , define the 
inner product 〈 · , · 〉w×1 on R |S | × |A | by

〈Q , Q′〉w×1 �
X

s∈S

X

a∈A
w(s)Q(s, a)Q′(s, a): (6) 

w

Lemma 5 (Policy Gradient Theorem for Directional 
Derivatives). For each π,π′ ∈Π,

〈∇J(π),π′�π〉 �
X

s∈S

X

a∈A
ηπ(s)Qπ(s, a)(π′(s, a)�π(s, a))

� 〈Qπ , π′�π〉ηπ×1: (7) 

Proof Sketch. The proof sketch here gives insight into 
the second order remainder error term in a first order 
Taylor expansion of J(·). We have

J(π′)� J(π) �
X

s∈S

X

a∈A
ηπ′ (s)(π′(s, a)�π(s, a))Qπ(s, a)

� 〈Qπ , π′�π〉ηπ×1

+
X

s∈S

X

a∈A
(ηπ′ (s)� ηπ(s))(π

′(s, a)�π(s, a))Qπ(s, a)
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�O(‖π′�π‖2)

:

(8) 

The first equality is a simple but powerful result 
known in the RL literature as the performance differ-
ence lemma (Kakade and Langford 2002). That the 
remainder term is second order uses that π ⊢→ Pπ�is 
linear, and therefore, ηπ � (1� γ)ρ(I� γPπ)�1 is differ-
entiable in π. w

Because Q(s, d) �
P

aQ(s, a)da for any action distribu-
tion d ∈ ∆(A), this formula can be written as 〈∇J(π), 
π′�π〉 � ES~ηπ[Qπ(S,π′(S))�Qπ(S,π(S))]. One can in-
terpret Qπ(s, a) as measuring the benefit of switching 
from π�to action a for a single period. The policy gradient 
Equation (7) says that the infinite-horizon impact of a local 
policy change in the direction of π′ is equal to the average 
benefit of switching to policy π′ for a single period and at 
a random state.

The next lemma is a special case of one in Bhandari and 
Russo (2019). This simplified setting allows for an ex-
tremely simple proof, so we include it for completeness. 
Equation (9) can be viewed as an approximate Bellman 
equation within the restricted class of policies.

Lemma 6 (An Approximate Bellman Equation for 
Stationary Points). If π∞ is a stationary point of J(·) on 
Πφ, then

E[Vπ∞(S)] �max
π∈Πφ

E[TπVπ∞(S)] where S ~ ηπ∞ : (9) 

Proof. Continue to let S denote a random draw from 
ηπ∞ . For every π ∈Πφ, we have

0 ≥ 〈∇J(π∞) , π�π∞〉 � 〈Qπ∞ , π�π∞〉ηπ∞×1

� E[Qπ∞(S,π(S)))�Qπ∞(S,π∞(S))]
� E[(TπVπ∞)(S)�Vπ∞(S)]:

The second equality uses (1). The reverse inequality 
uses that π∞ ∈Πφ�along with the Bellman equation 
Vπ∞ � Tπ∞Vπ∞ . w

We are now ready to prove Theorem 3.

Proof of Theorem 3. We apply Lemma 6 and several 
times use the connection between Q functions and Bellman 
operators in (1). For notational convenience, throughout let 
S denote a random draw from ηπ∞ and let Si � φ

�1(i)
denote the ith segment of the state space. Because 
E[Tπ∞Vπ∞(S)] �maxπ∈Πφ E[TπVπ∞(S)], we have
π∞ ∈ argmax

π∈Πφ

E[TπVπ∞(S)] � argmax
π∈Πφ

E[Qπ∞(S,π(S))]

� argmax
π∈Πφ

Xm

i�1
E[Qπ∞(S,π(S)) |S ∈ Si]P(S ∈ Si):

Let a∞i denote the action selected by policy π∞ at any 
state s ∈ φ�1(i) in segment i. The vector (a∞1 , : : : , a∞m )
provides a full description of the policy π∞. The opti-
mization problem decomposes across segments of the 
state space, implying that

a∞i ∈ argmax
a∈A

E[Qπ∞(S, a) |S ∈ Si] i � 1, : : : , m:

Here, we use implicitly that P(S ∈ Si) > 0, which is 
assured by our assumption that ρ(Si) > 0. Now, we 
use the definition of ɛφ�to show a∞i must be near opti-
mal at every state in partition i. Pick

(s∗i , a∗i ) ∈ argmax
s∈Si,a∈A

Qπ∞(s, a):

By the optimality of a∞i , there must exist some s̃ ∈ Si such 
that Qπ∞(s̃, a∞i ) ≥Qπ∞(s̃, a∗i ). For any other s ∈ Si, we have

Qπ∞(s, a∞i ) ≥Qπ∞(s̃, a∞i )� ɛφ ≥Qπ∞(s̃, a∗i )� ɛφ
≥Qπ∞(s∗i , a∗i )� 2ɛφ ≥max

a∈A
Qπ∞(s, a)� 2ɛφ:

Observe that Qπ∞(s, a∞i ) �Qπ∞(s,π∞(s)) � Vπ∞(s) and 
maxa∈AQπ∞(s, a) � TVπ∞(s). Because s is arbitrary, this 
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gives element-wise inequality Vπ∞ ≽ TVπ∞ � 2ɛφe, where 
e denotes a vector of ones. Using the monotonicity of 
Bellman operators and the fact that T(V + ce) � TV + γce 
(Bertsekas 1995), we have

Vπ∞ ≽ TVπ∞ � 2ɛφe ≽ T2Vπ∞ + 2γɛφe� 2ɛφe

≽⋯≽ V∗�
2ɛφ

1�γ e: w

5. Horizon-Dependent per-Period Regret 
Under API

Approximate policy iteration is one of the classic approxi-
mate dynamic programming algorithms. It has deep 
connections to popular methods today, such as Q-learn-
ing with target networks that are infrequently updated 
(Mnih et al. 2015). Approximate policy iteration is pre-
sented in Algorithm 1. The norm there is the one induced 
by the inner product in (6) defined by ‖Q‖2, w×1 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

s
P

aw(s)Q(s, a)2
q

. The procedure mimics the classic 
policy iteration algorithm (Puterman 2014) except it 
uses a regression-based approximation in the policy 
evaluation step, aiming to select a state-aggregated 
value function that is close to the true one in terms of 
mean squared error. It is worth noting that this is a 
somewhat idealized form of the algorithm. Practical 
algorithms use efficient sample-based approxima-
tions to the least-squares problem defining Q̂. See 
Bertsekas and Tsitsiklis (1996) or Bertsekas (2011) for 
an introduction.

How does this algorithm perform? Our main result in 
this section is captured by the following proposition, giv-
ing a lower bound on performance that is worse than the 
result in Theorem 3 by a factor of the effective horizon 
1=(1� γ). Recall from Section 3 that there is a broad 
equivalence between searching over the restricted class of 
value functions in Qφ�and searching over the restricted 
class of policies Πφ. Any advantage in the limiting perfor-
mance of policy gradient methods is due to the way in 
which it searches over policies and not an advantage in 
representational power.

Theorem 7. There exists an MDP, a state-aggregation φ, 
and initial policy π1 such that, if {πt}t∈N is generated by 
Algorithm 1 with inputs given by φ, π1, and uniform 
weighting w(s) � 1= |S | ∀s, then

lim inf
t→∞

J(π∗)� J(πt) ≥
γɛφ=4
(1� γ) : (10) 

Later in this section, we study a variant of API that adapts 
state-relevance weights across iterations.

Note that a classic result of Bertsekas and Tsitsiklis 
(1996, proposition 6.2), specialized to this setting, can be 
used to show a bound in the other direction that matches 
(10) up to a numerical constant. Technically, the analy-
sis of Bertsekas and Tsitsiklis (1996) applies to value 

functions and not state-action value functions. The 
reader can find the same proof written in terms of state- 
action value functions in Agarwal et al. (2019a).

Theorem 7 is established through Example 1, which 
synthesizes an example from Bertsekas and Tsitsiklis 
(1996) with an example of Van Roy (2006). The latter 
work studies approximate value iteration in state- 
aggregated problems, establishing a result such as Theo-
rem 7. The former work gives an example in which the 
optimality gap under API exhibits poor dependence on 
the horizon, but that example does not treat state aggre-
gation. Surprisingly, although the state-aggregated prob-
lem in Example 1 is similar to the example of Bertsekas and 
Tsitsiklis (1996), the conclusion is stronger. The result of 
Bertsekas and Tsitsiklis (1996) is analogous to (10) but with 
the limit-inferior replaced with a limit-superior. In their 
example, API cycles endlessly between policies, sometimes 
selecting the optimal policy and sometimes selecting disas-
trous ones. In addition to applying in state-aggregated pro-
blems, Theorem 7 strengthens the conclusion by showing 
that API consistently selects disastrous policies in the limit.

Algorithm 1 (API)
input: w ∈ ∆(S), π1 ∈Π, φ�

(1) for t � 1, 2, : : : , do
/* Approximate policy evaluation step */

(2) Q̂t ∈ argminQ̂∈Qφ‖Q̂�Qπt‖2, w×1;
/* Policy improvement step */

(3) πt+1(s) ∈ argmaxa∈AQ̂t(s, a) ∀s;
(4) end.

Example 1. Consider an MDP with n � 2m states, 
depicted in Figure 1 for n�10 and m�5. For s ∈
{1, : : : , m}, we have φ(s) � φ(s+m) � s. This means 
that the algorithms don’t distinguish between s and 
s+m. In state s ∈ {2, : : : , m}, there are two possible 
actions: move, which moves the agent to state s�1 
and generates a reward r(s,Move) � 0, and stay, 
which keeps the agent in the same state with reward 
r(s,Stay). Rewards obey the recursion

r(1,Stay) � 0 r(s,Stay) � γr(s� 1,Stay)� c
for s ∈ {2, : : : , n}, 

and the formula r(s,Stay) ��c
Ps

i�2 γ
i�2. The negative 

reward for the action stay can be thought of as a cost. 
State 1 has only the costless action stay. (Or one can think 
of move as being identical to stay in state 1).

Transition probabilities from state s+m are identical 
to those at state s, and r(s+m,Move) � r(s,Move) � 0, 
but r(s+m,Stay) � r(s,Stay) + ɛφ, where ɛφ > 0. Pick 
c � ɛφ=2. The optimal policy plays move from every 
state s ∈ {2, : : : , m}.

Figure 2 displays simulation results. The dashed 
horizontal line represents 2ɛφ, the upper bound on the 
limiting optimality gap proved in Theorem 3. In par-
ticular, any optimization method that is guaranteed to 

Russo: Approximation Benefits of Policy Gradient Methods 
8 Management Science, Articles in Advance, pp. 1–14, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

59
.2

22
.1

07
] 

on
 2

5 
Ju

ly
 2

02
3,

 a
t 0

7:
11

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



reach a stationary point of J(·) has a limiting optimal-
ity gap below the dashed blue line. The simulation 
results show that a particular variant, projected gradi-
ent ascent with small constant step size, in fact, con-
verges gracefully to optimality in this example. The 
performance of approximate policy iteration is far 
worse. In the second iteration, it actually reaches an 
optimal policy, but from there, performance continues 
to degrade. In the limit, it cycles endlessly between two 
policies. That cycling behavior is common with API 
and is confirmed analytically as follows.

Proof of Theorem 7. Consider API applied to Example 
1 with uniform weighting, that is, w(s) � 1= |S | , and an 
initial policy π1 with π1(s) � Stay for s ∈ {2, 4, 6, : : : , 
m� 1} and π1(s) � Move for s ∈ {3, 5, 7, : : : , m}: For sim-
plicity, we assume m is an odd number. The policy is 
state aggregated, so π1(s+m) � π1(s) for s ≤m. We 
show that the next policy produced by API, π2, plays 
move at states {2, 4, : : : , m� 1} but plays stay at states 
{3, 5, 7, : : : , m}. Proceeding in this manner, one finds 
that π3 � π1, π4 � π2, and the policies cycle endlessly.

Assuming for the moment that this result holds, let 
us consider the optimality gap under any initial distri-
bution with ρ(m) > 1=2. We find J(π∗)� J(πt) > (1=2)
(1� γ)(V∗(m)�Vπt(m)). Observe that an optimal pol-
icy π∗, which chooses move in every state, incurs cost 
Vπ∗ (m) � 0. On the other hand, Vπt(m) �

r(m,Stay)
1�γ� for t 

even and Vπt(m) � 0+ γ · r(m�1,Stay)
1�γ� for t odd. These 

formulas reflect that either policy moves at most once 
before staying perpetually at one of the rightmost 
states. We find

J(π∗)� J(πt) >�
γ

2 · r(m� 1,Stay)

�
cγ
2 ·
Xm�1

i�2
γi�2 →

m→∞ cγ
2(1� γ) �

ɛφγ

4(1� γ) :

This establishes that Theorem 7 holds for problem in-
stances with m sufficiently large.

We now turn to verifying that policies cycle in the 
manner described. The weighted least-squares prob-
lem solved by API has a particularly simple form in 
this case. It is straightforward to show that the prob-
lem defining Q̂t decomposes across segments of the 
state space and, as the conditional mean minimizes 
squared loss, has the form

Q̂t(s, a) � ES~w[Qπt(S, a) |S ∈ φ�1(s)]

�
Qπt(s, a) +Qπt(s+m, a)

2 ∀s ≤m, a ∈A

�Qπt(s, a) + (ɛφ=2)1(a � Stay) ∀s ≤m, a ∈A:

That is, in each segment, the value function of the cur-
rent policy is overestimated by ɛφ=2 at state s and 
underestimated by ɛφ=2 in state s+m.

We verify that π2 has the form conjectured. The 
proof for π3 is uses the same ideas. Under π1 and for 
s ∈ {4, 6, 8, : : : }, we have Vπ1(s) � r(s,Stay)=(1� γ) and 
Vπ1(s� 1) � 0+ γVπ1(s� 2) � γr(s� 2,Stay)=(1� γ). 
Then,

Qπ1(s,Stay) � r(s,Stay) + γVπ1(s) � r(s,Stay)=(1� γ)
Qπ1(s,Move) � r(s,Move) + γVπ1(s� 1)

� γ2r(s� 2,Stay)=(1� γ):

Then, the least squares approximation gives Q̂1(s,Stay) �
r(s,Stay)=(1� γ) + ɛφ=2 and Q̂1(s,Move) � γ2r(s� 2, 
Stay)=(1� γ). By plugging in ɛφ � c=2, one can verify 
that Q̂1(s,Move) > Q̂2(s,Stay), so π2 plays move from 
states s ∈ {4, 6, 8, : : :m}. The edge case of s�2 needs to 
be handled separately. One finds Q̂1(2,Move) � 0 and 
Q̂1(2,Stay) ��c+ ɛφ=2 � 0. Breaking ties5 in favor of 
the action stay, we get π2(s) � Stay for s ∈ {2, 4, : : : , m}.

Under π1 and for s ∈ {3, 5, 7, : : : }, we have Vπ1(s�
1) � r(s� 1,Stay)=(1� γ) and Vπ1 (s) � 0+ γVπ1 (s� 1) �
γr(s� 1,Stay)=(1� γ). Then,

Qπ1(s,Stay) � r(s,Stay) + γVπ1(s) � r(s,Stay)
+ γ2r(s� 1,Stay)=(1� γ)

Qπ1(s,Move) � r(s,Move) + γVπ1(s� 1)
� γr(s� 1,Stay)=(1� γ):

Then, the least squares approximation gives Q̂1(s,Stay) �
Qπ1(s,Stay) + ɛφ=2 and Q̂1(s,Move) �Qπ1 (s,Move). Now, 
the misestimation error ɛφ=2 is enough cause the algo-
rithm to select the decision stay. In particular,

Q̂1(s,Stay)� Q̂1(s,Move) �
ɛφ

2 + r(s,Stay)� γr(s� 1,Stay)

�
ɛφ

2 + (�c+ γr(s� 1,Stay))� γr(s� 1,Stay)

�
ɛφ

2 � c � 0:

Breaking ties in favor of the actions Stay, we find that 
π2 plays stay in states {3, 5, 7, : : : }. w

5.1. Brittle Behavior of API with On-Policy State 
Relevance Weights

We illustrate that policy gradient sometimes dramatically 
outperforms a version of API that uses a fixed state 
weighting. Algorithm 2 presents another natural form of 
API in which these weights are adapted over time. At iter-
ation t, it weighs states according to the occupancy mea-
sure ηπt

, prioritizing accuracy at states that are visited 
often. This choice arises organically if the data used to 
approximate Qπt is generated by applying πt in the 
environment.

This modification to API seems to address Example 1, 
but it exhibits similarly brittle behavior in other examples. 
This possibility is validated through the numerical simu-
lation of Example 2, depicted in Figure 4. An analytical 
proof is likely possible by following the argument in 
Theorem 7.
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Algorithm 2 (API with Adaptive State Weighting)
input: π1 ∈Π, φ�

(1) for t � 1, 2, : : : , do
/* policy evaluation */

(2) Q̂t ∈ argminQ̂∈Qφ‖Q̂�Qπt‖2,ηπt
×1;

/* Policy improvement */
(3) πt+1(s) ∈ argmaxa∈AQ̂t(s, a) ∀s;
(4) end.

Example 2. Consider an MDP with n � 2m states, 
depicted in Figure 3 for n�10 and m�5. For s ∈
{1, : : : , m}, we have φ(s) � φ(s+m) � s. This means 
that the algorithms don’t distinguish between s and 
s+m. In a state with φ(s) ∈ {2, : : : , m}, there are two 
possible actions: move, which moves the agent to state 
s�1, and stay, which keeps the agent in the same 
state partition but brings an agent in state s to s+m 
and one who is in state s+m to state s. The action move 
generates zero reward. Rewards for the action stay at 
the states depicted on the top of Figure 3 obey the 
recursion

r(1+m,Stay) � 0
r(s+m,Stay) � γr(s+m� 1,Stay)� c

for s ∈ {2, : : : , m}, 

and the formula r(s+m,Stay) ��c
Ps

i�2 γ
i�2. Playing 

the action stay generates a higher reward in the states 
depicted at the bottom of Figure 3 with r(s,Stay) �
r(s+m,Stay) + ɛφ.

Example 2 involves two careful modifications to 
Example 1. First, in Example 2, selecting stay repeat-
edly causes the system to cycle between two states in 
a common partition. Second, the reward generated 
from playing stay is higher in a state s ∈ {2, : : : , m}
(bottom row of Figure 3) than in the corresponding 
state s+m (top row of Figure 3). These modifications 
are designed to ensure that Algorithm 2 cycles between 
bad policies. See Appendix C for further discussion.

6. What Drives the Performance Gap? 
The Importance of On-Policy State 
Weighting and Incremental Updates

Policy gradient methods are intimately related to API, 
making the performance difference between them all the 
more striking. To make their connections clear, we estab-
lish in Theorem 8 a precise equivalence between two algo-
rithms: one is a Frank–Wolfe (Frank and Wolfe 1956, 
Jaggi 2013) variant of policy gradient, and the other is a 
form of API that uses online state-relevance weights and 
soft policy updates. After giving a short proof, we turn to 
discussion of the insights this equivalence yields.

Theorem 8. Suppose Algorithms 3 and 4 are applied with 
the same inputs and the optimization problems in step 2 of 
Algorithm 3 and step 3 of Algorithm 4 always have unique 

solutions. Then, each algorithm produces an identical seq-
uence of policies.

Algorithm 3 (Frank–Wolfe Policy Gradient)
input: α,π1 ∈Π, φ�

(1) for t � 1, 2, : : : , do
/* Maximize linearization */

(2) π̃t+1 � argmaxπ∈Πφ〈∇J(πt) , π�πt〉;
/* Soft policy update */

(3) πt+1 � απ̃t+1 + (1� α)πt;
(4) end.

Algorithm 4 (Soft API with Adaptive Weighting)
input: α,π1 ∈Π, φ�

(1) for t � 1, 2, : : : , do
/* Occupancy weighted policy evalua-
tion */

(2) Q̂t ∈ argminQ̂∈Qφ‖Q̂�Qπt‖2,ηπt
×1;

/* Policy improvement */
(3) π̃t+1(s) ∈ argmaxa∈AQ̂t(s, a) ∀s;

/* Soft policy update */
(4) πt+1 � απ̃t+1 + (1� α)πt;
(5) end.

Theorem 8 appears to be new, but related results 
appear several times in the literature. Algorithm 2 is often 
called the conservative policy iteration and is first pro-
posed by Kakade and Langford (2002) based on consid-
erations similar to policy gradient methods. In cases 
without approximation, Vieillard et al. (2019) and Bhan-
dari and Russo (2021) observe that the Frank–Wolfe algo-
rithm is equivalent to Algorithm 4. O’Donoghue et al. 
(2017) and Schulman et al. (2017a) study a related equiva-
lence when entropy regularization is applied.

6.1. Proof of Theorem 8 Using the 
Actor–Critic Theorem

To compare policy gradient and API, we rely on the the-
ory of actor–critic methods, which uses estimated value 
functions in evaluating gradients of J(·). To make this pre-
cise, recall the policy gradient expression in Lemma 5
expresses directional derivatives as a certain weighted 
inner product, 〈∇J(π),π′�π〉 � 〈Qπ , π′�π〉ηπ×1. Actor– 
critic methods replace the true value function Qπ�with 
some parametrized approximation, producing an approxi-
mate gradient.

An extremely elegant result of Konda and Tsitsiklis 
(2000) and Sutton et al. (2000) shows that compatible value 
function approximation produces no error in evaluating 
the gradient in feasible ascent directions. We identify the 
form of compatible function approximation in our setting. 
As in the previous section, ‖Q‖2,ηπ×1 denotes the norm 
induced by the inner product 〈 · , · 〉ηπ×1 defined in (6).

Lemma 9 (Compatible Function Approximation). If Q̂π �
argminQ̂∈Qφ‖Q̂�Qπ‖2,ηπ×1, then,

〈∇J(π), π′�π〉 � 〈Q̂π , π′�π〉ηπ×1 ∀π′ ∈Πφ:

Russo: Approximation Benefits of Policy Gradient Methods 
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Proof. Observe that Qφ � Span(Πφ), where Span(Πφ)
consists of all vectors of the form 

PI
i�1 ciπ(i), where 

each ci ∈R is a scalar and π(i) ∈Πφ. Then, Q̂π�is the 
orthogonal projection of Qπ�onto Span(Πφ) with 
respect to the norm induced by the inner product 
〈 · , · 〉2,ηπ×1. This means the error vector Qπ� Q̂π�is 
orthogonal to the subspace Span(Πφ) with respect to 
〈 · , · 〉2,ηπ×1, implying

〈Qπ , π̃〉ηπ×1 � 〈Q̂π , π̃〉ηπ×1 ∀π̃ ∈ Span(Πφ):

Combined with Lemma 5, this yields the result. w

Theorem 8 is a simple corollary of Lemma 9. By Lemma 
9, step 2 of Algorithm 3 is equivalent to

π̃t+1 ∈ argmax
π∈Πφ

〈∇J(πt) , π� πt〉

� argmax
π∈Πφ

〈Q̂t , π� πt〉ηπt
×1, 

where Q̂t has the same definition as in Algorithm 4.

6.2. Discussion
In light of Example 1, Theorem 8 reveals that two changes 
to API together have an enormous impact. One is to use 
on-policy state-relevance weights in the choice of loss 
function that is minimized to select an approximate value 
function. Lemma 9 shows that using this estimation loss 
orients estimation toward accurate evaluation of the deci-
sion objective, at least locally. A poor choice of state 
weighting seems to have contributed to the poor perfor-
mance of Algorithm 1 in Example 1. The “top states” 
(m+ 1, : : : , 2m), displayed shaded in the top half of Figure 
1, were given the same weight as the “bottom states.” 
With on-policy state-relevance weights, little weight is 
given to the top states as they are visited infrequently. 
This allows for an accurate representation at the more 
important bottom states, dampening the propagating 
errors from state aggregation that are shown in the proof 
of Theorem 7. Van Roy (2006) previously observed that 
the robustness of policies derived from solutions of state- 
aggregated Bellman equations can depend critically on 
the choice of state-relevance weights. It is an open ques-
tion whether his theory can be connected formally to the 
analysis in this paper.

The other change to API is to use soft, or local, changes 
to the policy. In the tth iteration of Algorithm 4, the state- 
relevance weights ηπt 

capture relevance under the policy 
πt by design. But if the step size is large, they may no lon-
ger reflect the relevance of states under the policy πt+1 
over which the algorithm is optimizing. Equation (8) 
shows that the second order error term, J(πt+1)� J(πt)�

〈∇J(πt) , πt+1 �πt〉, depends on the magnitude of distri-
bution shift, ηπt+1

� ηπt
. Example 2 shows that this issue 

can severely impact decision quality. In that example, the 

relevance of top states changes substantially across itera-
tions, and this causes Algorithm 2 to cycle endlessly 
between policies with poor performance. Other works in 
the literature focus on ensuring that policy changes are 
small enough that performance improves strictly in each 
iteration (Kakade and Langford 2002, Schulman et al. 
2015), but I am not aware of any results that show such 
severe degradation in performance is possible otherwise.

7. Conclusion
A surge of recent papers on the theory of reinforcement 
learning establish convergence rates and sample complex-
ity bounds for different algorithms. Few, however, eluci-
date the subtle impact of algorithmic design choices on 
robustness to approximation errors. This paper provides 
one such case study, focused on the comparison between 
approximate policy iteration and policy gradient when 
applied with state-aggregated representations. The main 
contribution is providing a short, self-contained treatment 
with a transparent gap between provable upper and 
lower bounds.

One open question, highlighted in Section 4, is whether 
the notion of approximation error in Definition 2 can be 
relaxed to depend only on the optimal value function as 
shown for optimistic Q-learning in Dong et al. (2019). For 
simplicity and brevity, this paper focuses on the quality of 
stationary points and, at times, on the simple projected 
policy gradient method. Convergence rates for policy gra-
dient methods are given, for example, in Agarwal et al. 
(2019b), Bhandari and Russo (2019), and Shani et al. 
(2020), and it seems that similar finite time bounds could 
be developed here.

Another open direction is to generalize these results 
beyond the case of state aggregation. The critical feature 
of state-aggregated representations is that they can be 
adjusted locally without impacting the approximation in 
other regions of the state space. By contrast, in general, 
linear models can be quite rigid with local changes 
influencing the approximation at distant states. This 
rigidity seems to drive a dependence of past guarantees 
for policy gradient methods on certain distribution shift 
terms that were avoided in Theorem 3, such as the κρ�
term in Theorem 4. Indirectly, poor dependence on the 
problem’s time horizon was avoided for the same rea-
son.6 The deep neural representations that are popular 
today seem to have elements of both state-aggregation 
and global linear approximation. A crisp understanding 
of local methods such as state aggregation may provide 
some useful intuition for the study of neural networks.
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Appendix A. Implementing Projected Policy 
Gradient with Aggregated State 
Approximations

Conceptually, the simplest policy gradient method is the 
projected gradient ascent iteration:

πt+1 � Proj2,Πφ

�
πt + α∇J(πt)

�

� argmax
π∈Πφ

πt + 〈∇J(πt) , π� πt〉�
1

2α ‖π� π
t‖22

� �

t ∈N, 

where any policy π ∈Π�is viewed as a stacked |S | · |A | - 
dimensional vector satisfying 

P
a∈Aπ(s, a) � 1 and π ≥ 0. The 

operator Proj2,Πφ (π) � argminπ′∈Πφ‖π
′ �π‖22 denotes orthogo-

nal projection onto the convex set Πφ�with respect to the 
Euclidean norm. The second equality is a well-known “pro-
ximal” interpretation of the projected update (Beck 2017). 
Although the optimization problem

argmax
π∈Πφ

πt + 〈∇J(πt) , π�πt〉�
1

2α ‖π�π
t‖22

� �

appears to involve |S | · |A | decision variables, it is equivalent 
to one involving m · |A | decision variables.

Algorithm A.1 uses θ ∈Rm× |A | to denote the parameter 
of a state-aggregated policy, in which π∞(s, a) � θi, a is the 
probability of selecting action a for a state s ∈ φ�1(i) in seg-
ment i. The projection has a simple solution, involving 
projecting the vector θ̃s, : corresponding to partition i onto 
the space of action distributions ∆(A). Projection onto the 
simplex can be executed with a simple soft thresholding 
procedure. In particular, the projection ŷ ∈ ∆(A) of a vec-
tor y ∈R |A | satisfies ŷi �max{yi � β, 0}, where β�is chosen 
so that 

P
iŷi � 1. The pseudocode in Algorithm A.2, taken 

from Duchi et al. (2008), shows how β�can be found effi-
ciently. The algorithm runs in O( |A | log( |A | )) time with 
the bottleneck being the sorting of the vector y. Duchi et al. 
(2008) shows how this can be reduced to an O( |A | )
runtime.

Algorithm A.1 (Projected Policy Gradient)
input: θ ∈Rm× |A | , step size α�

(1) for t � 1, 2, : : : , do
(2) Get gradient g � ∇θJ(πθ);
(3) Form target θ̃ � θ+ αθ;

/* Project onto simplex */
(4) for i � 1, : : : , m do
(5) θi, :←mind∈∆(A)‖d� θ̃i, :‖

2
2

(6) end
(7) end.

Algorithm A.2 (Projection onto the Probability Simplex)
input: Vector y ∈Rk 

(1) Sort y into µwith µ1 ≥ µ2 ≥⋯≥ µk;
(2) Find J �max j ∈ [k] : µj �

1
j (
Pj

r�1 µr � 1)
n o

> 0;
(3) Define β � 1

J (
PJ

i�1 µi � 1);
output: ŷ ∈Rk, where ŷi �max{yi � β, 0}.

Algorithm A.3 provides an unbiased Monte Carlo pol-
icy gradient estimator. It is based on the formula

∂J(π)
∂π(s, a) � Qπ(s, a)ηπ(s), 

which can be derived from the standard policy gradient theo-
rem by picking a direct policy parameterization (see, e.g., 
Agarwal et al. 2019b). Rewriting this, if s̃0 ~ ηπ�and ã0 | s̃0 ~ 
Uniform(1, : : : , k), then

∂J(π)
∂π(s, a)

�Qπ(s, a)P(s̃0 � s) � |A |Qπ(s, a)P(s̃0 � s, ã0 � a):

Using the chain rule, we have

∂J(πθ)
∂θi, a

�
X

s∈φ�1(i)

∂J(π)
∂π(s, a)

� |A |E[Qπ(s̃0, a)1(s̃0 ∈ φ
�1(i), ã0 � a)]:

Algorithm A.3 shows how this formula can be used, together 
with a simulator of the environment, to generate stochastic gra-
dient ĝ with E[ĝ] � ∇θJ(πθ). This can be used in stochastic 
gradient schemes or, by averaging across many independent 
simulation runs, used to estimate ∇θJ(πθ) accurately. The algo-
rithm begins by drawing a state s̃0 from ηπ(·) and then an 
action ã0 uniformly at random (see Remark A.1). Then, it uses 
a Monte Carlo rollout to estimate Qπ(s̃0, ã0). To give unbiased 
estimates of infinite horizon discounted sums underlying ηπ�
and Qπ, it leverages a well-known equivalence between geo-
metric discounting and the use of a random geometric horizon. 
For any scalar random variables {Xt}t�0, 1, : : : , one has

E
X∞

t�0
γtXt

" #

� E
Xτ

t�0
Xt

" #

, 

where τ ~ Geometric(1� γ) has distribution that is indepen-
dent of {Xt}. The equivalence is because P(τ ≥ t) � γt.

Algorithm A.3 (Simple Unbiased Gradient)
input: H, S, A, tuning parameters {βk}k∈N
/* Sample ̃s0 ~ ηπ� */ 

(1) Sample τ ~ Geometric(1� γ);
(2) Sample initial s0 ~ ρ;
(3) Apply policy π�for τ�time steps;
(4) Observe (s0, a0, r0, : : : , aτ�1, rτ�1, sτ);
(5) Set s̃0 � sτ;

/* Draw uniform random action */
(6) Sample ã0 ~ Uniform{1, : : : , |A | };

/* Unbiased estimate of Qπ(ã0, s̃0) */
(7) Sample τ̃ ~ Geometric(1� γ);
(8) Apply action ã0 and observe (r̃0, s̃1);
(9) if τ̃ > 0 then

(10) Apply policy π�for τ̃�periods from s̃1;
(11) Observe: (s̃1, ã1, s̃2, : : : , ãτ�1, r̃τ�1, s̃τ);
(12) end
(13) Set Q̂ � r̃0+⋯ +r̃τ;
(14) Find state segment I � φ�1(s̃0);

(15) Set ĝ(i, a) � |A | · Q̂ if i � I, a � ã0
0 otherwise

�

;

output: ĝ ∈Rm× |A | .

Remark A.1. A more common presentation of unbiased pol-
icy gradient estimation uses a kind of inverse propensity esti-
mate in which ã0 is sampled from the policy being evaluated 
(Williams 1992). This can have very large variance if the policy 
is nearly deterministic. The form presented ensures the vari-
ance of the sampled gradient is uniformly bounded.
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Appendix B. Some Details on Remark 1
Equation (3) can be established as follows. If Q ∈Qφ�is state 
aggregated, then it is immediate that π�defined by π(s, a) �
eQ(s, a)=

P
a′∈AeQ(s, a′) is state aggregated. This shows that soft- 

maximization with respect to some state-aggregated value fun-
ction yields a state-aggregated policy that assigns nonzero 
probability to each action. Now, we need to show that every 
strictly stochastic state-aggregated policy can be generated this 
way. Consider any policy π ∈Πφ�with π(s, a) > 0 for all a ∈A. 
Picking Q(s, a) � logπ(s, a) yields π(s, a) � eQ(s, a)=

P
a′∈AeQ(s, a′).

Results for policies that assign zero probability to some 
action are attained by taking limits of strictly stochastic 
policies that approach them. The minimum in (4) can be 
replaced with any deterministic tie-breaking mechanism. 
This is needed because, if ties are broken differently at 
states sharing a common segment, the induced policy 
would not be constant across segments.

Appendix C. Further Discussion of Example 2
As in the proof of Theorem 7, imagine Algorithm 2 is 
applied in Example 2 with initial policy π1 that selects 
π1(s) � Stay for s ∈ {2, 4, 6, : : : , m� 1} and π1(s) � Move for 
s ∈ {3, 5, 7, : : : , m}. One can show, and this is validated 
numerically with open-source code, that the next policy 
produced by API, π2, plays move at states {2, 4, : : : , m� 1}
and plays stay at states {3, 5, 7, : : : , m}. This cycle con-
tinues with π3 � π1, π4 � π2 and so on. The performance 
of these policies is depicted in Figure 4.

What drives this? Consider the policy π1 described and 
some s ∈ {3, 5, 7, : : : } so π1(s) � Move. Policy iteration con-
siders the value of deviating from the prescribed action of 
π1 for only a single period. So the agent is essentially 
comparing (A) picking move and then continually select-
ing stay at states {s� 1, s� 1+m} and (B) picking stay 
and transitioning to state s+m and then moving to s�1 
and selecting stay thereafter. Because the initial distribu-
tion is much more likely to place the agent at s (top of 
Figure 3) than at s+m (bottom of Figure 3) and the agent 
plays move; API with on-policy state-weighting essentially 
ignores behavior at s+m when fitting an approximate Q- 
function. The problem is constructed so that there is a 
higher reward to playing stay at state s than at s+m, 
and this is enough to cause the agent to estimate that (B) 
is preferable to (A). The reverse of this logic plays out for 
states s ∈ {2, 4, 6, : : : } with π1(s) � Stay.

Endnotes
1 See Gabillon et al. (2013) for a full account of the history.
2 See Remark 4 for discussion of updated results in Agarwal et al. 
(2019b).
3 Here, we have broken ties deterministically in favor of the actions 
with a smaller index. If there are multiple optimal actions and ties 
are broken differently at states sharing a common segment, the 
induced policy would not be constant across segments.
4 In Arxiv version 2, this is lemma E.3. To translate their result to 
our formulation, one must multiply the statement in lemma E.3 by 
(1� γ) as in the definition J(π) � (1� γ)ρVπ. They also have normal-
ized so that |r(s, a) | ≤ 1. That is the reason ‖r‖∞ does not appear in 
their expression.

5 This example can be easily modified by taking c to be infinitesi-
mally smaller than ɛφ=2, in which case no tie-breaking mechanism 
is needed.
6 Past work, such as Bhandari and Russo (2019) and Agarwal et al. 
(2019b) uses the initial distribution ρ�to control likelihood ratio 
terms as ηπ∗ (s)=ηπ(s) ≥ (1� γ)(ηπ∗ (s)=ρ(s)). Avoiding a dependence 
of limiting approximation error on distribution shift terms avoided 
an extra dependence on the effective time horizon, (1� γ)�1.
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