
OPNS530 Sequential Learning Lecture 1 - March 28th 2017

Introduction
Lecturer: Daniel Russo Scribe: Alexej Proskynitopoulos, Yanir Cohen

Overview

Assignments:

• Lecture notes scribing

• Occasional HW

• Course Project

The course project could be a literature review, an implementation project or on an application of the
methods developed and discussed in class. The course will contain several modules:

Module 1: Sequential/Active Hypothesis Testing

Suppose you want to hire a freelance programmer. You design a questionnaire to assess candidate capabilities
to decide if one is a good fit. Assume your test consists of n attributes. Consider a vector θ = (θ1, . . . , θn)
of ’skills’ of a programmer (e.g. ”Java”, or ”Machine Learning”, etc.). The programmer is then asked a
question, q. We observe its answer. Denote his answer with q = 1 if it is correct and 0 otherwise. The
probability of him answering correct is

prob = logistic(θ>q) =
eθ

>q

1 + eθ>q
.

Consider now the following hypothesis:

H0 : θ ∈ Θ0, H1 : θ ∈ Θ1,

where Θ0 (the set of skill sets for which we would hire the programmer) and H1 (the set of skills for which
we would not) are disjoint. We are interested in defining an effective test and would like to know (1) if a
candidate is a good programmer ? how much time it would take to define he/she is good? and (2) how many
questions I should ask to decide that someone is not a good fit.

Module 2: Bandit Learning

Consider the following example of an online shortest path problem. Everyday we send a truck from a source
S to a destination D to deliver goods. As we send it, we observe some feedback on how long it took the
driver to deliver the items. The driver needs to visit the destination via a path of a weighted graph.
Our goal is to minimize

E[total travel time over many trips].

We cannot try every path as typically the number of those is very(!) large, possibly exponentially. Instead,
we would like to work in a simple algorithmic framework to obtain theoretical guarantees of our algorithms.
We compare our performance against the performance we would achieve by knowing the best path (this is
called the regret). Typically, our algorithms address the trade off between exploration and exploitation.

1

Figure 1: A shortest path problem with ten vertices.

Module 3: Reinforcement Learning

We learn to optimize an Markov decision process (MDP) from observed actions and state-transitions and
rewards. Consider the following example: patients arrive at a hospital. Each patient comes in a state,
captured, for example, by his weight, age and several other characteristics. He is then exposed to a treatment
that changes his state and gives a reward, based on his health improvement (or deterioration). We then
expose him to another treatment and observe his new state and so on for a couple of turns, before we move
on to the next patient. Note that this is a case of delayed consequence. It is not the traditional bandit
problem; it would take time to fully observe the consequences of a past decision.

1 Sequential Hypothesis Testing

The topic of sequential hypothesis testing dates back to Wald (1945). Say we observe a random variable Xi

at time i. We are interested in a binary hypothesis test of:

H0 : X1, X2, . . .
i.i.d.∼ f0, vs H1 : X1, X2, . . .

i.i.d.∼ f1,

where f0, f1 are distribution functions. Assume that we have no structural constraints so that we can
continue to observe data indefinitely. Let θ ∈ {0, 1} denote the true unknown true parameter (so Xi ∼ fθ).
Initially, we observe X1 at which point we either stop and declare θ = 0 or θ = 1, or we continue and observe
X2. After observing X2 we can again either declare θ or continue to observe data and so on. This gives rise
to the decision tree in figure 1.
Rigorously, a sequential test1 is a sequence of functions Ψ = (ψ1, ψ2, . . .) where

ψn : (X1, . . . , Xn)→


stop and return H0

stop and return H1

continue.

Let (T,D) be a pair of a (random) stopping time and testing decision. We are typically interested in
quantities such as E0[T] = E[T |H0], E1[T] = E[T |H1] as well as P0(D 6= 0) = P(D 6= 0|H0) and P1(D 6=
0) = P(D 6= 0|H1) . Our goal will be to minimize these quantities. Clearly there is (in general) no way to
minimize all four of these simultaneously.

1In this class we will occasionally refer to a sequential test as a rule, procedure or algorithm, and we will use these term
somewhat interchangeably.

2

Figure 2: Decision three corresponding to the sequential test.

Example 1 (Benefits of sequential test, a contrived example). Say

H0 : X1, X2, · · · ∼ Ber(1), H1 : X1, X2, · · · ∼ Ber(1/2).

We wish to guarantee P0(D 6= 0) = 0 as well as P1(D 6= 1) ≤ δ for some small δ ≥ 0. How many samples
are required? Say T = n. Then

D =

{
0 if X1 = X2 = · · · = Xn = 1

1 otherwise.

and P1(D 6= 1) = (1/2)n ≤ δ provided that n ≥ log2(1/δ). The sequential test will stop if you see a 0 or after
log2(1/δ) turns. It is easy to see that E0[T] = log2(1/δ). Under H1, T ∼ Geo(1/2) and therefore E1[T] = 2.

The (Bayesian) motivation for the sequential test is as follows: say

θ =

{
1 prob = π0

0 prob = 1− π0,

and that X1, X2, . . . |θ ∼ f0. The posterior distribution is

πn := P(θ = 1|X1, . . . , Xn) =
π0

∏n
k=1 f1(xk)

π0
∏n
k=1 f1(xk) + (1− π0)

∏n
k=1 f0(xk)

,

and
1− πn = P0(θ = 0|X1, . . . , Xn).

Say we stop if

πn ≥ A ⇐⇒
πn

1− πn
>

A

1−A
⇐⇒

π0
∏n
k=1 f1(xk)

(1− π0)
∏n
k=1 f0(xk)

≥ A

1−A
.

Let Λn :=
∏n
k=1 f1(xk)/f0(xk) be the likelihood ratio. If πn ≥ A, then Λn ≥ A/(1 − A). Our sequential

probability ratio test (SPRT) is then: {
stop if Λn /∈ [A,B]

continue otherwise.

3

For some thresholds A and B. Questions:

1. Is this a valid test?

2. How many samples are required?

3. Is this optimal?

Optimality results: ”Ignoring” overshoots, the SPRT with (A,B) = function(α, β) minimizes both E0[T]
and E1[T] among all rules under which

P0(D 6= 0) < α, P1(D 6= 1) < β.

Notice that

log Λn =

n∑
k=1

log
f1(xk)

f0(xk)
=

n∑
k=1

Zk,

for Zk = f1(xk)/f0(xk). Consider the test log Λn /∈ [logA, logB]. It is easy to see that log Λ = {(log Λn)}n∈N
is a random walk with drift. For n large we expect from the CLT that log Λn ≈ nE[Z1] +O(

√
n).

Figure 3: Log likelihood with positive drift and decision interval [A,B].

Assuming an upward drift, we cross the boundary at B when

nE1[Z1] ≥ logB ⇒ n ≈ logB

E[Z1]
.

Similarly

E0[T] ≈ logA

E0[Z1]
.

Remark E1[Z] is the Kullback-Leibler divergence between f1 and f0, also denoted as KL(f1||f0).

4

