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I’ll present a tool for deriving lower bounds that can be used to establish any lower bound I
will refer to in this course. A preliminary section reviews properties of of the Kullback-Leibler
divergence. We will then show how various lower bounds follow from the so-called data-processing
inequality of KL-divergence.

These techniques are closely related to traditional change of measure arguments. In particular,
our end results are closely related to the general change of measure lemma in Kaufmann [2014].

1 Preliminaries: Facts about KL Divergence

Here I will review some basic properties of KL divergence. To keep everyhing simple, I will restrict
focus to discrete random variables. More details can be found in chapter 2 of the beautiful textbook
Cover and Thomas [2012]. A rigorous measure theoretic treatment is developed in Gray [2011].

Remark 1. we will follow the the convention in information theory that 0 log(0) = 0, which is
consitent with the limit limx→0 x log(x) = 0.

Definition 1. For two probability distributions p and q over X the Kullback-Leibler divergence is

D(p(x)||q(y)) :=
∑
x∈X

p(x) log

(
p(x)

q(x)

)
.

This can roughly be thought of as the extent to which observations from p “diverge” from what
we would have expected under q. In general, the KL-divergence is not symetric (D(p||q) 6= D(q||p));
we may observe draws under p that are nearly impossible under q, even if all draws under q are
fairly plausible under p. We next consider the definition of conditional KL divergence.

Definition 2. (Conditional KL Divergence)

D(p(y|x)||q(y|x)) =
∑

x∈X ,y∈Y
p(x, y) log

(
p(y|x)

q(y|x)

)
=
∑
x∈X

p(x)

∑
y∈Y

p(y|x) log

(
p(y|x)

q(y|x)

) .

Example 1 (Lemonade stand demand in uncertain whether). Suppose we are uncertain about the
rate of demand at a lemonade stand. We know that demand is either 0 or 1. Let y denote the
realized demand on a given day, and x ∈ {0, 1} denote whether it was rainy or sunny on that day
(with x = 1 denoting “sunny”.) It is sunny with probability 3/4 under either p or q. We know that
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demand is always 0 when it is rainy. When it is sunny, demand is 1 with probability θp under p
and is 1 with probability θq under q. Then

D(p(y|x)||q(y|x)) = (3/4)D(Bern(θp)||Bern(θq))

where Bern(θ) denotes the Bernoulli distribution with parameter θ ∈ (0, 1). The main feature to
take from this example is that we learn about demand only when it is sunny, and the probability of
this event is precisely reflected in the conditional KL-divergence.

Fact 1 (non-negativity). For any pmfs p and q, D(p||q) ≥ 0.

Proof. We show −D(p||q) ≤ 0.

−D(p||q) = −
∑
x

p(x) log

(
p(x)

q(x)

)
=
∑
x

p(x) log

(
q(x)

p(x)

)
≤ log

(∑
x

p(x)
q(x)

p(x)

)
= log(1) = 0

where the inequality follows from Jensen’s inequality.

The next fact is important as it allows us to calculate the KL divergence in fairly complicated
models. It basically follows from the factorization p(x, y) = p(x)p(y|x) together with the fact that
log takes products to sums (log(xy) = log(x) + log(y).

Fact 2 (Chain Rule).

D(p(x, y)||q(x, y)) = D(p(x)||q(x)) +D(p(y|x)||q(y|x))

Proof. Using that p(x, y) = p(x)p(y|x) and q(x, y) = q(x)q(y|x) we have∑
x,y

p(x, y) log

(
p(x, y)

q(x, y)

)
=

∑
x,y

p(x, y)

(
log

(
p(x)

q(x)

)
+ log

(
p(y|x)

q(y|x)

))
.

=
∑
x

p(x) log

(
p(x)

q(x)

)
+
∑
x,y

p(x, y) log

(
p(y|x)

q(y|x)

)
= D(p(x)||q(x)) +D(p(y|x)||q(y|x)).

Corollary 1 (Agreement on one variable). If p(x) = q(x) ∀x then

D(p(x, y)||q(x, y)) = D(p(y|x)||q(y|x)).

Corollary 2. If (x1, ...xn) are independent under both p and q, then

D(p(x1, x2, ...xn)||q(x1, x2, ..., xn)) =
n∑
i=1

D(p(xi)||q(xi))

If the Kullback-Leibler divergence D(p(x)||q(x)) quantifies the degree to which observations
from p allow us to rule out q, then it makes sense that we learn no more from observing a function
f(x) than from observing the raw data x. That is, processing the data-set cannot increase its
information content. This is made formal in the following fact.
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Fact 3 (Data Processing Inequality). If y = f(x) is a function of x, then

D(p(y)||q(y)) ≤ D(p(x)||q(x)).

Proof. We apply the chain rule of KL-divergence twice. First,

D(p(x, y)||q(x, y)) = D(p(x)||q(x)) +D(p(y|x)||q(y|x))︸ ︷︷ ︸
0

= D(p(x)||q(x)).

Then,

D(p(x)||q(x)) = D(p(x, y)||q(x, y)) = D(p(y)||q(y)) +D(p(x|y)||q(x|y)) ≥ D(p(y)||q(y)).

2 Hypothesis testing lower bounds via data-processing

2.1 Notation

In the next subsection, we will consider problems in which X1, X2, ... ∼ fθ are drawn from a i.i.d
from a density fθ. The parameter θ is unknown, and the goal is to perform well (e.g. identify the
mean) under every θ. I will write Pθ(·) to denote the probability measure under θ, so when writing
Pθ(X1 ≥ X2 +X3), we are implicitly integrating over draws of (X1, X2, X3) from fθ. We will study
random variables that are functions of the sequence of X’s, e.g. Y = f(X1, X2, ..Xn). I’ll denote
the law of Y under θ by Pθ(Y ) = Pθ(Y ∈ ·), and use

D(Pθ(Y )||Pθ′(Y ))

to denote the KL-divergence between the distribution of Y under different parameters.
The notation for KL divergence is overloaded. I’ll use

D(fθ||f ′θ) =

∫
log

(
fθ(x)

fθ′(x)

)
fθ(x)dx

to denote the KL-divergence between fθ and fθ′ . For p, q ∈ (0, 1) let dB(p||q) = p log
(
p
q

)
+ (1 −

p) log
(

1−p
1−q

)
denote the KL divergence between Bernoulli distributions with parameters p and q.

2.2 Fixed Sample size

Consider an agent who observes
X1, X2, X3, ... ∼ fθ

for θ ∈ {0, 1} They use a decision rule ψ = (ψ1, .ψ2, ...) where for each n ∈ N, ψn : (X1, ..., Xn) 7→
{0, 1} specifies a decision as a function of the random observations up to time n.

Theorem 3. For any decision rule , P0(ψn 6= 0) ≤ α and P1(ψn 6= 1) ≤ β implies

n ≥ dB(α || 1− β)

D(f0||f1)
.

and

n ≥ dB(β || 1− α)

D(f1||f0)
.
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Example 2. Suppose under f0, X1, X2, ... ∼ N(0, σ2) and under f1, X1, X2, ... ∼ N(µ, σ2). Then

D(f1||f0) = D(f0||f1) = µ2

2σ2 . Suppose we would like the symmetric error guarantee Pθ(ψn 6= θ) ≤ δ
for each of θ = 0, 1. Then

dB(δ||1− δ) = δ log

(
δ

1− δ

)
+ (1− δ) log

(
1− δ
δ

)
∼ log(1/δ) as δ → 0.

This requires that

n ≥ 2dB(δ||1− δ)
µ2/σ2

∼
δ→0

2 log(1/δ)

SNR2

where SNR = µ/σ is the signal to noise ratio.

Proof. Set Hn = (X1, ..., Xn) to be the history of observations up to time n. We have

dB(α, 1− β) ≤ D(P0(ψn)||P1(ψn)) (error constraint)

≤ D(P0(Hn)||P1(Hn)) (data processing )

= nD(f0||f1). (chain rule)

2.3 Adding action: optional sample collection

Let us extend the problem in the previous section. The agent still wants to predict whether θ = 0
or θ = 1, but now they can choose not to collect a sample at any particular time step. Can we
formalize that the expected number of samples collected by the agent must be large in order to
guarantee a low probability of error?

Formally, the agent has two actions available at each time step n, An ∈ {Measure,Skip}. After
choosing An the agent observes Yn where

Yn =

{
Xn if An = Measure

∅ if An = Skip

The agent’s actionAn+1 is a function of the history of observations up to timeHn = (A1, Y1, ...An, Yn).
The agent also chooses a prediction rule ψ = (ψ1, ψ2, ...) with ψn : Hn 7→ {0, 1}.

Theorem 4. Let Tn =
∑n

`=1 1{An=Measure}. If P0(ψn 6= 0) ≤ α and P1(ψn 6= 1) ≤ β, then

E0[Tn] ≥ dB(α || 1− β)

D(f0||f1)
.

and

E1[Tn] ≥ dB(β || 1− α)

D(f1||f0)
.

Proof. As before, we only prove the first lower bound. We have,

dB(α, 1− β) ≤ D(P0(ψn)||P1(ψn)) (error constraint)

≤ D(P0(Hn)||P1(Hn)) (data processing )

= E0[Tn]D(f0||f1). (chain rule)
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The final equality requires additional justification. For m < n, let Hm:n denote the sub-history
(Am, Ym, ...An, Yn). Applying the chain rule, one has

D(P0(Hn)||P1(Hn)) = D(P0(A1, Y1)||P1(A1, Y1)) +D(P0(H2:n|A1, Y1)||P1(H2:n|A1, Y1))

= D(P0(A1)||P1(A1))︸ ︷︷ ︸
=0

+D(P0(Y1|A1)||P1(Y1|A1))

+D(P0(H2:n|A1, Y1)||P1(H2:n|A1, Y1))

where we use that the choice of A1 is deterministic, and therefore does not depend on the distri-
bution of X1, X2, .... Now,

D(P0(Y1|A1)||P1(Y1|A1)) = P0(A1 = Measure)D(f0||f1)

since Pθ(Y1 = ∅) = 1 under both θ = 0 and θ = 1. We can repeat this process, and find

D(P0(H2:n|A1, Y1)||P1(H2:n|A1, Y1)) = D(P0(Y2|A2, Y1, A1)||P1(Y2|A2, Y1, A1))+D(P0(H3:n|H1:2)||P1(H3:n|H1:2))

where
D(P0(Y2|A2, Y1, A1)||P1(Y2|A2, Y1, A1) = P0(A2 = Measure)D(f0||f1).

Repeating this inductively we find

D(P0(Hn)||P1(Hn)) =

n∑
`=1

P(A` = Measure) = E[Tn].

2.4 Technical extension to unbounded stopping times

Stopping problems can be viewed as a special case of the optional sampling problem described
above in which we place additional restrictions on the algorithm. Formally, in a stopping problem
the agent has two actions available at each time step n, An ∈ {Measure, Stop}. After choosing An
the agent observes Yn where

Yn =

{
Xn if An = Measure

∅ if An = Stop

However, now the agent’s decision rule is restricted: once selecting stop, she may never select
measure again. The agent still employs a a prediction rule ψ = (ψ1, ψ2, ...) with ψn : Hn 7→ {0, 1},
but now we require that if ψn does not change after the agent has chosen to stop. (Formally, if
An = Stop, then ψm(Hm)) = ψn(Hn)) for all m > n.)

Let
T = inf{n ∈ N : An = Stop}

denote the time at which the agent stops, and let T ∧ n = min{T, n}.
Proceeding just as in the previous subsection, we can conclude

D(P0(ψT∧n)||P1(ψT∧n)) ≤ E0[T ∧ n]D(f0||f1) ∀n ∈ N. (1)

For any stopping time T with E0[T ] < ∞ and E1[T ] < ∞, one has that P0(T > n) → 0 and
P1(T > n)→ 0 as n→∞. As a result,

lim
n→∞

D(P0(ψT∧n)||P1(ψT∧n)) = D(P0(ψT )||P1(ψT ))
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and
lim
n→∞

E0[T ∧ n] = E0[T ].

We conclude that for any sequential rule satisfying P0(ΨT 6= 0) ≤ α < 1/2 and P1(ψT 6= 1) ≤ β <
1/2 must satisfy

dB(α, 1− β) ≤ D(P0(ψT )||P1(ψT )) ≤ E0[T ]D(f0||f1)

or

E0[T ] ≥ dB(α, 1− β)

D(f0||f1)
.

This matches our approximation to the expected sample size of Wald’s sequential probability ratio
test.

2.5 Chernoff’s Sequential Design of Experiments

In Chernoff’s sequential design of experiments problem, the agent is able to influence the observa-
tions they collect by choosing among a set of k possible experiments. Formally, at each time n the
agent chooses an action An ∈ {Stop, e1, e2, ..., ek} and receives an observation Yn. Once she chooses
to stop, she must continue to play Stop in all subsequent periods. When, An = Stop, Yn = ∅,
reflecting that nothing is learned. Otherwise, upon playing An = ei she observes

Yn|An = ei ∼ fθ(y|ei)

and conditioned on An, this observation is independent of all past observations. Set

D(θ, θ′, ei) =

∫
log

(
fθ(y|ei)
fθ′(y|ei)

)
fθ(y|ei)dy

to be the KL divergence between θ and θ′ under experiment ei.
The agent’s goal is to confidently conclude whether θ ∈ Θ0 or θ ∈ Θ1 while collecting as

few measurements as possible. Let ψ∗ : Θ 7→ {0, 1} denote the optimal prediction rule, which
sets ψ∗(θ) = 1 if and only if θ ∈ Θ1. Let Hn = (A1, Y1, A2, Y2, ...An, Yn) denote the history of
observations, and as before, let ψn : Hn 7→ {0, 1} denote the prediction rule employed at time n
and

T = inf{n|An = Stop}

denote the stopping time.
In the past lecture, we claimed that under some technical restrictions Chernoff’s procedure

guarantees
Pθ(ψn 6= ψ∗(θ)) ≤ δ ∀θ ∈ Θ (2)

while using only

Eθ[T ] ≤ log(1/δ)

Γ∗(θ)
+ o(log(1/δ)) as δ → 0

samples. Here

Γ∗(θ) := max
W∈∆k

+

min
θ′:ψ∗(θ′)6=ψ∗(θ)

k∑
i=1

WiD(θ, θ′, ei)

is Chernoff’s complexity measure we derived in the previous class. We now establish that this is
optimal in a very strong asymptotic sense.
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Theorem 5. Any sequential procedure satisfying (2) must satisfy

Eθ[T ] ≥ dB(δ, 1− δ)
Γ∗(θ)

for every θ ∈ Θ.

Remark 2. We showed above that dB(δ, 1− δ) ∼ log(1/δ) as δ → 0, and so this matches the upper
bound up to lower order terms.

Proof Sketch. Fix some θ, and consider any θ′ such that ψ∗(θ) 6= ψ∗(θ′). We proceed just as in
subsections 2.3 and 2.4. First, for any n ∈ N, proceeding as in Subsection 2.3 we find

D(Pθ(ψn)||Pθ′(ψn)) ≤ D(Pθ(Hn)||Pθ′(Hn))

=
n∑
`=1

k∑
i=1

Pθ(A` = ei)D(θ, θ′, ei)

=

k∑
i=1

Eθ[Sn(ei)]D(θ, θ′, ei)

where S(n)(ei) =
∑n

`=1 1{An=ei} is the number of times ei is played prior to time n. As in Subsection
2.4, taking n→∞, we find

D(Pθ(ψT )||Pθ′(ψT )) ≤
k∑
i=1

E0[ST (ei)]D(θ, θ′, ei)

= Eθ[T ]

k∑
i=1

Eθ[ST (ei)]

Eθ[T ]
D(θ, θ′, ei)

By our constraint on the probability of incorrect selection, we know D(Pθ(ψT )||Pθ′(ψT )) ≥ dB(δ, 1−
δ), which implies

dB(δ, 1− δ) ≤ Eθ[T ]
k∑
i=1

Eθ[ST (ei)]

Eθ[T ]
D(θ, θ′, ei).

Now, to clean up notation, let B(θ) = {θ′ : ψ∗(θ′) 6= ψ∗(θ)} denote the set of parameters under
which the correct decision is different than under θ. Then, since the inequality above holds for all
θ′ ∈ B(θ), we find

dB(δ, 1− δ) ≤ Eθ[T ] min
θ′∈B(θ)

k∑
i=1

(
Eθ[ST (ei)]

Eθ[T ]

)
D(θ, θ′, ei).

Since Eθ[T ] =
∑k

i=1 Eθ[ST (ei)], we can see that (Eθ[ST (ei)]/Eθ[T ])i∈{1,..,k} is a probability vector.
Therefore, we have

dB(δ, 1− δ) ≤ Eθ[T ] max
W∈∆+

k

min
θ′∈B(θ)

k∑
i=1

WiD(θ, θ′, ei) = Eθ[T ]Γ∗(θ).
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