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Abstract. Temporal difference learning (TD) is a simple iterative algorithm used to estimate
the value function corresponding to a given policy in a Markov decision process. Although
TD is one of the most widely used algorithms in reinforcement learning, its theoretical
analysis has proved challenging and few guarantees on its statistical efficiency are avail-
able. In this work, we provide a simple and explicit finite time analysis of temporal difference
learning with linear function approximation. Except for a few key insights, our analysis
mirrors standard techniques for analyzing stochastic gradient descent algorithms and
therefore inherits the simplicity and elegance of that literature. Final sections of the paper
show how all of our main results extend to the study of TD learning with eligibility traces,
known as TD(λ), and to Q-learning applied in high-dimensional optimal stopping problems.

Supplemental Material: The online appendices are available at https://doi.org/10.1287/opre.2020.2024.
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1. Introduction
Originally proposed by Sutton (1988), temporal dif-
ference learning (TD) is one of the most widely used
reinforcement learning algorithms and a founda-
tional idea onwhichmore complexmethods are built.
The algorithm operates on a stream of data generated
by applying some policy to a poorly understood Mar-
kov decision process. The goal is to learn an approxi-
mate value function, which can then be used to track the
net present value of future rewards as a function of the
system’s evolving state. TD maintains a parametric
approximation to the value function, making a simple
incremental update to the estimated parameter vector
each time a state transition occurs.

Although easy to implement, theoretical analysis of
TD is subtle. Reinforcement learning researchers in
the 1990s gathered both limited convergence guar-
antees (Jaakkola et al. 1994) and examples of diver-
gence (Baird 1995). Many issues were then clarified
in the work of Tsitsiklis and Van Roy (1997), which
establishes precise conditions for the asymptotic con-
vergence of TD with linear function approximation
and gives examples of divergent behavior when key
conditions are violated. With guarantees of asymp-
totic convergence in place, a natural next step is to
understand the algorithm’s statistical efficiency. How
much data are required to guarantee a given level
of accuracy? Can one give uniform bounds on this, or

could data requirements explode depending on the
problem instance? Twenty years after the work of
Tsitsiklis and Van Roy (1997), such questions remain
largely unsettled.

1.1. Contributions
This paper develops a simple and explicit nonasymptotic
analysis of TD with linear function approximation. The
resulting guarantees provide assurances of robust-
ness. They explicitly bound the worst-case depen-
dence on problem features like the discount factor, the
conditioning of the feature covariance matrix, and the
mixing time of the underlying Markov chain. Our
analysis reveals rigorous connections between TD
and stochastic gradient descent algorithms, provides
a template for finite time analysis of incremental al-
gorithms with Markovian noise, and applies without
modification to analyzing a class of high-dimensional
optimal stopping problems. We elaborate on these
contributions here.
• Links with gradient descent: Despite a cosmetic

connection to stochastic gradient descent (SGD), in-
cremental updates of TD are not (stochastic) gradient
steps with respect to any fixed loss function. It is
therefore difficult to show that it makes consistent,
quantifiable, progress toward its asymptotic limit
point. Nevertheless, Section 6 shows that expected
TD updates obey crucial properties mirroring those
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of gradient descent on a particular quadratic loss func-
tion. In a model where the observations are corrupted
by independent and identically distributed (i.i.d.) noise,
these gradient-like properties of TD allow us to give
state-of-the-art convergence bounds by essentially mir-
roring standard analyses of SGD. This approach may be
of broader interest as SGD analyses are commonly
taught in machine learning courses and serve as a
launching point for a much broader literature on first-
order optimization. Rigorous connections with the
optimization literature can facilitate research on
principled improvements to TD.

• Nonasymptotic treatment with Markovian noise: TD
is usually applied online to a single Markovian data
stream. However, to our knowledge, there has been
no successful1 nonasymptotic analysis in the set-
ting with Markovian observation noise. Instead, many
papers have studied such algorithms under the
simpler i.i.d. noise model mentioned earlier (Sutton
et al. 2009a, b; Liu et al. 2015; Dalal et al. 2018b;
Lakshminarayanan and Szepesvári 2018; Touati et al.
2018). One reason is that the dependent nature of
the data introduces a substantial technical challenge:
the algorithm’s updates are not only noisy but can
be severely biased. We use information theoretic
techniques to control the magnitude of bias, yielding
bounds that are essentially scaled by a factor of the
mixing time of the underlying Markov process rela-
tive to those attained for i.i.d. model. Our analysis in
this setting applies only to a variant of TD that projects
the iterates onto a norm ball. This projection step
imposes a uniform bound on the noise of TD updates,
which is needed for tractability. For similar reasons,
projection operators are widely used throughout the
stochastic approximation literature (Kushner 2010,
section 2).

• An extendable approach:Much of the paper focuses
on analyzing the most basic temporal difference learn-
ing algorithm, known as TD(0). We also extend this
analysis to other algorithms. First, we establish con-
vergence bounds for temporal difference learningwith
eligibility traces, known as TD(λ). This is known to
often outperform TD(0) (Sutton and Barto 1998), but a
finite time analysis is more involved. Our analysis
also applies without modification to Q-learning for a
class of high-dimensional optimal stopping prob-
lems. Such problems have been widely studied be-
cause of applications in the pricing of financial de-
rivatives (Tsitsiklis and Van Roy 1999, Andersen and
Broadie 2004, Haugh and Kogan 2004, Desai et al.
2012, Goldberg and Chen 2018). For our purposes,
this example illustrates more clearly the link be-
tween value prediction and decision making. It also
shows our techniques extend seamlessly to analyzing
an instance of nonlinear stochastic approximation.
To our knowledge, no prior work has provided

nonasymptotic guarantees for either TD(λ) or Q-learning
with function approximation.

1.2. Related Literature
1.2.1. Nonasymptotic Analysis of TD(0). There has
been very little nonasymptotic analysis of TD(0). To our
knowledge, Korda and Prashanth (2015) provided the
firstfinite time analysis.However, several serious errors
in their proofs were pointed out by Lakshminarayanan
and Szepesvári (2017). A very recent work by Dalal
et al. (2018a) studies TD(0) with linear function ap-
proximation in an i.i.d. observation model, which
assumes sequential observations used by the algo-
rithm are drawn independently from their steady-
state distribution. They focus on analysiswith problem
independent step sizes of the form 1/Tσ for a fixed σ ∈
(0, 1) and establish that mean-squared error con-
verges at a rate2 of O(1/Tσ). Unfortunately, although
the analysis is technically nonasymptotic, the con-
stant factors in the bound display a complex de-
pendence on the problem instance and scale with
some unusual quantities which can be very large in
cases of practical interest.
This paper was accepted at the 2018 Conference on

Learning Theory (COLT) and published in the pro-
ceedings as a two-page extended abstract. While the
paper was under review, an interesting paper by
Lakshminarayanan and Szepesvári (2018) appeared.
They study linear stochastic approximation algo-
rithms under i.i.d. noise, including TD(0), with con-
stant step sizes and iterate averaging. This approach
dates back to the works of Ruppert (1988), Polyak and
Juditsky (1992), and Györfi and Walk (1996), which
shows that the iterates of a constant step-size linear
stochastic approximation algorithm form an ergodic
Markov chain, and, in the case of i.i.d. observation
noise, their expectation in steady-state is equal to the
true solution of the linear system. By a central limit
theorem for ergodic sequences, the average iterate
converges to the true solution, with mean-squared
error decaying at rate O(1/T). Bach and Moulines
(2013) give a sophisticated nonasymptotic analysis
of the least-mean-squares algorithm with constant
step size and iterate averaging. Lakshminarayanan
and Szepesvári (2018) aim to understand whether
such guarantees extend to linear stochastic approxi-
mation algorithms more broadly. In the process, their
work provides O(1/T) bounds for iterate-averaged
TD(0) with constant step size. A remarkable feature
of their approach is that the choice of step size is in-
dependent of the conditioning of the features (although
the bounds themselves do degrade if features become
ill-conditioned). It is worth noting that these results rely
critically on the assumption that noise is i.i.d. This is not
because of any shortcoming in the techniques of Bach
and Moulines (2013) and Lakshminarayanan and
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Szepesvári (2018). Instead, under non-i.i.d. noise and a
linear stochastic approximation algorithm appliedwith
any constant step size, the averaged iterate might
converge to the wrong limit as shown in a simple ex-
ample by Györfi and Walk (1996).

The recent works of Dalal et al. (2018a) and
Lakshminarayanan and Szepesvári (2018) give bounds
for TD(0) only under i.i.d. observation noise. There-
fore, their results are most comparable to what is
presented in Section 7. For the i.i.d. noise model, the
main argument in favor of our approach is that it
allows for extremely simple proofs, interpretable con-
stant terms, and illuminating connections with SGD.
Moreover, it is worth emphasizing that our approach
gracefully extends to more complex settings, including
more realistic models with Markovian noise, the anal-
ysis of TD with eligibility traces, and the analysis of
Q-learning for optimal stopping problems as shown in
Sections 8–10.

Although not directly comparable to our results,we
point the readers to the excellentwork of Schapire and
Warmuth (1996). To facilitate theoretical analysis,
they consider a slightly modified version of the TD(λ)
algorithm. The authors provide a finite time analysis
for this algorithm in an adversarial model where the
goal is to predict the discounted sum of future re-
wards from each state. Performance is measured
relative to the best fixed linear predictor in hindsight.
The analysis is creative, but results depend on a
several unknown constants and on the specific se-
quence of states and rewards on which the algorithm
is applied. Schapire and Warmuth (1996) also apply
their techniques to study value function approxi-
mation in a Markov decision process. In that case, the
bounds are much weaker than what is established
here. Their bound scales with the size of the state
space, which is enormous in most practical problems
and applies only to TD(1), a somewhat degenerate
special case of TD(λ), in which it is equivalent toMonte
Carlo policy evaluation (Sutton and Barto 1998).

1.2.2. Asymptotic Analysis of Stochastic Approximation.
There is a well-developed theory around asymptotic
analysis of stochastic approximation, a field that
studies noisy recursive algorithms like TD (Kushner
and Yin 2003, Borkar 2009, Benveniste et al. 2012).
Most asymptotic convergence proofs in reinforce-
ment learning use a technique known as the Ordinary
Differential Equation (ODE) method (Borkar and
Meyn 2000). Under some technical conditions and
appropriate decaying step sizes, this method ensures
the almost-sure convergence of stochastic approxi-
mation algorithms to the invariant set of a certain
mean differential equation. The technique greatly
simplifies asymptotic convergence arguments be-
cause it completely circumvents issues with noise in

the system and issues of step-size selection. However,
this also makes it a somewhat coarse tool, unable to
generate insight into an algorithm’s sensitivity to
noise, ill-conditioning, or step-size choices. A more re-
fined set of techniques begin to address these issues.
Under fairly broad conditions, a central limit theorem
for stochastic approximation algorithms characterizes
their limiting variance. Such a central limit theoremhas
been specifically provided for TD byKonda (2002) and
Devraj and Meyn (2017).
In addition to such asymptotic techniques, the

modern literature on first-order stochastic optimi-
zation also focuses heavily on nonasymptotic anal-
ysis (Bubeck 2015, Jain and Kar 2017, Bottou et al.
2018). One reason is that such asymptotic analysis
necessarily focuses on a regime where step sizes are
negligibly small relative to problem features and the
iterates have already converged to a small neigh-
borhood of the optimum. However, the use of a first-
order method in the first place signals that a practi-
tioner is mostly interested in cheaply reaching a
reasonably accurate solution rather than the rate of
convergence in the neighborhood of the optimum.
In practice, it is common to use constant step sizes,
so iterates never truly converge to the optimum. A
nonasymptotic analysis requires grappling with the
algorithm’s behavior in practically relevant regimes
where step sizes are still relatively large and iterates
are not yet close to the true solution.

1.2.3. Analysis of Related Algorithms. A number of
papers analyze algorithms related to and inspired by
the classic TD algorithm. First, among others, Antos
et al. (2008), Lazaric et al. (2010), Ghavamzadeh et al.
(2010), Pires and Szepesvári (2012), Prashanth et al.
(2014), and Tu and Recht (2018) analyze least-squares
temporal difference learning (LSTD). Yu and Bertsekas
(2009) study the related least-squares policy iteration
algorithm. The asymptotic limit point of TD is a
minimizer of a certain population loss, known as the
mean-squared projected Bellman error. LSTD solves
a least-squares problem, essentially computing the
exact minimizer of this loss on the empirical data. It is
easy to derive a central limit theorem for LSTD. Finite
time bounds follow from establishing uniform con-
vergence rates of the empirical loss to the population
loss. Unfortunately, such techniques appear to be
quite distinct from those needed to understand the
online TD algorithms studied in this paper. Online
TD has seen much wider use because of significant
computational advantages (Sutton and Barto 1998).
Gradient TD methods are another related class of

algorithms. ThesewerederivedbySutton et al. (2009a, b)
to address the issue that TD can diverge in so-called
off-policy settings, where data are collected from a
policy different from the one for which we want to
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estimate the value function. Unlike the classic TD(0)
algorithm, gradient TD methods are designed to
mimic gradient descent with respect to the mean
squared projected Bellman error. Sutton et al. (2009a, b)
propose asymptotically convergent two-time scale
stochastic approximation schemes based on this, and
more recently Dalal et al. (2018b) give a finite time
analysis of two time scale stochastic approximation
algorithms, including several variants of gradient TD
algorithms. Alternatively, Macua et al. (2014) and Liu
et al. (2015) propose to reformulate the original gradient
TD optimization as a primal-dual saddle point problem
and leverage convergence analysis from that literature
to give a nonasymptotic analysis. This work was later
revisited by Touati et al. (2018), who established a
faster rate of convergence. The works of Dalal et al.
(2018b), Liu et al. (2015), and Touati et al. (2018) all
consider only i.i.d. observation noise. One interesting
open question is whether our techniques for treating
the Markovian observation model will also apply to
these analyses. Finally, it is worth highlighting that,
to the best of our knowledge, substantial new tech-
niques are needed to analyze the widely used TD(0),
TD(λ), and the Q-learning studied in this paper.
Unlike gradient TDmethods, they do notmimic noisy
gradient steps with respect to any fixed objective.3

2. Problem Formulation
2.1. Markov Reward Process
We consider the problem of evaluating the value
function Vμ of a given policy μ in a Markov decision
process (MDP). We work in the on policy setting,
where data are generated by applying the policy μ in
the MDP. Because the policy μ is applied automati-
cally to select actions, such problems are most nat-
urally formulated as value function estimation in a
Markov reward process (MRP). An MRP4 comprises of
(S,P,R, γ) (Sutton and Barto 1998), where S is the set
of states, P is the Markovian transition kernel, R is a
reward function, andγ < 1 is the discount factor. For a
discrete state-space S,P(s′|s) specifies theprobability of
transitioning from a state s to another state s′. The re-
ward function R(s, s′) associates a reward with each
state transition.We denote byR(s) �∑

s′∈S P(s′|s)R(s,s′)
the expected instantaneous reward generated from an
initial state s.

The value function associated with this MRP, Vμ,
specifies the expected cumulative discounted future
reward as a function of the state of the system.
In particular,

Vμ s( ) � E
∑∞
t�0

γtR st( ) | s0 � s

[ ]
,

where the expectation is over sequences of states
generated according to the transition kernel P. This

value function obeys the Bellman equation TμVμ � Vμ,
where the Bellman operator Tμ associates a value
function V :S→R with another value function TμV
satisfying

TμV
( )

s( ) � R s( ) + γ
∑
s′∈S

P s′|s( )V s′( ) ∀ s ∈ S.

We assume rewards are bounded uniformly
such that

R s, s′( )⃒⃒ ⃒⃒ ≤ rmax ∀ s, s′ ∈ S.

Under this assumption, value functions are assured
to exist and are the unique solution to Bellman’s
equation (Bertsekas 1995). We also assume that the
Markov reward process induced by following the
policy μ is ergodic with a unique stationary distri-
bution π. For any two states s, s′: π(s′) � limt→∞
P(st � s′|s0 � s).
Following common references (Bertsekas 1995, De

Farias and Van Roy 2003, Dann et al. 2014), we will
simplify the presentation by assuming the state space
S is a finite set of size n � |S|. Working with a finite
state space allows for the use of compact matrix no-
tation,which is the convention inwork on linear value
function approximation. It also avoids measure the-
oretic notation for conditional probability distribu-
tions. Our proofs extend in an obviousway to problems
with countably infinite state spaces, as long the uniform
ergodicity condition stated in Assumption 1 continues
to hold. For problems with general state space, even
the core results in dynamic programming hold only
under suitable technical conditions (Bertsekas and
Shreve 1978).

2.2. Value Function Approximation
Given a fixed policy μ, the problem is to efficiently
estimate the corresponding value function Vμ using
only the observed rewards and state transitions.
Unfortunately, because of the curse of dimensional-
ity, most modern applications have intractably large
state spaces, rendering exact value function learning
hopeless. Instead, researchers resort to parametric
approximations of the value function, for example by
using a linear function approximator (Sutton and
Barto 1998) or a nonlinear function approximation
such as a neural network (Mnih et al. 2015). In this
work, we consider a linear function approximation
architecture where the true value-to-go Vμ(s) is ap-
proximated as

Vμ s( ) ≈ Vθ s( ) � φ s( )
θ,

where φ(s) ∈ Rd is a fixed feature vector for state s
and θ ∈ Rd is a parameter vector that is shared across
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states. When the state space is the finite set S �
{s1, . . . , sn}, Vθ ∈ Rn can be expressed compactly as

Vθ �
φ s1( )


..

.

φ sn( )


⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦θ �

φ1 s1( ) φk s1( ) φd s1( )
..
. ..

. ..
.

φ1 sn( ) φk sn( ) φd sn( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦θ � Φθ,

where Φ ∈ Rn×d and θ ∈ Rd. We assume throughout
that the d features vectors {φk}dk�1, forming the col-
umns of Φ are linearly independent.

2.3. Norms in Value Function and Parameter Space
For a symmetric positive definite matrix A, define the
inner product 〈x, y〉A � x
Ay and the associated norm
‖x‖A � ̅̅̅̅̅̅̅̅

x
Ax
√

. IfA is positive semidefinite rather than
positive definite then ‖ · ‖A is called a seminorm. Let
D � diag(π(s1), . . . , π(sn)) ∈ Rn×n denote the diagonal
matrix whose elements are given by the entries of the
stationary distribution π(·). Then, for two value func-
tions V and V′,

‖V − V′‖D �
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
s∈S

π s( ) V s( ) − V′ s( )( )2
√

,

measures the mean-square difference between the
value predictions underV andV′, in steady state. This
suggests a natural norm on the space of parameter
vectors. In particular, for any θ, θ′ ∈ Rd,

‖Vθ − Vθ′ ‖D �
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
s∈S

π s( ) φ s( )
 θ − θ′( )( )2√
� ‖θ − θ′‖Σ

where

Σ :� Φ
DΦ � ∑
s∈S

π s( )φ s( )φ s( )


is the steady-state feature covariance matrix.

2.4. Feature Regularity
We assume that the feature vectors are uniformly
bounded, that is sups∈S ‖φ(s)‖2 < ∞. For notational
convenience, we also assume features are normalized
so that ‖φ(s)‖2 ≤ 1 for all s ∈ S. This is without loss of
generality because the TD algorithm is invariant to
feature rescaling. Precisely, TD applied with feature
mapping φ(·) and initial parameter θ0 produces an
identical sequence of value functions to the TD al-
gorithm with feature mapping φ̃(·) � kφ(·) and initial
parameter θ̃0 � θ0/k, for any scalar k > 0. All our re-
sults bound the mean-squared gap between value
predictions. We also assume that any entirely re-
dundant or irrelevant features have been removed, so
Σ has full rank. Let ω > 0 be the minimum eigenvalue
of Σ. From our bound on the feature vectors, the
maximum eigenvalue of Σ is less than 1, so 1/ω

bounds the condition number of the feature covari-
ance matrix.5 The following lemma is an immediate
consequence of our assumptions.

Lemma 1 (Norm Equivalence). For all θ ∈Rd,
̅̅̅
ω

√ ‖θ‖2 ≤
‖Vθ‖D ≤ ‖θ‖2.
One typical style of result in the study of strongly

convex optimization gives fast rates of convergence in
terms of the number of iterations T. However, these
bounds degrade when ω is very small and generally
require a priori knowledge of some good lower bound
on ω. We give some results in that style, but also give
results in the style of Nemirovski et al. (2009), where
bounds and step sizes have no dependence on ω.

3. Temporal Difference Learning
We consider the classic temporal difference learning
algorithm (Sutton 1988). The algorithm starts with an
initial parameter estimate θ0, and at every time step t,
it observes one data tuple Ot � (st, rt � R(st, s′t), s′t)
consisting of the current state, the current reward and
the next state reached by playing policy μ in the
current state. This tuple is used to define a loss
function, which is taken to be the squared sample
Bellman error. The algorithm then proceeds to com-
pute the next iterate θt+1 by making a gradient-like
update. Some of our bounds guarantee accuracy of
the average iterate, denoted by θ̄t � t−1 ∑t−1

i�0 θi. The
version of TD presented in Algorithm 1 also makes
online updates to the averaged iterate.
TD is not a true stochastic gradient method with

respect to any fixed loss function, which makes its
analysis challenging. The TD update can bewritten as
gt(θ) � (yt − Vθ(st)) d

dθVθ(st), where yt � rt + γVθ(s′t) is
sample based estimate of the Bellman update to Vθt .
Then gt(θt) � − ∂

∂θ
1
2 (yt − Vθ(st))2 θ�θt

⃒⃒
can be interpreted

as the negative gradient of a certain squared loss
function, but this calculation treats the target yt as fixed
and ignores its implicit dependence on θt. To em-
phasize the contrast with stochastic gradient methods,
Sutton and Barto (1998) refer to TD as a semigradient
method. Accordingly, we will refer to gt(·) as negative
semigradient throughout the paper.
We present in Algorithm 1 the simplest variant

of TD, which is known as TD(0). It is also worth
highlighting that here we study online temporal
difference learning, which makes incremental semi-
gradient updates to the parameter estimate based on the
most recent data observations only. Such algorithms are
widely used in practice, but harder to analyze than so-
called batch TD methods like the LSTD algorithm of
Bradtke and Barto (1996).
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Algorithm 1 TD(0) with Linear Function Approximation
Input: initial guess θ0, step-size sequence {αt}t∈N.
Initialize: θ̄0 ← θ0.
for t � 0, 1, . . . do

Observe tuple: Ot � (st, rt � R(st, s′t), s′t);
Define target:

yt �R(st,s′t) +γVθt(s′t); * sample Bellman op *
Define loss function:

1
2 (yt − Vθ(st))2; * sample Bellman error *

Compute negative semigradient:
gt(θt) � − ∂

∂θ
1
2 (yt − Vθ(st))2 θ�θt

⃒⃒
;

Take a semigradient step:
θt+1 � θt + αtgt(θt); * αt:step-size *

Update averaged iterate:
θ̄t+1 ← ( t

t+1)θ̄t + ( 1
t+1)θt; * θ̄t+1 � 1

t+1
∑t


�0 θ
 *

End
At time t, TD takes a step in the direction of the

negative semigradient gt(θt) evaluated at the current
parameter. As a general function of θ and the tuple
Ot � (st, rt, s′t), the negative semigradient can be writ-
ten as

gt θ( ) � rt + γφ s′t
( )
θ − φ st( )
θ( )

φ st( ). (1)
The long-run dynamics of TD are closely linked to the
expected negative semigradient step when the tuple
Ot � (st, rt, s′t) follows its steady-state behavior:

ḡ θ( ) :� ∑
s,s′∈S

π s( )P s′|s( ) R s, s′( ) + γφ s′( )
θ( −φ s( )
θ)φ s( )

∀θ ∈ Rd.

This can be rewritten more compactly in several
useful ways. One such way is

ḡ θ( ) � E φr
[ ] + E φ γφ′ − φ

( )
[ ]
θ, (2)

where φ � φ(s) is the feature vector of a random initial
state s ∼ π, φ′ � φ(s′) is the feature vector of a random
next state drawn according to s′ ∼P(· | s), and r�R(s,s′).
In addition, because

∑
s′∈S P(s′|s)(R(s,s′) +γφ(s′)
θ) �

(TμΦθ)(s), we can recognize that

ḡ θ( ) � Φ
D TμΦθ −Φθ
( )

. (3)
Tsitsiklis and Van Roy (1997) provides a derivation of
this fact.

4. Asymptotic Convergence of Temporal
Difference Learning

The main challenge in analyzing TD is that the semi-
gradient steps gt(θ) are not true stochastic gradients
with respect to any fixed objective. The semigradient
step taken at time t pulls the value prediction Vθt+1(st)
closer to yt, but yt itself depends on Vθt . So, does this
circular process converge? The key insight of Tsitsiklis
andVanRoy (1997)was to interpret this as a stochastic

approximation scheme for solving a fixed-point equa-
tion known as the projected Bellman equation. Con-
traction properties together with general results from
stochastic approximation theory can then be used to
show convergence.
Should TD converge at all, it should be to a sta-

tionary point. Because the feature covariancematrixΣ
is full rank, there is a unique6 vector θ∗with ḡ(θ∗) � 0.
We briefly review results that offer insight into θ∗ and
proofs of the asymptotic convergence of TD.

4.1. Understanding the TD Limit Point
Tsitsiklis and Van Roy (1997) give an interesting
characterization of the limit point θ∗. They show it is
the unique solution to the projected Bellman equation:

Φθ � ΠDTμΦθ, (4)
where ΠD(·) is the projection operator onto the sub-
space {Φx | x ∈ Rd} spanned by these features in the
inner product 〈·, ·〉D. To see why this is the case, note
that by using ḡ(θ∗) � 0 along with Equation (3),

0 � x
ḡ θ∗( ) � 〈Φx, TμΦθ∗ −Φθ∗〉D ∀x ∈ Rd.

That is, theBellmanerror atθ∗, given by (TμΦθ∗ −Φθ∗),
is orthogonal to the space spanned by the features in
the inner product 〈·, ·〉D. By definition, this means
ΠD(TμΦθ∗ −Φθ∗) � 0 and hence θ∗ must satisfy the
projected Bellman equation.
The following lemma shows the projected Bellman

operator, ΠDTμ(·) is a contraction, and so in princi-
ple, one could converge to the approximate value
functionΦθ∗ by repeatedly applying it. TD appears to
serve as a simple stochastic approximation scheme for
solving the projected-Bellman fixed point equation.

Lemma 2 (Tsitsiklis and Van Roy 1997). The projected
Bellman operator ΠDTμ(·) is a contraction with respect to
‖ · ‖D with modulus γ, that is,

ΠDTμVθ −ΠDTμVθ′
⃦⃦⃦ ⃦⃦⃦

D ≤ γ Vθ − Vθ′‖ ‖D ∀θ, θ′ ∈ Rd.

Finally, the limit of convergence comes with some
competitive guarantees. From Lemma 2, a short ar-
gument shows

Vθ∗ − Vμ

⃦⃦⃦ ⃦⃦⃦
D ≤ 1̅̅̅̅̅̅̅̅̅

1 − γ2
√ ΠDVμ − Vμ

⃦⃦⃦ ⃦⃦⃦
D. (5)

Chapter 6 in Bertsekas (1995) provides a proof. The
left-hand side of Equation (5) measures the root-
mean-squared deviation between the value predic-
tions of the limiting TD value function and the true
value function. On the right-hand side, the projected
value function ΠDVμ minimizes root-mean-squared
prediction errors among all value functions in the
span of Φ. If Vμ actually falls within the span of the
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features, there is no approximation error at all and TD
converges to the true value function.

4.2. Asymptotic Convergence via the ODE Method
Like many analyses in reinforcement learning, the
convergence proof of Tsitsiklis and Van Roy (1997)
appeals to a powerful technique from the stochastic
approximation literature known as the ODE method.
Under appropriate conditions, and assuming a decay-
ing step-size sequence satisfying the Robbins-Monro
conditions, this method establishes the asymptotic con-
vergence of the stochastic recursion θt+1 � θt + αtgt(θt)
as a consequence of the global asymptotic stability of
the deterministic ODE: θ̇t � ḡ(θt). The critical step in
the proof of Tsitsiklis and Van Roy (1997) is to use the
contraction properties of the Bellman operator to
establish this ODE is globally asymptotically stable
with the equilibrium point θ∗.

The ODE method vastly simplifies convergence
proofs. First, because the continuous dynamics can be
easier to analyze than discretized ones, and more
importantly, because it avoids dealingwith stochastic
noise in the problem. At the same time, by side-
stepping these issues, the method offers little insight
into the critical effect of step-size sequences, problem
conditioning, and mixing time issues on algorithm
performance.

5. Outline of Analysis
The remainder of the paper focuses on a finite time
analysis of TD. Broadly, we establish two types of
finite time bounds on E[‖Vθ̄T

− Vθ∗‖2D], which mea-
sures the mean-squared gap between the value pre-
dictions under the averaged-iterate θ̄T and under the
TD limit point θ∗. We first derive bounds that depend
on the condition number of the feature covariance
matrix. These mirror what one might expect from
the literature on stochastic optimization of strongly
convex functions: results showing that TD with con-
stant step sizes converges to within a radius of Vθ∗ at
an exponential rate and O(1/T) convergence rates
with appropriate decaying step sizes.

These results establish fast rates of convergence,
but only if the problem iswell conditioned. The choice
of step sizes is also very sensitive to problem con-
ditioning. Work on robust stochastic approximation
(Nemirovski et al. 2009) argues instead for the use of
comparatively large step sizes together with iterate
averaging.7 Following the spirit of this work, we also
give explicit bounds on E[‖Vθ̄T

− Vθ∗‖2D]with a slower
O(1/ ̅

T̅
√ ) convergence rates, but importantly, both the

bounds and step sizes are completely independent of
problem conditioning.

Our approach is to start by developing insights
from simple, stylized settings, and then incrementally

extend the analysis to more complex settings. The
analysis is outlined here.

Noiseless Case
Drawing inspiration from the ODEmethod discussed
previously, we start by analyzing the Euler discretiza-
tion of the ODE θ̇t � ḡ(θt), which is the deterministic
recursionθt+1 � θt + αḡ(θt).We call thismethodmean-
path TD. As motivation, the section first considers a
fictitious gradient descent algorithm designed to con-
verge to the TD fixed point. We then develop striking
analogues for mean-path TD of the key properties
underlying the convergence of gradient descent. Easy
proofs then yield two boundsmirroring those given for
gradient descent.

Independent Noise
Section 7 studies TD under an i.i.d. observation model,
where the data-tuples used by TD are drawn i.i.d. from
the stationary distribution. The techniques used to an-
alyze mean-path TD(0) extend easily to this setting, and
the resulting bounds mirror standard guarantees for
stochastic gradient descent.

Markov Noise
In Section 8, we analyze TD in the more realistic
setting where the data are collected from a single
sample path of an ergodic Markov chain. This set-
ting introduces significant challenges because of the
highly dependent nature of the data. For tractability,
we assume the Markov chain satisfies a certain uni-
form bound on the rate at which it mixes and study a
variant of TD that uses a projection step to ensure
uniform boundedness of the iterates. In this case, our
results essentially scale by a factor of the mixing time
relative to the i.i.d. case.

Extension to TD(λ)
In Section 9, we extend the analysis under theMarkov
noise to TD with eligibility traces, popularly known
as TD(λ). Eligibility traces are known to often provide
performance gains in practice, but theoretical analysis
ismore complex. Our analysis also offers some insight
into the subtle tradeoffs in the selection of the pa-
rameter λ ∈ [0, 1].

Approximate Optimal Stopping
A final section extends our results to a class of high
dimensional optimal stopping problems. We analyze
Q-learning with linear function approximation. Build-
ing on observations of Tsitsiklis and Van Roy (1999),
we show the key properties used in our analysis of TD
continue to hold for Q-learning in this setting. The con-
vergence bounds shown in Sections 7 and 8 there-
fore apply without any modification.
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6. Analysis of Mean-Path TD
All practical applications of TD involve observation
noise. However, a great deal of insight can be gained
by investigating a natural deterministic analogue of
the algorithm. Here we study the recursion

θt+1 � θt + αḡ θt( ) t ∈ N0 � 0, 1, 2, . . .{ },
which is the Euler discretization of the ODEdescribed
in Section 4.Wewill refer to this iterative algorithm as
mean-path TD. In this section, we develop key insights
into the dynamics of mean-path TD that allow for a
remarkably simple finite time analysis of its con-
vergence. Later sections of the paper show how these
ideas extend gracefully to analyses with observa-
tion noise.

The key to our approach is to develop properties of
mean-path TD that closely mirror those of gradient
descent on a particular quadratic loss function. To this
end, in the next section, we review a simple analysis
of gradient descent. In Section 6.2, we establish key
properties of mean-path TD mirroring those used to
analyze this gradient descent algorithm. Finally, Sec-
tion 6.3 gives convergence rates of mean-path TD,
with proofs and ratesmirroring those given for gradient
descent except for a constant that depends on the dis-
count factor, γ.

6.1. Gradient Descent on a Value Function Loss
Consider the cost function:

f θ( ) � 1
2
‖Vθ∗ − Vθ‖2D � 1

2
θ∗ − θ
⃦⃦ ⃦⃦2

Σ
,

which measures the mean-squared gap between the
value predictions under θ and those under the sta-
tionary point of TD, θ∗. Consider as well a hypo-
thetical algorithm that performs gradient descent on f ,
iterating θt+1 �θt−αnf (θt) for all t ∈ N0. Of course,
this algorithm is not implementable, as one does not
know the limit pointθ∗ of TD.However, reviewing an
analysis of such an algorithm will offer great insights
into our eventual analysis of TD.

To start, a standard decomposition characterizes
the evolution of the error at iterate θt:

θ∗ − θt+1
⃦⃦ ⃦⃦2

2� θ∗ − θt
⃦⃦ ⃦⃦2

2+2αnf θt( )
 θ∗ − θt
( )

+α2 nf θt( )⃦⃦ ⃦⃦2
2.

To use this decomposition, we need two things. First,
some understanding of nf (θt)
(θ∗ − θt), capturing
whether the gradient points in the direction of (θ∗ − θt).
Second, we need an upper bound on the norm of the
gradient ‖nf (θt)‖22. In this case, nf (θ) � Σ(θ − θ∗),
from which we conclude

nf θ( )
 θ∗ − θ
( ) � − θ∗ − θ

⃦⃦ ⃦⃦2
Σ
� − Vθ∗ − Vθ

⃦⃦ ⃦⃦2
D. (6)

In addition, one can show8

‖nf θ( )‖2 ≤ ‖Vθ∗ − Vθ‖D. (7)
Now,using (6) and (7), we have that for step size α � 1,

θ∗ − θt+1
⃦⃦ ⃦⃦2

2≤ θ∗ − θt
⃦⃦ ⃦⃦2

2− Vθ∗ − Vθt

⃦⃦ ⃦⃦2
D. (8)

The distance to θ∗ decreases in every step and does so
more rapidly if there is a large gap between the value
predictions under θ and θ∗. Combining this with
Lemma 1 gives

θ∗ −θt+1
⃦⃦ ⃦⃦2

2 ≤ 1−ω( ) θ∗ −θt
⃦⃦ ⃦⃦2

2≤ . . .≤ 1−ω( )t+1 θ∗ −θ0
⃦⃦ ⃦⃦2

2.

(9)
Recall that ω denotes the minimum eigenvalue of Σ.
This shows that error converges at a fast geometric
rate. However, the rate of convergence degrades if the
minimum eigenvalue ω is close to zero. Such a con-
vergence rate is therefore only meaningful if the
feature covariance matrix is well conditioned.
By working in the space of value functions and

performing iterate averaging, one can also give a
guarantee that is independent of ω. Recall the nota-
tion θ̄T � T−1 ∑T−1

t�0 θt for the averaged iterate. A simple
proof from (8) shows

Vθ∗ − Vθ̄T

⃦⃦⃦ ⃦⃦⃦2
D
≤ 1
T

∑T−1
t�0

Vθ∗ − Vθt

⃦⃦ ⃦⃦2
D≤

θ∗ − θ0
⃦⃦ ⃦⃦2

2

T
. (10)

6.2. Key Properties of Mean-Path TD
This section establishes analogues for mean-path TD
of the key properties (6) and (7) used to analyze
gradient descent. First, to characterize the semigradient
update, our analysis builds on lemma 7 of Tsitsiklis and
Van Roy (1997), which uses the contraction properties
of the projected Bellman operator to conclude that

ḡ θ( )
 θ∗ − θ
( )

> 0 ∀θ �� θ∗. (11)

That is, the expected update of TD always forms a
positive angle with (θ∗ − θ). Although only Equa-
tion (11) was stated in their lemma, Tsitsiklis and Van
Roy (1997) actually reach a much stronger conclusion
in their proof itself. This result, given in Lemma 3,
establishes that the expected updates of TD point in
a descent direction of ‖θ∗ − θ‖22, anddo somore strongly
when the gapbetween value functions underθ and θ∗ is
large. We will show that this more quantitative form
of (11) allows for elegant finite time bounds on the
performance of TD.
This lemma mirrors the property in Equation (6),

but with a smaller constant of (1 − γ). This reflects that
expected TD must converge to θ∗ by bootstrapping
(Sutton 1988) and may follow a less direct path to θ∗
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than the fictitious gradient descent method consid-
ered in the previous subsection. Recall that the limit
point θ∗ solves ḡ(θ∗) � 0.

Lemma 3. For any θ ∈ Rd,

ḡ θ( )
 θ∗ − θ
( ) ≥ 1 − γ

( )
Vθ∗ − Vθ

⃦⃦⃦ ⃦⃦⃦2
D.

Proof of Lemma 3. We use the notation described in
Equation (2). Consider a stationary sequence of states
with random initial state s ∼ π and subsequent state s′,
which, conditioned on s, is drawn from P(·|s). Set
φ � φ(s), φ′ � φ(s′) and r � R(s, s′). Define ξ�Vθ∗(s)−
Vθ(s) � (θ∗ −θ)
φ and ξ′ �Vθ∗(s′)−Vθ(s′)�(θ∗−θ)
φ′.
By stationarity, ξ and ξ′ are two correlated random
variables with the same marginal distribution. By def-
inition,E[ξ2] � ‖Vθ∗ − Vθ‖2D, because s is drawn fromπ.

Using the expression for ḡ(θ) in Equation (2),

ḡ θ( ) � ḡ θ( ) − ḡ θ∗( ) � E φ γφ′ − φ
( )
 θ − θ∗( )[ ]

� E φ ξ − γξ′
( )[ ]

. (12)
Therefore,

θ∗ − θ
( )
ḡ θ( ) � E ξ ξ − γξ′

( )[ ] � E ξ2
[ ] − γE ξ′ξ[ ]

≥ 1 − γ
( )

E ξ2
[ ]

� 1 − γ
( )

Vθ∗ − Vθ

⃦⃦⃦ ⃦⃦⃦2
D.

Here we use the Cauchy-Schwartz inequality to-
gether with the fact that ξ and ξ′ have the same
marginal distribution to conclude that E[ξξ′] ≤ ̅̅̅̅̅̅̅̅

E[ξ2]√̅̅̅̅̅̅̅̅̅̅̅
E[(ξ′)2]√ � E[ξ2]. □

Lemma 4 is the other key ingredient to our results. It
upper bounds the norm of the expected negative
semigradient, providing an analogue of Equation (7).

Lemma 4. For all θ ∈ Rd, ‖ḡ(θ)‖2 ≤ 2‖Vθ − Vθ∗ ‖D.
Proof of Lemma 4. Beginning from (12) in the proof of
Lemma 3, we have

‖ḡ θ( )‖2 � ‖E φ ξ − γξ′
( )[ ]‖2

≤
̅̅̅̅̅̅̅̅̅̅
E ‖φ‖22
[ ]√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E ξ − γξ′
( )2[ ]√

≤ ̅̅̅̅̅̅̅̅
E ξ2[ ]√ + γ

̅̅̅̅̅̅̅̅̅̅̅
E ξ′( )2[ ]√

� 1 + γ
( ) ̅̅̅̅̅̅̅̅

E ξ2[ ]
√

,

where the second inequality uses the assumption that
‖φ‖2 ≤ 1 and the final equality uses that ξ and ξ′ have
the same marginal distribution. We conclude by recall-
ing that E[ξ2] � ‖Vθ∗ − Vθ‖2D and 1 + γ ≤ 2. □

Lemmas 3 and 4 are quite powerful when used in
conjunction. As in the analysis of gradient descent
reviewed in the previous section, our analysis starts
with a recursion for the error term, ‖θt − θ∗‖2. See
Equation (13) in Theorem 1. Lemma 3 shows the

first-order term in this recursion reduces the error at
each time step, while using the two lemmas in con-
junction shows the first-order term dominates a
constant times the second-order term. Precisely,

ḡ θ( )
 θ∗ − θ
( ) ≥ 1 − γ

( )
Vθ∗ − Vθ

⃦⃦⃦ ⃦⃦⃦2
D ≥ 1 − γ

( )
4

‖ḡ θ( )‖22.

This leads immediately to conclusions such as Equa-
tion (14), from which finite time convergence bounds
follow. It is also worth pointing out that as TD(0) is an
instance of linear stochastic approximation, these two
lemmas can be interpreted as statements about the
eigenvalues of the matrix driving its behavior.9

6.3. Finite Time Analysis of Mean-Path TD
We now combine the insights of the previous section
to establish convergence rates for mean-path TD.
These mirror the bounds for gradient descent given
in Equations (9) and (10), except for an additional de-
pendence on the discount factor. The first result bounds
the distance between the value function under an
averaged iterate and under the TD stationary point.
This gives a comparatively slow O(1/T) convergence
rate, but does not depend at all on the conditioning of
the feature covariance matrix. When this matrix is
well conditioned, so the minimum eigenvalue ω of Σ
is not too small, the geometric convergence rate given
in the second part of the theorem dominates.

Theorem 1. Consider a sequence of parameters (θ0, θ1, . . .)
obeying the recursion

θt+1 � θt + αḡ θt( ) t ∈ N0 � 0, 1, 2, . . .{ },
where α � (1 − γ)/4. Then,

‖Vθ∗ − Vθ̄T
‖2D ≤ 4‖θ∗ − θ0‖22

T 1 − γ
( )2

and

Vθ∗ − VθT

⃦⃦ ⃦⃦2
D ≤ exp − 1 − γ

( )2ω
4

( )
T

{ }
θ∗ − θ0
⃦⃦ ⃦⃦2

2.

Proof of Theorem 1. With probability 1, for every
t ∈ N0, we have

θ∗ − θt+1
⃦⃦ ⃦⃦2

2 � θ∗ − θt
⃦⃦ ⃦⃦2

2−2α θ∗ − θt
( )
ḡ θt( )

+α2 ḡ θt( )⃦⃦ ⃦⃦2
2. (13)

Applying Lemmas 3 and 4 and using a constant step
size of α � (1 − γ)/4, we get

θ∗ −θt+1
⃦⃦ ⃦⃦2

2 ≤ θ∗ −θt
⃦⃦ ⃦⃦2

2− 2α 1− γ
( )− 4α2( )

Vθ∗ −Vθt

⃦⃦ ⃦⃦2
D

� θ∗ −θt
⃦⃦ ⃦⃦2

2−
1− γ
( )2

4

( )
Vθ∗ −Vθt

⃦⃦ ⃦⃦2
D.

(14)
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Then,

1 − γ
( )2

4

( )∑T−1
t�0

‖Vθ∗ − Vθt‖2D

≤ ∑T−1
t�0

‖θ∗ − θt‖22 − ‖θ∗ − θt+1‖22
( )

≤ ‖θ∗ − θ0‖22.
Applying Jensen’s inequality gives the first result:

‖Vθ∗ − Vθ̄T
‖2D ≤ 1

T

∑T−1
t�0

‖Vθ∗ − Vθt‖2D ≤ 4‖θ∗ − θ0‖22
1 − γ
( )2T .

Now, returning to (14), and applying Lemma 1 implies

‖θ∗ − θt+1‖22 ≤ ‖θ∗ − θt‖22 −
1 − γ
( )2

4

( )
ω‖θ∗ − θt‖22

� 1 − ω 1 − γ
( )2

4

( )
‖θ∗ − θt‖22

≤ exp −ω 1 − γ
( )2

4

{ }
‖θ∗ − θt‖22,

where thefinal inequalityuses that (1 − ω(1−γ)2
4 ) ≤ e

−ω(1−γ)2
4 .

Repeating this inductively and using that ‖Vθ∗ −VθT‖2D ≤
‖θ∗ −θT‖22 as shown in Lemma 1 gives the desired
result. □

7. Analysis for the i.i.d. Observation Model
This section studies TD under an i.i.d. observation
model and establishes three explicit guarantees that
mirror standard finite time bounds available for SGD.
Specifically, we study a model where the random
tuples observed by the TD algorithm are sampled
i.i.d. from the stationary distribution of the Markov
reward process. This means that for all states s and s′,

P st, rt, s′t
( ) � s,R s, s′( ), s′( )[ ] � π s( )P s′|s( ), (15)

and the tuples {(st, rt, s′t)}t∈N are drawn independently
across time. The probabilities in Equation (15) cor-
respond to a setting where the first state st is drawn
from the stationary distribution, and then s′t is drawn
from P(·|st). This model is widely used for analyzing
RL algorithms. See for example Sutton et al. (2009a, b),
Korda and Prashanth (2015), and Dalal et al. (2018a).

Theorem 2 follows from a unified analysis that com-
bines the techniques of the previous section with typi-
cal arguments used in the SGD literature. All bounds
depend on σ2 � E[‖gt(θ∗)‖22] � E[‖gt(θ∗) − ḡ(θ∗)‖22],
which roughly captures the variance of TD updates at
the stationary point θ∗. The bound in part (a) follows
the spirit of work on so-called robust stochastic ap-
proximation (Nemirovski et al. 2009). It applies to TD
with iterate averaging and relatively large step sizes.

The result is a simple bound on themean-squared gap
between value predictions under the averaged iterate
and the TD fixed point. The main strength of this
result is that the step-sizes and the bound do not
depend at all on the condition number of the feature
covariancematrix. The requirement that

̅
T̅

√ ≥ 8/(1 − γ)
is not critical; one can carry out analysis using the step
size α0 � min{(1 − γ)/8, ̅

T̅
√ }, but the boundswe attain

only become meaningful in the case where T is suf-
ficiently large, so we chose to simplify the exposition.
Parts (b) and (c) provide faster convergence rates in

the case where the feature covariance matrix is well
conditioned. Part (b) studies TD appliedwith a constant
step size, which is common in practice. In this case, the
value function Vθt will never converge to the TD fixed
point, but our results show the expected distance toVθ∗
converges at an exponential rate below some level
that depends on the choice of step size. This is
sometimes referred to as the rate at which the initial
point Vθ0 is forgotten. Bounds like this justify the
common practice of starting with large step sizes and
sometimes dividing the step sizes in half once it ap-
pears error is no longer decreasing. Part (c) attains
an O(1/T) convergence rate for a carefully chosen
decaying step-size sequence. This step-size sequence
requires knowledge of theminimumeigenvalue of the
feature covariancematrixΣ, which plays a role similar
to a strong convexity parameter in the optimization
literature. In practice, this would need to be esti-
mated, possibly by constructing a sample average
approximation to the feature covariance matrix. The
proof of part (c) closely follows an inductive argu-
ment presented in Bottou et al. (2018). The bound in
part (c) is only meaningful when T is large relative to
1/ω and (1 − γ)−1. We suspect this is because of fun-
damental challenges in applying TD to problemswith
poor conditioning or long time horizons, but it would
be interesting to formally validate this.
We should note that step sizes were chosen to

enable a convenient finite time analysis. Alternative
choices may lead to stronger bounds and better
practical performance. As in Bottou et al. (2018), our
results in parts (b) and (c) could be modified so that
the step sizes and final bound depend on some un-
derestimate ω′ < ω, of the trueminimum eigenvalueω.
However, the challenge of setting such step sizes is
one of the major reasons Nemirovski et al. (2009)
advocate instead for results like those in part (a) of
Theorem 2. It is also worth noting that our analysis in
part (a) can be extended to decreasing step sizes of
the form αt � min{(1 − γ)/8, 1/ t̅

√ }, at the expense of
slightly worse constants. Such extensions are common in
theoptimization literature. See, for example, corollary3.2.8
of Duchi (2018). Recall that θ̄T � T−1 ∑T−1

t�0 θt denotes
the averaged iterate. We show the following result.
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Theorem 2. Suppose TD is applied under the i.i.d. obser-
vation model and set σ2 � E[‖gt(θ∗)‖22].

(a) For any T ≥ (8/(1 − γ))2 and a constant step-size
sequence α0 � · · · � αT � 1̅

T̅
√ ,

E ‖Vθ∗ − Vθ̄T
‖2D

[ ] ≤ ‖θ∗ − θ0‖22 + 2σ2̅
T̅

√
1 − γ
( ) .

(b) For any constant step-size sequence α0 � · · · �
αT ≤ ω(1 − γ)/8,

E Vθ∗ − VθT

⃦⃦ ⃦⃦2
D

[ ]
≤ e−α0 1−γ( )ωT( )

θ∗ − θ0
⃦⃦ ⃦⃦2

2

+α0
2σ2

1 − γ
( )

ω

( )
.

(c) For a decaying step-size sequence αt � β
λ+t with β �

2
(1−γ)ω and λ � 16

(1−γ)2ω ,

E Vθ∗ − VθT

⃦⃦ ⃦⃦2
D

[ ]
≤ ν

λ + T
,

where

ν � max
8σ2

1 − γ
( )2ω2

,
16 θ∗ − θ0

⃦⃦ ⃦⃦2
2

1 − γ
( )2ω

{ }
.

Our proof is able to directly leverage Lemma 3, but the
analysis requires the following extension of Lemma 4,
which gives an upper bound on the expected norm of
the semigradient.

Lemma 5. For any fixed θ ∈ Rd, E[‖gt(θ)‖22] ≤ 2σ2 +
8‖Vθ − Vθ∗‖2D, where σ2 � E[‖gt(θ∗)‖22].
Proof of Lemma 5. For brevity of notation, set φ � φ(st)
and φ′ � φ(s′t). Define ξ � (θ∗ − θ)
φ and ξ′ � (θ∗−
θ)
φ′. By stationarity, ξ and ξ′ have the samemarginal
distribution and E[ξ2] � ‖Vθ∗ − Vθ‖2D, following the
same argument as in Lemma 3. Using the formula for
gt(θ) in Equation (1), we have

E gt θ( )⃦⃦ ⃦⃦2
2

[ ]
≤ E gt θ∗( )⃦⃦ ⃦⃦

2+ gt θ( ) − gt θ∗( )⃦⃦ ⃦⃦
2

( )2[ ]
≤ 2E gt θ∗( )⃦⃦ ⃦⃦2

2

[ ]
+ 2E gt θ( ) − gt θ∗( )⃦⃦ ⃦⃦2

2

[ ]
� 2σ2 + 2E φ φ − γφ′( )
 θ∗ − θ

( )⃦⃦ ⃦⃦2
2

[ ]
� 2σ2 + 2E φ ξ − γξ′

( )⃦⃦ ⃦⃦2
2

[ ]
≤ 2σ2 + 2E |ξ − γξ′|2[ ]
≤ 2σ2 + 4 E |ξ|2[ ] + γ2E |ξ′|2[ ]( )
≤ 2σ2 + 8 Vθ∗ − Vθ‖

⃦⃦ 2
D,

where we used the assumption that ‖φ‖22 ≤ 1. The
second inequality uses a basic algebraic identity
(x + y)2 ≤ 2max{x, y}2 ≤ 2x2 + 2y2, along with the lin-
earity of expectation operators. □

Using this, we give a proof of Theorem 2. Let us
remark here on a consequence of the i.i.d noise model
that considerably simplifies the proof. Until now,
we often developed properties of the TDupdates gt(θ)
applied to an arbitrary, but fixed, vector θ ∈ Rd. For
example, we have given an expression for ḡ(θ) :�
E[gt(θ)], where this expectation integrates over the
random tuple Ot � (st, rt, s′t) influencing the TD up-
date. In the i.i.d noise model, the current iterate, θt, is
independent of the tupleOt, and soE[gt(θt)|θt] � ḡ(θt).
In a similar manner, after conditioning on θt, we can
seamlessly apply Lemmas 3 and 5, as is done in in-
equality (16) of the proof.

Proof of Theorem 2. The TD algorithm updates the
parameters as θt+1 � θt + αtgt(θt). Thus, for each t ∈ N0,
we have,

θ∗ − θt+1‖
⃦⃦ 2

2� θ∗ − θt‖
⃦⃦ 2

2−2αtgt θt( )
 θ∗ − θt
( )

+ α2
t gt θt( )‖⃦⃦ 2

2.

Under the hypotheses of (a), (b), and (c), we have
that αt ≤ (1−γ)/8. Taking expectations and applying
Lemmas 3 and 5 imply

E θ∗ −θt+1‖
⃦⃦ 2

2

[ ]
�E θ∗ −θt‖

⃦⃦ 2
2

[ ]
−2αtE gt θt( )
[

θ∗ −θt
( )]+α2

tE gt θt( )‖⃦⃦ 2
2

[ ]
�E θ∗ −θt‖

⃦⃦ 2
2

[ ]
−2αtE E gt θt( )
[[

θ∗ −θt
( ) |θt

]]
+α2

tE E gt θt( )‖⃦⃦ 2
2 |θt

[ ][ ]
≤E θ∗ −θt‖

⃦⃦ 2
2

[ ]
− 2αt 1−γ

( )−8α2
t

( )
× E Vθ∗ −Vθt‖

⃦⃦ 2
D

[ ]
+2α2

t σ
2 (16)

≤ E θ∗ −θt‖
⃦⃦ 2

2

[ ]
−αt 1−γ

( )
E Vθ∗ −Vθt‖

⃦⃦ 2
D

[ ]
+ 2α2

t σ
2.

(17)

Inequality (16) follows from Lemmas 3 and 5. The
application of these lemmas uses that the random
tuple Ot � (st, rt, s′t) influencing gt(·) is independent of
the iterate, θt.

Proof of Part (a). Consider a constant step size of
αT � · · · � α0 � 1/

̅
T̅

√
. Starting with Equation (17) and

summing over t gives

E
∑T−1
t�0

‖Vθ∗ − Vθt‖2D
[ ]

≤ ‖θ∗ − θ0‖22
α0 1 − γ

( ) + 2α0Tσ2

1 − γ
( )

�
̅
T̅

√ ‖θ∗ − θ0‖22
1 − γ
( ) + 2

̅
T̅

√
σ2

1 − γ
( ) .
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We find

E ‖Vθ∗ − Vθ̄T
‖2D

[ ] ≤ 1
T
E

∑T−1
t�0

‖Vθ∗ − Vθt‖2D
[ ]

≤ ‖θ∗ − θ0‖22 + 2σ2̅
T̅

√
1 − γ
( ) .

Proof of Part (b). Consider a constant step size of α0 ≤
ω(1 − γ)/8. Applying Lemma 1 to Equation (17) implies

E ‖θ∗ −θt+1‖22
[ ] ≤ 1− α0 1− γ

( )
ω

( )
E ‖θ∗ −θt‖22
[ ]+ 2α2

0σ
2.

(18)
Iterating this inequality establishes that for any T ∈ N0,

E ‖θ∗ − θT‖22
[ ] ≤ 1 − α0 1 − γ

( )
ω

( )T
E ‖θ∗ − θ0‖22
[ ]

+ 2α2
0σ

2
∑∞
t�0

1 − α0 1 − γ
( )

ω
( )t.

The result follows by solving the geometric series
and using that (1 − α0(1 − γ)ω) ≤ e−α0(1−γ)ω along with
Lemma 1.

Proof of Part (c). By the definitions of ν, λ and β,
we have

ν � max 2β2σ2 , λ‖θ∗ − θ0‖22
{ }

.

We then have ‖θ∗ − θ0‖22 ≤ ν
λ by the definition of ν.

Proceeding by induction, suppose E[‖θ∗ − θt‖22] ≤ ν
λ+t.

Let t̂ ≡ λ + t. Then,

E ‖θ∗ − θt+1‖22
[ ] ≤ 1 − αt 1 − γ

( )
ω

( )
E ‖θ∗ − θt‖22
[ ] + 2α2

t σ
2

≤ 1 − 1 − γ
( )

ωβ

t̂

( )
ν

t̂
+ 2β2σ2

t̂2

where t̂ ≡ λ + t

� t̂ − 1 − γ
( )

ωβ

t̂2

( )
ν + 2β2σ2

t̂2

� t̂ − 1
t̂2

( )
ν + 2β2σ2 − 1 − γ

( )
ωβ − 1

( )
ν

t̂2

� t̂ − 1
t̂2

( )
ν + 2β2σ2 − ν

t̂2

≤ ν

t̂ + 1
,

where we use that β � 2
1−γ( )ω . The final inequality fol-

lows by using that uses that 2β2σ2 − ν ≤ 0, which holds
by the definition of ν and the fact that t̂ 2 ≥ (t̂ − 1)(t̂ + 1).
The final result follows by invoking the inequality
‖Vθ∗ − VθT‖2D ≤ ‖θ∗ − θT‖22 as shown in Lemma 1. □

8. Analysis for the Markov Chain Obser-
vation Model: Projected TD Algorithm

In Section 7, we developed amethod for analyzing TD
under an i.i.d. sampling model in which tuples are
drawn independently from the stationary distribu-
tion of the underlyingMRP.However, amore realistic
setting is one inwhich the observed tuples used by TD
are gathered from a single trajectory of the Markov
chain. In particular, if for a given sample path the
Markov chain visits states (s0, s1, . . . st, . . .), then these
are processed into tuples Ot � (st, rt � R(st, st+1), st+1)
that are fed into the TD algorithm. Mathematical
analysis is difficult since the tuples used by the al-
gorithm can be highly correlated with each other. We
outline the main challenges below.

Challenges in the Markov Chain Noise Model:
In the i.i.d. observation setting, our analysis relied
heavily on aMartingale property of the noise sequence.
This no longer holds in theMarkov chainmodel because
of strong dependencies between the noisy observa-
tions. To understand this, recall the expression of the
TD update

gt θ( ) � rt + γφ st+1( )
θ − φ st( )
θ( )
φ st( ). (19)

To make the statistical dependencies more trans-
parent, we can overload notation to write this as
g(θ,Ot) ≡ gt(θ), where Ot � (st, rt, st+1). Assuming the
sequence of states is stationary, we have defined
the function ḡ : Rd → Rd by ḡ(θ) � E[g(θ,Ot)], where,
because θ is nonrandom, this expectation integrates
over the marginal distribution of the tuple Ot. How-
ever, E[g(θt,Ot) | θt � θ] �� ḡ(θ) because θt is a func-
tion of past tuples {O1, . . . ,Ot−1}, potentially intro-
ducing strong dependencies between θt and Ot.
Similarly, in general E[g(θt,Ot) − ḡ(θt)] �� 0, indicat-
ing bias in the algorithm’s semigradient evaluations.
A related challenge arises in trying to control the
norm of the semigradient step, E[‖gt(θt)‖22]. Lemma 5
does not yield a bound because of coupling between
the iterate θt and the observation Ot.
Our analysis uses an information-theoretic tech-

nique to control for this coupling and explicitly ac-
count for the semigradient bias. This technique may
be of broader use in analyzing reinforcement learning
and stochastic approximation algorithms. However,
our analysis also requires some strong regularity
conditions, as outlined later.

Projected TD Algorithm:
Our technique for controlling the semigradient bias
relies critically on a condition that, when step sizes are
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small, the iterates (θt)t∈N0
do not change too rapidly.

This is the case as long as norms of the semigradient
steps do not explode. For tractability, we modify the
TD algorithm itself by adding a projection step that
ensures semigradient norms are uniformly bounded
across time. In particular, starting with an initial
guess of θ0 such that θ0‖ ‖2 ≤ R, we consider the
projected TD algorithm, which iterates

θt+1 � Π2,R θt + αtgt θt( )( ) ∀t ∈ N0, (20)
where

Π2,R θ( ) � argmin
θ′: θ′‖ ‖2≤R

θ − θ′⃦⃦ ⃦⃦
2

is the projection operator onto a norm ball of radius
R < ∞. The subscript 2 on the operator indicates that
the projection is with respect the unweighted Eu-
clidean norm. This should not be confused with the
projection operator ΠD used earlier, which projects
onto the subspace of approximate value functions
with respect to a weighted norm. One may wonder
whether this projection step is practical. We note that,
from a computational perspective, it only involves
rescaling of the iterates, as Π2,R(θ) � Rθ/‖θ‖ if ‖θ‖2 >
R and is simply θ otherwise. In addition, Section 8.2
suggests that by using a priori bounds on the value
function, it should be possible to estimate a projection
radius containing the TD fixed point. However, at this
stage, we view this mainly as a tool that enables clean
finite time analysis, rather than a practical algorith-
mic proposal.

It is worth mentioning that projection steps have a
long history in the stochastic approximation litera-
ture, andmany of the standard analyses for stochastic
gradient descent rely on projection steps to control the
norm of the gradient (Nemirovski et al. 2009, Kushner
2010, Lacoste-Julien et al. 2012, Bubeck 2015).

Structural Assumptions on the Markov
Reward Process:
To control the statistical bias in the semigradient
updates, which is the main challenge under the Markov
observation model, we assume that the Markov chain
mixes at a uniform geometric rate, as stated here.

Assumption 1. There are constants m > 0 and ρ ∈ (0, 1)
such that

sup
s∈S

dTV P st ∈ ·|s0 � s( ), π( ) ≤ mρt ∀t ∈ N0,

where dTV(P,Q) denotes the total-variation distance
between probability measures P and Q. In addition,
the initial distribution of s0 is the steady-state dis-
tribution π, so (s0, s1, . . .) is a stationary sequence.

This uniform mixing assumption always holds for
irreducible and aperiodic finite-state Markov chains

(Levin and Peres 2017). Meyn and Tweedie (2012) and
Roberts and Rosenthal (2004) provide a discussion
on uniform ergodicity and relaxations of this concept
in general state space Markov chains. We emphasize
that assuming theMarkov chain begins in steady state
is not essential: given the uniform mixing assump-
tion, we can always apply our analysis after the
Markov chain has approximately reached its steady
state. However, adding this assumption allows us to
simplify many mathematical expressions. Another
useful quantity for our analysis is the mixing time,
which we define as

τmix ε( ) � min t ∈ N0 | mρt ≤ ε
{ }

. (21)
For interpreting the bounds, note that from Assump-
tion 1:

τmix ε( ) ∼ log m/ε( )
log 1/ρ

( ) as ε → 0.

We can therefore evaluate the mixing time at very
small thresholds like ε � 1/T while only contributing
a logarithmic factor to the bounds.

A Bound on the Norm of the Semigradient:
Before proceeding, we also state a bound on the
Euclidean norm of the semigradient under TD(0) that
follows from the uniform bound on rewards, along
with feature normalization10 and boundedness of the
iterates through the projection step. Under projected
TD(0) with projection radius R, this lemma implies
that ‖gt(θt)‖2 ≤ (rmax + 2R). This semigradient bound
plays an important role in our convergence bounds.

Lemma 6. For all θ ∈ Rd, gt(θ)⃦⃦ ⃦⃦
2 ≤ rmax + 2‖θ‖2 with

probability 1.

Proof of Lemma 6. Using the expression of gt(θ) in
Equation (19), we have

‖gt θ( )‖2 ≤ |rt + γφ s′t
( ) − φ st( )( )
θ| ‖φ st( )‖2

≤ rmax + ‖γφ s′t
( ) − φ st( )‖2‖θ‖2

≤ rmax + 2‖θ‖2. □

8.1. Finite Time Bounds
Following Section 7, we state several finite time
bounds on the performance of the projected TD al-
gorithm. As before, in the spirit of robust stochastic
approximation (Nemirovski et al. 2009), the bound in
part (a) gives a comparatively slow convergence rate
of Õ(1/ ̅

T̅
√ ), but where the bound and step-size se-

quence are independent of the conditioning of the
feature covariance matrix Σ. The bound in part (c)
gives a faster convergence rate in terms of the number
of samples T, but the bound and the step-size se-
quence depend on the minimum eigenvalue ω of Σ.
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Part (b) confirms that for sufficiently small step sizes,
the value functions converge at an exponential rate to
within some radius of the TD fixed point Vθ∗ .

It is also instructive to compare the bounds for the
Markov model vis-a-vis the i.i.d. model. One can see
that in the case of part (b) for the Markov chain
setting, a O(G2τmix(α0)) term controls the limiting
error because of semigradient noise. This scaling by
the mixing time is intuitive, reflecting that roughly
every cycle of τmix(·) observations provides as much
information as a single independent sample from
the stationary distribution. We can also imagine spe-
cializing the results to the case of Projected TD under
the i.i.d. model, thereby eliminating all terms depending
on the mixing time. We would attain bounds that mir-
ror those in Theorem 2, except that the semigradient
noise term σ2 there would be replaced by G2. This is a
consequence usingG as a uniformupper bound on the
semigradient norm in the proof, which is possible
because of the projection step. Astute readers may
notice the stepsize choices in parts (b) and (c) differ
from those in parts (b) and (c) of Theorem 2. For each
result, we have aimed for step-size choices that lead to
the simplest proofs of strong finite time bounds. In
Theorem 3, the projection step allowed us to give a
simple proof without requiring as small a step size as
in Theorem 2. This choice may reflect our analysis
technique more than any fundamental differences
between the problem settings.

Theorem 3. Suppose the projected TD algorithm is applied
with parameter R ≥ ‖θ∗‖2 under the Markov chain obser-
vation model with Assumption 1. Set G � (rmax + 2R). Then
the following claims hold.

(a) With a constant step-size sequence α0 � · · · �αT �
1/

̅
T̅

√
,

E Vθ∗ −Vθ̄T

⃦⃦⃦ ⃦⃦⃦2
D

[ ]
≤

θ∗ −θ0
⃦⃦ ⃦⃦2

2 +G2 9+ 12τmix 1/
̅
T̅

√( )( )
2

̅
T̅

√
1−γ
( ) .

(b) With a constant step-size sequence α0 � · · · � αT <
1/ (2ω(1 − γ)),

E Vθ∗ − VθT

⃦⃦⃦ ⃦⃦⃦2
D

[ ]
≤ e−2α0 1−γ( )ωT( )

θ∗ − θ0
⃦⃦⃦ ⃦⃦⃦2

2

+ α0
G2 9 + 12τmix α0( )( )

2 1 − γ
( )

ω

( )
.

(c) With a decaying step-size sequence αt � 1/(ω(t+
1)(1 − γ)) for all t ∈ N0,

E Vθ∗ − Vθ̄T

⃦⃦⃦ ⃦⃦⃦2
D

[ ]
≤ G2 9 + 24τmix αT( )( )

T 1 − γ
( )2ω 1 + logT

( )
.

There are two noteworthy points here. First, the proof
of part (c) also implies an Õ(1/T) convergence rate
for the value function VθT itself; however, the bound

degrades by a factor of ω. We refer the readers to
Equation (EC.4) inOnlineAppendix B.2 for the complete
result. Second, it is likely possible to eliminate the logT
term in the numerator of part (c) to get a O(1/T)
convergence rate. One approach is to use a different
weighting of the iterates when averaging, as in
Lacoste-Julien et al. (2012). For brevity and simplicity,
we do not pursue this direction.

8.2. Choice of the Projection Radius
We briefly comment on the choice of the projection
radius, R. Theorem 3 assumes that θ∗⃦⃦ ⃦⃦

2 ≤ R, so the
TD limit point lies within the projected ball. How do
we choose such anRwhen θ∗ is unknown? It turns out
we can use Lemma 2, which relates the value function
at the limit of convergence Vθ∗ to the true value
function, to give a conservative upper bound. This is
shown in the following lemma.

Lemma 7. We have the following bounds on the TD
limit point,

‖θ∗‖Σ ≤ 2rmax

(1 − γ)3/2

and hence

‖θ∗‖2 ≤ 2rmax̅̅̅
ω

√ (1 − γ)3/2 .

Proof of Lemma 7. See Online Appendix C for a de-
tailed proof. □

It is important to remark here that this bound is
problem dependent as it depends on the minimum
eigenvalue ω of the steady-state feature covariance
matrix Σ. We believe that estimating ω online would
make the projection step practical to implement. We
also remark that, although we have assumed for that
feature vectors are bounded as ‖φ(s)‖2 ≤ 1, this is not
required for the conclusion in Lemma 7. The required
projection radius automatically reflects any scaling of the
feature vectors through the minimum eigenvalue ω.

8.3. Analysis
We now present the key analysis used to establish
Theorem 3. Throughout, we assume the conditions of
the theorem hold: we consider the Markov chain
observation model with Assumption 1 and study the
projected TD algorithm applied with parameter R ≥
‖θ∗‖2 and some step-size sequence (α0, . . . , αT).
We fix some notation throughout the scope of this

section. Define the setΘR � {θ ∈ Rd : ‖θ‖2 ≤ R}, soθt ∈
ΘR for each t because of the algorithm’s projection
step. Set G � (rmax + 2R), so ‖gt(θ)‖2 ≤ G for all θ ∈ ΘR
by Lemma 6. Finally, we set

ζt θ( ) ≡ gt θ( ) − ḡ θ( )( )
 θ − θ∗( ) ∀θ ∈ ΘR,
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which can be thought of as the error in the evaluation
of semigradient-update under parameter θ at time t.

Referring back to the analysis of the i.i.d. obser-
vationmodel, one can see that an error decomposition
given in Equation (17) is the crucial component of the
proof. The main objective in this section is to establish
two key lemmas that yield a similar decomposition in
the Markov chain observation model. The result can
be stated cleanly in the case of a constant step size. If
α0 � · · · � αT � α, we show

E ‖θ∗ −θt+1‖22
[ ] ≤ E ‖θ∗ −θt‖22

[ ]− 2α 1−γ
( )

×E ‖Vθ∗ −Vθt‖2D
[ ]+ 2E αζt θt( )[ ] +α2G2

≤ E ‖θ∗ −θt‖22
[ ]− 2α 1−γ

( )
×E ‖Vθ∗ −Vθt‖2D

[ ]+ 2α2 5+ 6τmix α( )( )
G2.

(22)
The first inequality follows from Lemma 8. The sec-
ond follows from Lemma 11, which in the case
of a constant step size α shows E[αζt(θt)] ≤ G2(4+
6τmix(α))α2. Notice that bias in the semigradient enters
into the analysis as if by scaling the magnitude of the
noise in semigradient evaluations by a factor of the
mixing time. From this decomposition, parts (a) and (b)
of Theorem 3 follow by essentially copying the proof
of Theorem 2. Similar, but messier, inequalities hold
for any decaying step-size sequence, which allows us
to establish part (c).

8.3.1. Error Decomposition Under Projected TD. The
next lemma establishes a recursion for the error under
projected TD(0) that hold for each sample path.

Lemma 8. With probability 1, for every t ∈ N0,

‖θ∗ − θt+1‖22 ≤ ‖θ∗ − θt‖22 − 2αt 1 − γ
( )‖Vθ∗ − Vθt‖2D
+ 2αtζt θt( ) + α2

t G
2.

Proof of Lemma 8. From the projected TD(0) recursion
in Equation (20), for any t ∈ N0,

‖θ∗ − θt+1‖22 � ‖θ∗ −Π2,R θt + αtgt θt( )( )‖22
� ‖Π2,R θ∗( ) −Π2,R θt + αtgt θt( )( )‖22
≤ ‖θ∗ − θt − αtgt θt( )‖22
� ‖θ∗ − θt‖22 − 2αtgt θt( )
 θ∗ − θt

( )
+ α2

t ‖gt θt( )‖22
≤ ‖θ∗ − θt‖22 − 2αtgt θt( )
 θ∗ − θt

( ) + α2
t G

2

� ‖θ∗ − θt‖22 − 2αtḡ θt( )
 θ∗ − θt
( )
+ 2αtζt θt( ) + α2

t G
2

≤ ‖θ∗ − θt‖22 − 2αt 1 − γ
( )‖Vθ∗ − Vθt‖2D

+ 2αtζt θt( ) + α2
t G

2.

The first inequality used that orthogonal projection
operators onto a convex set are nonexpansive,11 the
second used Lemma 6 together with the fact that
‖θt‖2 ≤ R because of projection, and the third used
Lemma 3. □

By taking expectation of both sides, this inequality
could be used to produce bounds in the same manner
as in the previous section, except that in general
E[ζt(θt)] �� 0, because of bias in the semigradient
evaluations.

8.3.2. Information–Theoretic Techniques for Controlling
the Semigradient Bias. The uniform mixing condition
inAssumption 1 can be used in conjunctionwith some
information theoretic inequalities to control the magni-
tude of the semigradient bias. This section presents a
general lemma,which is the key to this analysis.We start
by reviewing some important properties of informa-
tion measures.

Information Theory Background. The total-variation
distance between two probabilitymeasures is a special
case of the more general f -divergence defined as

df P‖Q( ) �
∫

f
dP
dQ

( )
dQ,

where f is a convex function such that f (1) � 0. By
choosing f (x) � x − 1| |/2, one recovers the total-variation
distance. A choice of f (x) � x log(x) yields the Kullback-
Leibler divergence. This yields a generalization of
the mutual information between two random vari-
ables X and Y. The f -information between X and Y is
the f -divergence between their joint distribution and
the product of their marginals:

If X,Y( ) � df P X � ·,Y � ·( ) , P X � ·( ) ⊗ P Y � ·( )( ).
This measure satisfies several nice properties. By
definition it is symmetric, so If (X,Y) � If (Y,X). It can
be expressed in terms of the expected divergence
between conditional distributions:

If X,Y( ) �∑
x
P X� x( )df P Y� ·|X� x( ),P Y� ·( )( ). (23)

Finally, it satisfies the following data-processing in-
equality. If X → Y → Z forms a Markov chain, then

If X,Z( ) ≤ If X,Y( ).
Here, we use the notation X → Y → Z, which is
standard in information theory and the study of
graphical models, to indicate that the random vari-
ables Z and X are independent conditioned on Y. By
symmetrywe also have If (X,Z) ≤ If (Y,Z). To use these
results in conjunction with Assumption 1, we can
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specialize to total variation distance (dTV) and total-
variationmutual information (ITV)using f (x) � x − 1| |/2.
The total variation distance is especially useful for
our purposes because of the following variational
representation.

dTV P,Q( ) � sup
v:‖v‖∞≤1

2

∫
vdP −

∫
vdQ

⃒⃒⃒⃒ ⃒⃒⃒⃒
. (24)

In particular, if P and Q are close in total variation
distance, then the expected value of any bounded
function under P will be close to that under Q.

Information Theoretic Control of Coupling. With
this background in place, we are ready to estab-
lish a general lemma, which is central to our analysis.
We use ‖ f ‖∞ � supx∈X | f (x)| to denote the supremum
norm of a function f : X → R. The proof uses simi-
lar ideas to Russo and Zou (2019) and Xu and
Raginsky (2017).

Lemma 9 (Control of Coupling). Consider two random
variables X and Y such that

X → st → st+τ → Y

for some fixed t ∈ {0, 1, 2, . . .} and τ > 0. Assume the
Markov chain mixes uniformly, as stated in Assumption 1.
Let X′ and Y′ denote independent copies drawn from the
marginal distributions of X and Y, so P(X′ � ·,Y′ � ·) �
P(X � ·) ⊗ P(Y � ·). Then, for any bounded function v,

E v X,Y( )[ ] − E v X′,Y′( )[ ]| | ≤ 2‖v‖∞ mρτ
( )

.

Proof of Lemma 9. Let P � P(X ∈ ·,Y ∈ ·) denote the
joint distribution ofX andY andQ � P(X ∈ ·) ⊗ P(Y ∈ ·)
denote the product of the marginal distributions. Let
h � v

2‖v‖∞, which is the function v rescaled to take values
in [−1/2, 1/2]. Then, by Equation (24)

E h X,Y( )[ ] − E h X′,Y′( )[ ] �
∫

hdP −
∫

hdQ

≤ dTV P,Q( ) � ITV X,Y( ),
where the last equality uses the definition of the total
variation mutual information, ITV . Then,

ITV X,Y( ) ≤ ITV st, st+τ( )
� ∑

s∈S
P st � s( ) dTV P st+τ � · | st � s( )( ),P st+τ � ·( ))

≤ sup
s∈S

dTV P st+τ � · | st � s( ) , π( )
≤ mρτ,

where the steps follow, respectively, from the data-
processing inequality, the property in Equation (23),

the stationarity of the Markov chain, and the uniform
mixing condition in Assumption 1. Combining these
steps, we get

E v X,Y( )[ ]−E v X′,Y′( )[ ]| | ≤ 2‖v‖∞ ITV X,Y( ) ≤ 2‖v‖∞mρτ.

which gives us the desired result. □

8.3.3. Bounding the Semigradient Bias. We are now
ready to bound the expected semigradient errorE[ζt(θt)].
First, we establish some basic regularity properties of
the function ζt(·).
Lemma 10 (Semigradient Error Is Bounded and Lipschitz).
With probability 1,

|ζt θ( )| ≤ 2G2 for all θ ∈ ΘR

and

ζt θ( ) − ζt θ
′( )⃒⃒ ⃒⃒ ≤ 6G θ − θ′( )⃦⃦ ⃦⃦

2 for all θ, θ′ ∈ ΘR.

Proof of Lemma 10. The result follows from a straight-
forward application of the bounds ‖gt(θ)‖2 ≤ G and
‖θ‖2 ≤ R ≤ G/2, which hold for each θ ∈ ΘR. A full
derivation is given in Online Appendix A.3. □

We now use Lemmas 9 and 10 to establish a bound
on the expected semigradient error.

Lemma 11 (Bound on Semigradient Bias). Consider a
nonincreasing step-size sequence, α0 ≥ α1 . . . ≥ αT. Fix any
t < T, and set t∗ ≡ max{0, t − τmix(αT)}. Then,

E ζt θt( )[ ] ≤ G2 4 + 6τmix αT( )( )
αt∗ .

The following bound also holds:

E ζt θt( )[ ] ≤ 6G2
∑t−1
i�0

αi.

Proof of Lemma 11. We break the proof down into
three steps.

Step 1. Relate ζt(θt) and ζt(θt−τ).
Note that for any i ∈ N0,

θi+1 − θi‖ ‖2 � Π2,R θi + αigi θi( )( ) −Π2,R θi( )⃦⃦⃦ ⃦⃦⃦
2

≤ θi + αigi θi( ) − θi
⃦⃦ ⃦⃦

2 � αi gi θi( )⃦⃦ ⃦⃦
2

≤ αiG.

Therefore,

θt − θt−τ‖ ‖2 ≤
∑t−1
i�t−τ

θi+1 − θi‖ ‖2 ≤ G
∑t−1
i�t−τ

αi.

Applying Lemma 10, we conclude

ζt θt( ) ≤ ζt θt−τ( )+6G2
∑t−1
i�t−τ

αi for all τ∈ 0, · · · , t{ }. (25)
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Step 2. Bound E[ζt(θt−τ)] using Lemma 9.
Recall that the semigradient gt(θ) depends implicitly
on the observed tuple Ot � (st,R(st, st+1), st+1). Let us
overload notation to make this statistical dependency
more transparent. For any θ ∈ ΘR, put

g θ,Ot( ) :� gt θ( ) � rt + γφ st+1( )
θ − φ st( )
θ( )
φ st( )

and

ζ θ,Ot( ) :� ζt θ( ) � g θ,Ot( ) − ḡ θ( )( )
 θ − θ∗( )
.

We have defined ḡ : ΘR → Rd as ḡ(θ) � E[g(θ,Ot)] for
all θ ∈ ΘR, where this expectation integrates over the
marginal distribution of Ot. Then, by definition, for
any fixed (nonrandom) θ ∈ ΘR,

E ζ θ,Ot( )[ ] � E g θ,Ot( )[ ] − ḡ θ( )( )
 θ − θ∗( ) � 0.

Because θ0 ∈ ΘR is nonrandom, it follows immedi-
ately that

E ζ θ0,Ot( )[ ] � 0. (26)
Weuse Lemma9 to boundE[ζ(θt−τ,Ot)]. First, consider
random variables θ′

t−τ and O′
t drawn independently

from the marginal distributions of θt−τ and Ot, so
P(θ′

t−τ � ·,O′
t � ·) �P(θt−τ � ·)⊗P(Ot � ·). Then,

E[ζ(θ′
t−τ,O

′
t)]�E[E[ζ(θ′

t−τ,O
′
t) |θ′

t−τ]]�0.

Because |ζ(θ,Ot)| ≤ 2G2 for all θ ∈ ΘR by Lemma 10
and θt−τ → st−τ → st → Ot forms a Markov chain, ap-
plying Lemma 9 gives

E ζ θt−τ,Ot( )[ ] ≤ 2 2G2( )
mρτ
( ) � 4G2mρτ. (27)

Step 3. Combine terms.
The second claim follows immediately from Equa-
tion (25) together with Equation (26). We focus on
establishing the first claim. Taking the expectation of
Equation (25) implies

E ζt θt( )[ ] ≤ E ζt θt−τ( )[ ] + 6G2ταt−τ ∀τ ∈ 0, · · · , t{ }.
For t ≤ τmix(αT), choosing τ � t gives

E ζt θt( )[ ] ≤ E ζt θ0( )[ ]⏟̅̅̅⏞⏞̅̅̅⏟
�0

+6G2tα0 ≤ 6G2τmix αT( )α0.

For t > τmix(αT), choosing τ � τ0 ≡ τmix(αT) gives

E ζt θt( )[ ] ≤ 4G2mρτ0 + 6G2τ0αt−τ0
≤ 4G2αT + 6G2τ0αt−τ
≤ G2 4 + 6τ0( )αt−τ0 .

The second inequality used that mρτ0 ≤ αT by the def-
inition of the mixing time τ0 ≡ τmix(αT) and the final
inequality uses that step sizes are nonincreasing. □

8.3.4. Completing the Proof of Theorem 3. Combining
Lemmas 8 and 10 gives the error decomposition in
Equation (22) for the case of a constant step size.
As noted at the beginning of this section, from this
decomposition, parts (a) and (b) of Theorem 3 can
be established by essentially copying the proof of
Theorem 2. For completeness, this is included in
Online Appendix A. For part (c), we closely follow
analysis of SGDwith decaying step sizes presented in
Lacoste-Julien et al. (2012). However, some headache
is introduced because Lemma 11 includes terms of the
form αt−τmix(αT) instead of the typical αt terms present
in analyses of SGD. A complete proof of part (c) is
given in Online Appendix A as well.

9. Extension to TD with Eligibility Traces
This section extends our analysis to provide finite
time guarantees for temporal difference learning
with eligibility traces. We study a class of algorithms,
denoted by TD(λ) and parameterized by λ ∈ [0, 1],
that contains as a special case the TD(0) algorithm
studied in previous sections.12 For λ > 0, the algo-
rithm maintains an eligibility trace vector, which is a
geometric weighted average of the negative semi-
gradients at all previously visited states, and makes
parameter updates in the direction of the eligibility
vector rather than the negative semigradient. Eligi-
bility traces sometimes provide substantial perfor-
mance improvements in practice (Sutton and Barto
1998). Unfortunately, they also introduce subtle de-
pendency issues that complicate theoretical analysis;
to our knowledge, this section provides the first
nonasymptotic analysis of TD(λ).
Our analysis focuses on the Markov chain obser-

vation model studied in the previous section and
we mirror the technical assumptions used there.
In particular, we assume that the Markov chain is
stationary and mixes at a uniform geometric rate
(Assumption 1). As before, for tractability, we study a
projected variant of TD(λ).

9.1. Projected TD(λ) Algorithm
TD(λ) makes a simple, but a highly consequential,
modification to TD(0). The pseudo-code for this al-
gorithm is presented below in Algorithm 2. As with
TD(0), it observes a tuple Ot � (st, rt � R(st, st+1), st+1)
at each time-step t and computes the TD error
δt(θt) � rt + γVθt(st+1) − Vθt(st). However, while TD(0)
makes an update θt+1 � θt + αtδt(θt)φ(st) in the di-
rection of the feature vector at the current state, TD(λ)
makes the update θt+1 � θt + αtδt(θt)z0:t. The vector
z0:t � ∑t

k�0(γλ)kφ(st−k) is called the eligibility trace
which is updated incrementally as shown in Algo-
rithm 2. As the name suggests, the components of z0:t
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roughly capture the extent to which each feature
is eligible for receiving credit or blame for an ob-
served TD error (Sutton and Barto 1998, Seijen and
Sutton 2014).

Algorithm 2 Projected TD(λ) with Linear Function
Approximation
Input: radius R, initial guess {θ0 : θ0‖ ‖2 ≤ R}, and

step-size sequence {αt}t∈N
Initialize: θ̄0 ← θ0, z−1 � 0, λ ∈ [0, 1].
for t � 0, 1, . . . do

Observe tuple: Ot � (st, rt, st+1);
Get TD error:

δt(θt) � rt + γVθt(st+1) − Vθt(st);
Update eligibility trace:

z0:t � (γλ)z0:t−1+φ(st); * Geometric weighting *
Compute update direction:

xt(θt, z0:t) � δt(θt)z0:t;
Take a projected update step:

θt+1 � Π2,R(θt + αtxt(θt, z0:t)); * αt:step-size *
Update averaged iterate:

θ̄t+1 ← ( t
t+1)θ̄t + ( 1

t+1)θt+1; * θ̄t+1 � 1
t+1

∑t+1

�1 θ
 *

end
Some new notation in Algorithm 2 should be high-

lighted.We use xt(θ,z0:t) � δt(θ)z0:t to denote theupdate
to the parameter vector θ at time t. This plays a role
analogous to the negative semigradient gt(θ) in TD(0).

9.2. Limiting Behavior of TD(λ)
We now review results on the asymptotic conver-
gence of TD(λ) from Tsitsiklis and Van Roy (1997).
This provides the foundation of our finite time analysis
and also offers insight into how the algorithm differs
from TD(0).

Before giving any results, let us note that just as the
true value function Vμ(·) is the unique solution to
Bellman’s fixed point equation Vμ � TμVμ, it is also
the unique solution to a k-step Bellman equation
Vμ � Tk

μVμ. This can be written equivalently as

Vμ s( ) � E
∑k
t�0

γtR st( ) + γk+1V sk+1( ) | s0 � s

[ ]
∀s ∈ S,

where the expectation is over states sampled when
policy μ is applied to the MDP. The asymptotic
properties of TD(λ) are closely tied to a geometri-
cally weighted version of the k-step Bellman equa-
tions described above. Define the averaged Bell-
man operator

T λ( )
μ V

( )
s( ) � 1 − λ( )∑∞

k�0
λkE

∑k
t�0

γtR st( )
[

+γk+1V sk+1( ) | s0 � s

]
. (28)

One interesting interpretation of this equation is
as a k-step Bellman equation, but where the horizon
k itself is a random geometrically distributed ran-
dom variable.
Tsitsiklis and Van Roy (1997) showed that under

appropriate technical conditions, the approximate
value function Vθt � Φθt estimated by TD(λ) con-
verges almost surely to the unique solution, θ∗ of the
projected fixed point equation

Φθ � ΠDT λ( )
μ Φθ.

TD(λ) is then interpreted as a stochastic approxi-
mation scheme for solving this fixed point equation.
The existence and uniqueness of such a fixed point is
implied by the following lemma, which shows that
ΠDT(λ)(·) is a contraction operator with respect to the
steady-state weighted norm ‖ · ‖D. Throughout this
section, we let θ∗ denote the unique fixed point of the
projected TD(λ) operator as shown previously.

Lemma 12 (Tsitsiklis and Van Roy 1997). The projected
TD(λ) operator ΠDT(λ)

μ (·) is a contraction with respect to
‖ · ‖D with modulus

κ � γ 1 − λ( )
1 − γλ

≤ γ < 1.

As with TD(0), the limiting value function under
TD(λ) comes with some competitive guarantees. A
short argument using Lemma 12 shows

Vθ∗ − Vμ

⃦⃦⃦ ⃦⃦⃦
D ≤ 1̅̅̅̅̅̅̅̅

1 − κ2
√ ΠDVμ − Vμ

⃦⃦⃦ ⃦⃦⃦
D. (29)

Chapter 6 of Bertsekas (1995) provides a proof. It
is important to note the distinction between the
convergence results for TD(λ) and TD(0) in terms of
the contraction factors. The contraction factor κ is
always less than γ, the contraction factor under TD(0).
In addition, as λ → 1, κ → 0 implying that the limit
point of TD(λ) for large enough λ will be arbitrarily
close to ΠDVμ, which minimizes the mean-square
error in value predictions among all value functions
representable by the features. This calculation sug-
gests a choice of λ � 1will offer the best performance.
However, the rate of convergence also depends on λ,
and may degrade as λ grows. Disentangling such
issues requires also a careful study of the statistical
efficiency of TD(λ), which we undertake in the fol-
lowing section.

9.3. Finite Time Bounds for Projected TD(λ)
Following Section 8, we establish three finite time
bounds on the performance of the projected TD(λ)
algorithm. The first bound in part (a) does not depend
on any special regularity of the problem instance
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but gives a comparatively slow convergence rate of
Õ(1/ ̅

T̅
√ ). It applies with the robust (problem inde-

pendent) and aggressive step size of 1/
̅
T̅

√
. Part (b)

shows an exponential rate of convergence to within
some radius of the TD(λ) fixed-point under a suffi-
ciently small step size. Part (c) attains an improved
dependence on T of Õ(1/T), but the step-size se-
quence requires knowledge of the minimum eigen-
value ω of Σ.

Compared with the results for TD(0), our bounds
depend on a slightly different definition of the mixing
time that takes into account the geometric weighting
in the eligibility trace term. Define

τmix
λ ε( ) � max τMC ε( ), τAlgo ε( ){ }

, (30)
where we denote τMC(ε) � min{t ∈ N0 | mρt ≤ ε} and
τAlgo(ε) � min{t ∈ N0 | (γλ)t ≤ ε}. As we show next,
this definition of mixing time enables compact bounds
for convergence rates of TD(λ).

Theorem 4. Suppose the projected TD(λ) algorithm is
applied with parameter R ≥ ‖θ∗‖2 under the Markov chain
observation model with Assumption 1. Set B � (rmax+2R)

(1−γλ) .
Then the following claims hold:

(a) With a constant step size αt � α0 � 1/
̅
T̅

√
,

E Vθ∗ −Vθ̄T

⃦⃦⃦ ⃦⃦⃦2
D

[ ]
≤

θ∗ −θ0
⃦⃦ ⃦⃦2

2+B2 13+28τmix
λ 1/

̅
T̅

√( )( )
2

̅
T̅

√
1−κ( ) .

(b) With a constant step size αt � α0 < 1/(2ω(1 − κ))
and T > 2τmix

λ (α0),
E Vθ∗ − VθT

⃦⃦⃦ ⃦⃦⃦2
D

[ ]
≤ e−2α0 1−κ( )ωT( )

θ∗ − θ0
⃦⃦⃦ ⃦⃦⃦2

2

+ α0
B2 13 + 24τmix

λ α0( )( )
2 1 − κ( )ω

( )
.

(c) With a decaying step size αt � 1/(ω(t + 1)(1 − κ)),

E Vθ∗ − Vθ̄T

⃦⃦⃦ ⃦⃦⃦2
D

[ ]
≤ B2 13 + 52τmix

λ αT( )( )
T 1 − κ( )2ω 1 + logT

( )
.

As was the case for TD(0), the proof of part (c) also
implies an Õ(1/T) convergence rate for the value
function VθT itself; however, the bound degrades by a
factor of ω. We refer the readers to Equation (EC.4) in
Online Appendix B.2 for the complete result. Again,
a different weighting of the iterates as shown in
Lacoste-Julien et al. (2012) might enable us to elimi-
nate the logT term in the numerator of part (c) to
give aO(1/T) convergence rate. For brevity, we do not
pursue this direction.

We now compare the bounds for TD(λ) with that of
TD(0) ignoring the constant terms. It should be em-
phasized that these are only upper bounds, so dif-
ferences could be because of looseness of the analysis
rather than true differences in statistical performance.
First, let us look at the results for the robust step size
αt � 1/

̅
T̅

√
in part (a) of Theorems 3 and 4. Approxi-

mately, for the TD(λ) case, we have the term B2̅̅
T

√ (1−κ)
vis-a-vis the term G2̅̅

T
√ (1−γ) for the TD(0) case. A simple

argument below clarifies the relationship between
these two:

B2̅
T̅

√
1 − κ( ) �

rmax + 2R( )2̅
T̅

√
1 − κ( ) 1 − γλ

( )2
� G2̅

T̅
√

1 − κ( ) 1 − γλ
( )2

≥ G2̅
T̅

√
1 − κ( ) 1 − γλ

( ) � G2̅
T̅

√
1 − γ
( ) .

As we will see later, B is an upper bound to the
norm of xt(θt, z0:t), the update direction for TD(λ).
Correspondingly, from Section 8, we know that G is
the upper bound on semigradient norm, gt(θt) for
TD(0). Intuitively, for TD(λ), the bound B is larger
(because of the presence of the eligibility trace term)
and more so as λ → 1. This calculation reveals that
our bounds give a slower rate of convergence for
TD(λ) than for TD(0). This means more data are re-
quired for our bound to guarantee TD(λ) is close to
its limit point. In this context, however, the tradeoff
we remarked on in Section 9.2 is noteworthy as the
fixed point for TD(λ) comes with a better er-
ror guarantee.
Interestingly, for decaying step sizes αt � 1/(ω(t +1)

(1−κ)), the bounds are qualitatively the same. This
follows as the terms that dominate part (c) of Theo-
rems 3 and 4 are equal:

B2

T 1 − κ( )2 �
rmax + 2R( )2

T 1 − κ( )2 1 − γλ
( )2

� G2

T 1 − κ( )2 1 − γλ
( )2 � G2

T 1 − γ
( )2 .

It is unclear whether the difference between the
two step-size regimes is an artifact of our analy-
sis technique.

10. Extension: Q-Learning for High-
Dimensional Optimal Stopping

Thus far, this paper has dealt with the problem of
approximating the value function of a fixed policy in a
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computationally and statistically efficient manner.
The Q-learning algorithm is one natural extension
of temporal-difference learning to control problems,
where the goal is to learn an effective policy from
data. Although it is widely applied in reinforcement
learning, in general Q-learning is unstable, and its
iterates may oscillate forever. An important excep-
tion to this was discovered by Tsitsiklis and Van
Roy (1999), who showed that Q-learning converges
asymptotically for optimal stopping problems. In this
section, we show how the techniques developed in
Sections 7 and 8 can be applied in an identical manner
to give finite time bounds for Q-learning with linear
function approximation applied to optimal-stopping
problems with high dimensional state spaces. To
avoid repetition, we only state key properties satis-
fied by Q-learning in this setting, which establish
exactly the same convergence bounds as shown in
Theorems 2 and 3.

10.1. Problem Formulation
The optimal stopping problem is that of determining
the time to terminate a process to maximize cumu-
lative expected rewards accrued. Problems of this
nature arise naturally in many settings, most notably
in the pricing of financial derivatives (Andersen and
Broadie 2004, Haugh and Kogan 2004, Desai et al.
2012). We first give a brief formulation for a class of
optimal stopping problems. A more detailed expo-
sition can be found in Tsitsiklis and Van Roy (1999) or
chapter 5 of the thesis work of Van Roy (1998).

Consider a discrete-time Markov chain {st}t≥0 with
finite state space S and unique stationary distribu-
tion π. At each time t, the decision maker observes
the state st and decides whether to stop or continue.
Let γ ∈ [0, 1) denote the discount factor and let u(·)
and U(·) denote the reward functions associated with
continuation and termination decisions, respectively.
Let the stopping time τ denote the (random) time at
which the decision maker stops. The expected total
discounted reward from initial state s associated with
the stopping time τ is

E
∑τ−1
t�0

γtu st( ) + γτU sτ( )
⃒⃒⃒⃒
s0 � s

[ ]
, (31)

whereU(sτ) is defined to be zero for τ � ∞.We seek an
optimal stopping policy, which determines when to
stop as a function of the observed states to maxi-
mize (31).

For anyMarkov decision process, the optimal state-
action value function Q∗ : S ×A → R specifies the
expected value to go from choosing an action a ∈ A

in a state s ∈ S and following the optimal policy in
subsequent states. In optimal stopping problems,
there are only two possible actions at every time step:
whether to terminate or to continue. The value of
stopping in state s is just U(s), which allows us to
simplify notation by only representing the continu-
ation value.
For the remainder of this section, we letQ∗ : S → R

denote the optimal continuation-value function. It can
be shown thatQ∗ is the unique solution to the Bellman
equation Q∗ � FQ∗, where the Bellman operator is
given by

FQ s( ) � u s( ) + γ
∑
s′∈S

P s′|s( )max U s′( ),Q s′( ){ }.

Given the optimal continuation values Q∗(·), the
optimal stopping time is simply given by

τ∗ � min t |U st( ) ≥ Q∗ st( ){ }
. (32)

10.2. Q-Learning for High-Dimensional
Optimal Stopping

In principle, one could generate the optimal stop-
ping time using Equation (32) by applying exact
dynamic programming algorithms to compute the
optimal continual value function. However, such
methods are only implementable for small state
spaces. To scale to high-dimensional state spaces, we
consider a feature-based approximation of the optimal
continuation value function, Q∗. We focus on linear
function approximation, where Q∗(s) is approxi-
mated as

Q∗ s( ) ≈ Qθ s( ) � φ s( )
θ,
where φ(s) ∈ Rd is a fixed feature vector for state s and
θ ∈ Rd is a parameter vector that is shared across
states. As shown in Section 2, for a finite state space,
S � {s1, . . . , sn}, Qθ ∈ Rn can be expressed compactly
as Qθ � Φθ, where Φ ∈ Rn×d and θ ∈ Rd. We also as-
sume that the d feature vectors {φk}dk�1, forming the
columns of Φ are linearly independent.
We consider the Q-learning approximation scheme

in Algorithm 3. The algorithm starts with an initial
parameter estimate of θ0 and observes a data tuple
Ot � (st,u(st), s′t). This is used to compute the target
yt � u(st) + γmax {U(s′t),Qθt(s′t)}, which is a sampled
version of the F(·) operator applied to the current
Q–function. The next iterate, θt+1, is computed by
taking a semigradient step with respect to a loss
function measuring the distance between yt and
predicted value-to-go. An important feature of this
method is that problem data are generated by the
exploratory policy that chooses to continue at all
time steps.
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Algorithm 3 Q-Learning for Optimal Stopping Problems.
Input: initial guess θ0, step-size sequence {αt}t∈N

and radius R.
Initialize: θ̄0 ← θ0.
for t � 0, 1, . . . do

Observe tuple: Ot � (st,u(st), s′t);
Define target:

yt � u(st) + γmax {U(s′t),Qθt(s′t)};
* sample Bellman op *

Define loss function:
1
2 (yt −Qθ(st))2; * sample Bellman op *

Compute negative semigradient:
gt(θt)�− ∂

∂θ
1
2(yt−Qθ(st))2 θ�θt

⃒⃒
;

Take a semigradient step:
θt+1 � θt + αtgt(θt); * αt:step-size *

Update averaged iterate:
θ̄t+1 ← ( t

t+1)θ̄t + ( 1
t+1)θt; * θ̄t+1 � 1

t+1
∑t


�1 θ
 *
end

10.3. Asymptotic Guarantees
Similar to the asymptotic results for TD algo-
rithms, Tsitsiklis and Van Roy (1999) show that the
variant of Q-learning detailed in Algorithm 3 con-
verges to the unique solution, θ∗, of the projected
Bellman equation,

Φθ � ΠDFΦθ.

This results crucially relies on the fact that the pro-
jected Bellman operator ΠDF(·) is a contraction with
respect to ·‖ ‖D with modulus γ. The analogous result
for our study of TD(0) was stated in Lemma 2.
Tsitsiklis and Van Roy (1999) also give error bounds
for the limit of convergence with respect to Q∗, the
optimal Q-function. In particular, it can be shown that

Φθ∗ −Q∗⃦⃦⃦ ⃦⃦⃦
D ≤ 1̅̅̅̅̅̅̅̅̅

1 − γ2
√ ΠDQ∗ −Q∗⃦⃦⃦ ⃦⃦⃦

D ,

where the left-hand side measures the error between the
estimated and the optimal Q-function which is upper
bounded by the representational power of the linear
approximation architecture, as given on the right-hand
side. In particular, if Q∗ can be represented as a linear
combination of the feature vectors, then there is no
approximation error, and the algorithm converges to
the optimal Q-function. Finally, one can ask whether
the stopping times suggested by this approximate
continuation value function, Φθ∗, are effective. Let μ̃
be the policy that stops at the first time t when

U st( ) ≥ Φθ∗( )
st( ).

Then, for an initial state s0 drawn from the stationary
distribution π,

E V∗ s0( )[ ] − E Vμ̃ s0( )[ ] ≤ 2

1 − γ
( ) ̅̅̅̅̅̅̅̅̅

1 − γ2
√ ΠDQ∗ −Q∗⃦⃦⃦ ⃦⃦⃦

D ,

where V∗ and Vμ̃ denote the value functions corre-
sponding, respectively, to the optimal stopping pol-
icy and the approximate stopping policy μ̃. Again,
this error guarantee depends on the choice of feature
representation.

10.4. Finite Time Analysis
In this section, we show how our results in Sections 7
and 8 for TD(0) and its projected counterpart can be
extended, without any modification, to give con-
vergence bounds for the Q-function approximation
algorithm described previously. To this effect, we
highlight that the key lemmas that enable our analysis
in Sections 7 and 8 also hold in this setting. The
contraction property of the F(·) operator will be crucial
to our arguments here. Convergence rates for an i.i.d.
noise model, mirroring those established for TD(0) in
Theorem 2, can be shown for Algorithm 3. Results for
the Markov chain sampling model, mirroring those
established for TD(0) in Theorem 3, can be shown for a
projected variant of Algorithm 3.
First, we give mathematical expressions for the

negative semigradient. As a general function of θ and
tuple Ot � (st,u(st), s′t), the negative semigradient can
be written as

gt θ( ) � u st( ) + γmax U s′t
( )

,φ s′t
( )
θ{ }(
−φ st( )
θ)φ st( ). (33)

The negative expected semigradient, when the tuple
(st, u(st), s′t) follows its steady-state behavior, can be
written as

ḡ θ( ) � ∑
s,s′∈S

(
π s( )P s′|s( ) u s( ) + γmax U s′( ),φ s′( )
θ{ }(

−φ s( )
θ
)
φ s( ).

Using
∑

s′∈S P(s′|s)(u(s) + γ max {U(s′), φ(s′)
θ}) �
(FΦθ)(s), it is easy to show

ḡ θ( ) � Φ
D FΦθ −Φθ( ).
Note the close similarity of this expression with its
counterparts for TD learning (see Section 3 andOnline
Appendix B); the only difference is that the appro-
priate Bellman operator(s) for TD learning, Tμ(·), has
been replaced with the appropriate Bellman operator
F(·) for this optimal stopping problem.

10.4.1. Analysis with i.i.d. Noise. In this section, we
show how to analyze the Q-learning algorithm under
an i.i.d. observation model, where the random tuples
observed by the algorithm are sampled i.i.d. from the
stationary distribution of theMarkov process. All our
ideas follow the presentation in Section 7, a careful
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understanding of which reveals that Lemmas 3 and 5
form the backbone of our results. Recall that Lemma 3
establishes how, at any iterate θ, TD updates point in
the descent direction of ‖θ∗ − θ‖22. Lemma 5 bounds
the expected norm of the stochastic semigradient,
thus giving a control over system noise.

In Lemmas 13 and 14, we state exactly the same
results for the Q-function approximation algorithm
under the i.i.d. sampling model. With these two key
lemmas, convergence bounds shown in Theorem 2
follow by repeating the analysis in Section 7. Recall
thatQθ∗ denotes the unique fixed point ofΠDF(·), that
is, Qθ∗ � ΠDFQθ∗ .
Lemma 13 (Tsitsiklis and Van Roy 1999). For any θ ∈ Rd,

ḡ θ( )
 θ∗ − θ
( ) ≥ 1 − γ

( )
Qθ∗ −Qθ

⃦⃦⃦ ⃦⃦⃦2
D.

Proof of Lemma 13. This property is a consequence of
the fact that ΠDF(·) is a contraction with respect to ·‖ ‖D
with modulus γ. It was established by Tsitsiklis and
Van Roy (1999) in the process of proving their lemma 8.
For completeness, we provide a standalone proof in
Online Appendix C. □

Lemma 14. For any fixed θ ∈ Rd, E[‖gt(θ)‖22] ≤ 2σ2 +
8‖Qθ −Qθ∗‖2D, where σ2 � E[‖gt(θ∗)‖22].
Proof of Lemma 14. See Online Appendix C for a
detailed proof. □

10.4.2. Analysis Under the Markov Chain Model.
Analogous to Section 8, we analyze a projected var-
iant of Algorithm 3 under theMarkov chain sampling
model. Let ΘR � {θ ∈ Rd : ‖θ‖2 ≤ R}. Starting with an
initial guess of θ0 ∈ ΘR, the algorithm updates to the
next iterate by taking a semigradient step followed by
projection onto ΘR, so iterates satisfy the stochastic
recursion θt+1 � Π2,R(θt + αtgt(θt)). We make the sim-
ilar structural assumptions to those in Section 8. In
particular, assume the feature vectors and the continu-
ation, termination rewards to be uniformly bounded,
with ‖φ(s)‖2 ≤ 1 and max{ u(s)⃒⃒ ⃒⃒

, U(s)⃒⃒ ⃒⃒} ≤ rmax for all
s ∈ S. We assume rmax ≤ R, which can always be en-
sured by rescaling rewards or the projection ra-
dius. We first state a uniform bound on the semi-
gradient norm.

Lemma 15. Define G � (rmax + 2R). With probability 1,
gt(θ)⃦⃦ ⃦⃦

2 ≤ G for all θ ∈ ΘR.

Proof of Lemma 15. See Online Appendix C for a
detailed proof. □

If we assume theMarkov process (s0, s1, . . .) satisfies
Assumption 1, then Lemma 15 paves the way to show
exactly the same convergence bounds as given in
Theorem 3. For this, we refer the readers to Section 8

and Online Appendix A, where we show all the key
lemmas and a detailed proof of Theorem 3. One can
mirror the same proof, using Lemmas 13 and 15 in
place of Lemmas 3 and 11, which apply to TD(0). In
particular, note that we can use Lemma 15 along with
some basic algebraic inequalities to show the semi-
gradient bias, ζt(θ), to be Lipschitz and bounded.
This, along with the information-theoretic arguments
of Lemma 9 enables the exact same upper bound on
the semigradient bias as shown in Lemma 11. Com-
bining these with standard proof techniques for SGD
(Nemirovski et al. 2009, Lacoste-Julien et al. 2012)
shows the convergence bounds for Q-learning.

11. Conclusions
In this paper, we provide a simple finite time analysis
of a foundational and widely used algorithm known
as temporal difference learning. Although asymptotic
convergence guarantees for the TD method were
previously known, characterizing its data efficiency
stands as an important open problem. Our work makes
a substantial advance in this direction by providing
a number of explicit finite time bounds for TD, includ-
ing in the much more complicated case where data
are generated from a single trajectory of a Markov
chain. Our analysis inherits the simplicity and ele-
gance enjoyed by SGD analysis and can gracefully
extend to different variants of TD, for example, TD
learning with eligibility traces (TD(λ)) and Q-function
approximation for optimal stopping problems. Ow-
ing to the close connection with SGD, we believe
that optimization researchers can further build on
our techniques to develop principled improvements
to TD.
There are a number of research directions one can

take to extend ourwork. First, we use a projection step
for analysis under the Markov chain model, a choice
we borrowed from the optimization literature to
simplify our analysis. It will be interesting to find
alternative ways to add regularity to the TD algo-
rithm and establish similar convergence results; we
think analysis without the projection step is possible
if one can show that the iterates remain bounded
under additional regularity conditions. Second, the
Õ(1/T) convergence rate we showed used step-sizes
that crucially depend on the minimum eigenvalue
ω of the feature covariance matrix, which would need
to be estimated from samples. Although such results
are common in optimization for strongly convex func-
tions, very recently Lakshminarayanan and Szepesvári
(2018) showed TD(0) with iterate averaging and uni-
versal constant step sizes can attain an Õ(1/T) con-
vergence rate in the i.i.d. sampling model. Extending
our analysis for problem independent, robust step-
size choices is a research direction worth pursuing.
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Endnotes
1This was previously attempted by Korda and Prashanth (2015),
but critical errors were shown by Lakshminarayanan and
Szepesvári (2017).
2 In personal communication, the authors have told us their analysis
also yields aO(1/T) rate of convergence for problem dependent step-
sizes, though we have not been able to easily verify this.
3This can be formally verified for TD(0) with linear function ap-
proximation. If the TD step was a gradient with respect to a fixed
objective, differentiating it should give the Hessian and hence a
symmetric matrix. Instead, the matrix one attains is typically not
a symmetric one.
4We avoid μ from notation for simplicity.
5Let λmax(A) � max‖x‖2�1 x


Ax denote the maximum eigenvalue of a
symmetric positive-semidefinite matrix. Because this is a convex
function, λmax(Σ) ≤ ∑

s∈S π(s)λmax(φ(s)φ(s)
) ≤ ∑
s∈S π(s) � 1.

6This follows formally as a consequence of Lemma 3 in this paper.
7This approach argues for using step sizes of the order of 1/√t, where
t is the current iteration. These are much larger than the step sizes, on
the order of 1/t, that are suggested in the classical stochastic ap-
proximation literature. This should not be confused with the ap-
proach of using even larger step sizes that do not depend on t or the
total number of iterations T (e.g., see Lakshminarayanan and
Szepesvári (2018) and related works of Ruppert 1988, Polyak and
Juditsky 1992, and Györfi and Walk 1996).
8This can be seen from the fact that for any vector u with ‖u‖2 ≤ 1,

u
nf θ( ) � 〈u, θ − θ∗〉Σ ≤ ‖u‖Σ‖θ∗ − θ‖Σ ≤ ‖θ∗ − θ‖Σ � ‖Vθ∗ − Vθ‖D.

9Recall from Section 3 that ḡ(θ) is an affine function. That is, it can be
written as Aθ − b for some A ∈ Rd×d and b ∈ Rd. Lemma 3 shows that
A � −(1 − γ)Σ, that is, that A + (1 − γ)Σ is negative definite. It is easy
to show that ‖ḡ(θ)‖22 � (θ − θ∗)
(A
A)(θ − θ∗), so Lemma 4 shows
that A
A � Σ. Taking this perspective, the important part of these
lemmas is that they allow us to understand TD in terms of feature
covariance matrix Σ and the discount factor γ rather than the more
mysterious matrix A.
10Recall that we assumed φ(s)⃦⃦ ⃦⃦

2 ≤ 1 for all s ∈ S and R(s, s′)⃒⃒ ⃒⃒ ≤ rmax

for all s, s′ ∈ S.
11Let PC(x) � argminx′∈C‖x′ − x‖ denote the projection operator
onto a closed, nonempty, convex set C ⊂ Rd. Then ‖PC(x) − PC(y)‖ ≤
‖x − y‖ for all vectors x and y.
12TD(0) corresponds to λ � 0.
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Sutton RS, Szepesvári C, Maei HR (2009a) A convergent O(n)
temporal difference algorithm for off-policy learning with
linear function approximation. Bengio Y, Schuurmans D,
Lafferty J, Williams C, Culotta A, eds., Adv. Neural Inform.
Processing Systems Vol 21. (Curran Associates, Red Hook, NY),
1609–1616.

Sutton RS, Maei HR, Precup D, Bhatnagar S, Silver D, Szepesvári C,
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Appendix: Proofs

Appendix A: Analysis of Projected TD(0) under Markov chain sampling model

In this section, we complete the proof of Theorem 3. The first subsection restates the theorem, as
well as the two key lemmas from Section 8 that underly the proof. The second subsection contains
a proof of Theorem 3. Finally, Subsection A.3 contains the proof of a technical result, Lemma 10,
which was omitted from the main text but we need for the proof.

A.1. Restatement of the theorem and key lemmas from the main text

Theorem 3 Suppose the Projected TD algorithm is applied with parameter R ≥ ‖θ∗‖2 under the
Markov chain observation model with Assumption 1. Set G= (rmax +2R). Then the following claims
hold.
(a) With a constant step-size sequence α0 = · · ·= αT = 1/

√
T ,

E
[∥∥Vθ∗ −Vθ̄T ∥∥2

D

]
≤
‖θ∗− θ0‖22 +G2

(
9 + 12τmix(1/

√
T )
)

2
√
T (1− γ)

.

(b) With a constant step-size sequence α0 = · · ·= αT < 1/(2ω(1− γ)),

E
[
‖Vθ∗ −VθT ‖

2

D

]
≤
(
e−2α0(1−γ)ωT

)
‖θ∗− θ0‖22 +α0

(
G2 (9 + 12τmix(α0))

2(1− γ)ω

)
.

(c) With a decaying step-size sequence αt = 1/(ω(t+ 1)(1− γ)) for all t∈N0,

E
[∥∥Vθ∗ −Vθ̄T ∥∥2

D

]
≤ G2 (9 + 24τmix(αT ))

T (1− γ)2ω
(1 + logT ) ,

The key to our proof is the following lemmas, which were established in Section 8. Recall the
definition of the semi-gradient error ζt(θ)≡ (gt(θ)− ḡ(θ))

>
(θ− θ∗).

Lemma 8 With probability 1, for every t∈N0,

‖θ∗− θt+1‖22≤ ‖θ∗− θt‖22−2αt(1− γ)‖Vθ∗ −Vθt‖2D+2αtζt(θt) +α2
tG

2.

Lemma 11 Consider a non-increasing step-size sequence, α0 ≥ α1 . . .≥ αT . Fix any t < T , and set
t∗ ≡max{0, t− τmix(αT )}. Then,

E [ζt(θt)]≤G2
(
4 + 6τmix(αT )

)
αt∗ .

The following bound also holds:

E [ζt(θt)]≤ 6G2

t−1∑
i=0

αi.

A.2. Proof of Theorem 3.

We now complete the proof of Theorem 3 by directly leveraging Lemmas 8 and 11.
Proof of Theorem 3. From Lemma 8, we have

E
[
‖θ∗− θt+1‖22

]
≤E

[
‖θ∗− θt‖22

]
− 2αt(1− γ)E

[
‖Vθ∗ −Vθt‖

2

D

]
+ 2αtE [ζt(θt)] +α2

tG
2. (EC.1)
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Proof of part (a): We first show the analysis for a constant step-size and iterate averaging.
Considering αt = α0 = 1/

√
T in Equation (EC.1), rearranging terms and summing from t = 0 to

t= T − 1, we get

2α0(1− γ)
T−1∑
t=0

E
[
‖Vθ∗ −Vθt‖

2

D

]
≤

T−1∑
t=0

(
E
[
‖θ∗− θt‖22

]
−E

[
‖θ∗− θt+1‖22

])
+G2 + 2α0

T−1∑
t=0

E [ζt(θt)] .

Using Lemma 11 (in which αt∗ = α0 in this case) and simplifying, we find

T−1∑
t=0

E
[
‖Vθ∗ −Vθt‖

2

D

]
≤
‖θ∗− θ0‖22 +G2

2α0(1− γ)
+
T · 2G2(2 + 3τmix(1/

√
T ))α0

(1− γ)

=

√
T
(
‖θ∗− θ0‖22 +G2

)
2(1− γ)

+

√
T · 2G2(2 + 3τmix(1/

√
T ))

(1− γ)
.

This gives us our desired result,

E
[∥∥Vθ∗ −Vθ̄T ∥∥2

D

]
≤ 1

T

T−1∑
t=0

E
[
‖Vθ∗ −Vθt‖

2

D

]
≤
‖θ∗− θ0‖22 +G2

(
9 + 12τmix(1/

√
T )
)

2
√
T (1− γ)

.

Proof of part (b): The proof is analogous to part (b) of Theorem 2. Consider a constant step-
size of α0 < 1/(2ω(1− γ)). Starting with Equation (EC.1) and applying Lemma 1, which showed
‖Vθ∗ −Vθ‖2D ≥ ω‖θ∗− θ‖

2

2 for all θ, we get

E
[
‖θ∗− θt+1‖22

]
≤ (1− 2α0(1− γ)ω)E

[
‖θ∗− θt‖22

]
+α2

0G
2 + 2α0E [ζt(θt)]

≤ (1− 2α0(1− γ)ω)E
[
‖θ∗− θt‖22

]
+α2

0G
2
(
9 + 12τmix(α0)

)
,

where we used Lemma 11 to go to the second inequality. Iterating over this inequality gives us our
final result. For any T ∈N0,

E
[
‖θ∗− θT‖22

]
≤ (1− 2α0(1− γ)ω)

T ‖θ∗− θ0‖22 +α2
0G

2
(
9 + 12τmix(α0)

) ∞∑
t=0

(1− 2α0(1− γ)ω)
t

≤
(
e−2α0(1−γ)ωT

)
‖θ∗− θ0‖22 +

α0G
2 (9 + 12τmix(α0))

2(1− γ)ω
.

Final inequality follows by solving the geometric series and using that (1− 2α0(1− γ)ω) ≤
e−2α0(1−γ)ω along with Lemma 1.

Proof of part (c): We now show the analysis for a linearly decaying step-size using Equation
(EC.1) as our starting point. We again use Lemma 1, which showed ‖Vθ∗ −Vθ‖2D ≥ ω‖θ∗− θ‖

2

2 for
all θ, to get,

E
[
‖Vθ∗ −Vθt‖

2

D

]
≤ 1

(1− γ)αt

(
(1− (1− γ)ωαt)E

[
‖θ∗− θt‖22

]
−E

[
‖θ∗− θt+1‖22

]
+α2

tG
2
)

+

2

(1− γ)
E [ζt(θt)] .

Consider a decaying step-size αt = 1
ω(t+1)(1−γ)

, simplify and sum from t= 0 to T − 1 to get

T−1∑
t=0

E
[
‖Vθ∗ −Vθt‖

2

D

]
≤−ωTE

[
‖θ∗− θT‖22

]
︸ ︷︷ ︸

<0

+
G2

ω(1− γ)2

T−1∑
t=0

1

t+ 1
+

2

(1− γ)

T−1∑
t=0

E [ζt(θt)] . (EC.2)
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To simplify notation, for the remainder of the proof put τ = τmix(αT ). We can decompose the sum
of semi-gradient errors as

T−1∑
t=0

E [ζt(θt)] =
τ∑
t=0

E [ζt(θt)] +
T−1∑
t=τ+1

E [ζt(θt)] . (EC.3)

We will upper bound each term. In each case we use that, since αt = 1
ω(t+1)(1−γ)

,

T−1∑
t=0

αt =
1

ω(1− γ)

T−1∑
t=0

1

(t+ 1)
≤ 1 + logT

ω(1− γ)
.

Combining this with Lemma 11 gives,

τ∑
t=0

E [ζt(θt)]≤
τ∑
t=0

(
6G2

t−1∑
i=0

αi

)
≤ τ

(
6G2

T−1∑
i=0

αi

)
≤ 6G2τ

ω(1− γ)
(1 + logT ).

Similarly, using Lemma 11, we have

T−1∑
t=τ+1

E [ζt(θt)]≤ 2G2 (2 + 3τ)

T−1∑
t=τ+1

αt−τ ≤ 2G2 (2 + 3τ)

T−1∑
t=1

αt ≤
2G2 (2 + 3τ)

ω(1− γ)
(1 + logT ) .

Combining the two parts, we get

T−1∑
t=0

E [ζt(θt)]≤
4G2 (1 + 3τ)

ω(1− γ)
(1 + logT ).

Using this in conjunction with Equation (EC.2) we get,

E
[∥∥Vθ∗ −Vθ̄T ∥∥2

D

]
≤ 1

T

T−1∑
t=0

E
[
‖Vθt −Vθ∗‖

2

D

]
≤ G2

ωT (1− γ)2
(1 + logT ) +

2

T (1− γ)

T−1∑
t=0

E [ζt(θt)] .

Simplifying and substituting τ = τmix(αT ), we get

E
[∥∥Vθ∗ −Vθ̄T ∥∥2

D

]
≤ G2

ωT (1− γ)2
(1 + logT ) +

8G2 (1 + 3τmix(αT ))

ωT (1− γ)2
(1 + logT )

≤ G2 (9 + 24τmix(αT ))

ωT (1− γ)2
(1 + logT ) .

which gives us the desired result. �
We remark that Equation (EC.2) also gives us a convergence rate of O(logT/T ) for the iterate θT

itself (and hence on the value function VθT ) but the bound degrades by a factor of ω. In particular,
we have

E
[
‖Vθ∗ −VθT ‖

2

D

]
≤E

[
‖θ∗− θT‖22

]
≤ G2 (9 + 24τmix(αT ))

ω2T (1− γ)2
(1 + logT ) . (EC.4)

where the first inequality follows using Lemma 1.
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A.3. Proof of Lemma 10

Lemma 10 With probability 1,

|ζt(θ)|≤ 2G2 for all θ ∈ΘR

and
|ζt(θ)− ζt(θ′)| ≤ 6G

∥∥∥(θ− θ
′
)
∥∥∥

2
for all θ, θ′ ∈ΘR.

Proof of Lemma 10. The first claim follows from a simple argument using Lemma 6.

|ζt(θ)|=
∣∣∣(gt(θ)− ḡ(θ))

>
(θ− θ∗)

∣∣∣≤ (‖gt(θ)‖2 + ‖ḡ(θ)‖2) (‖θ‖2 + ‖θ∗‖2)≤ 4GR≤ 2G2,

where the first inequality follows from the triangle inequality and the Cauchy-Schwartz inequality,
and the final inequality uses that R≤G/2 by definition of G= rmax + 2R.

To establish the second claim, consider the following inequality for any vectors (a1, b1, a2, b2):∣∣a>1 b1− a>2 b2

∣∣= ∣∣a>1 (b1− b2) + b>2 (a1− a2)
∣∣≤ ‖a1‖‖b1− b2‖+ ‖b2‖‖a1− a2‖.

This follows as a direct application of Cauchy-Schwartz. It implies that for any θ, θ′ ∈ΘR,

|ζt(θ)− ζt(θ′)|=
∣∣∣(gt(θ)− ḡ(θ))

>
(θ− θ∗)− (gt(θ

′)− ḡ(θ′))
>

(θ′− θ∗)
∣∣∣

≤ ‖gt(θ)− ḡ(θ)‖2‖θ− θ
′‖2 + ‖θ′− θ∗‖2‖(gt(θ)− ḡ(θ))− (gt(θ

′)− ḡ(θ′))‖2
≤ 2G‖θ− θ′‖2 + 2R (‖gt(θ)− gt(θ′)‖2 + ‖ḡ(θ)− ḡ(θ′)‖2)

≤ 2G‖θ− θ′‖2 + 8R‖θ− θ′‖2
≤ 6G‖θ− θ′‖2.

where we used that R ≤ G/2 by the definition of G. We also used that both gt(·) and ḡ(·) are
2-Lipschitz functions which is easy to see. Starting with gt(θ) = (rt + γφ(s′t)

>θ − φ(st)
>θ)φ(st),

consider

‖gt(θ)− gt(θ′)‖2 =
∥∥∥φ(st) (γφ(s′t)−φ(st))

>
(θ− θ′)

∥∥∥
2

≤ ‖φ(st)‖2‖(γφ(s′t)−φ(st))‖2‖(θ− θ
′)‖2

≤ 2‖(θ− θ′)‖2.

Similarly, following Equation (2), we have ‖ḡ(θ)− ḡ(θ′)‖2 =
∥∥∥E [φ (γφ′−φ)]

>
(θ− θ′)

∥∥∥
2
, where φ=

φ(s) is the feature vector of a random initial state s∼ π, φ′ = φ(s′) is the feature vector of a random
next state drawn according to s′ ∼P(· | s). Therefore,

‖ḡ(θ)− ḡ(θ′)‖2 ≤
∥∥∥φ (γφ′−φ)

>
(θ− θ′)

∥∥∥≤ 2‖(θ− θ′)‖2. �
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Appendix B: Analysis of Projected TD(λ) under Markov chain sampling model

In this section, we give a detailed proof of the convergence bounds presented in Theorem 4. Sub-
section B.1 details our proof strategy along with key lemmas which come together in Subsection
B.2 to establish the results. We begin by providing mathematical expressions for TD(λ) updates.

Stationary distribution of TD(λ) updates. Recall that the projected TD(λ) update at time
t is given by:

θt+1 = Π2,R (θt +αtxt(θt, z0:t))

where Π2,R(·) denotes the projection operator onto a norm ball of radius R <∞ and xt(θt, z0:t)
is the update direction. Let us now give explicit mathematical expressions for xt(θ, z0:t) and its
steady-state mean x̄(θ). Note that these are analogous to the expressions for the negative semi-
gradient gt(θ) and its steady-state expectation ḡ(θ) for TD(0). At time t, as a general function of
(non-random) θ and the tuple Ot = (st, rt, s

′
t) along with the eligibility trace term z0:t, we have

xt(θ, z0:t) =
(
rt + γφ(s′t)

>θ−φ(st)
>θ
)
z0:t = δt(θ)z0:t ∀ θ ∈Rd.

The asymptotic convergence of TD(λ) is closely related to the expected value of xt(θ, z0:t) under
the steady-state behavior of (Ot, z0:t),

x̄(θ) = lim
t→∞

E [δt(θ)z0:t] .

Rather than take this limit, it will be helpful in our analysis to think of an equivalent
backward view by constructing a stationary process with mean x̄(θ). Consider a stationary
sequence of states (. . . , s−1, s0, s1, . . .) and set z−∞:t =

∑∞
k=0(γλ)kφ(st−k). Then the sequence

(x0(θ, z−∞:0), x1(θ, z−∞:1), . . .) is stationary, and we have

x̄(θ) =E [δt(θ)z−∞:t] . (EC.5)

It should be emphasized that x̄(θ) and the states (. . . , s−2, s−1) are introduced only for the purposes
of our analysis and are never used by the algorithm itself. However, this turns out to be quite
useful as it is easy to show (Van Roy 1998) that

x̄(θ) = Φ>D
(
T (λ)
µ Φθ−Φθ

)
, (EC.6)

where Φ is the feature matrix and (T (λ)
µ Φθ−Φθ) denotes the Bellman error defined with respect

to the Bellman operator T (λ)
µ (·), corresponding to a policy µ. Careful readers will notice the stark

similarity between Equation (EC.6) and Equation (3). Exploiting the property that ΠDT
λ
µ (·) is

also a contraction operator, one can easily show a result equivalent to Lemma 3, thus quantifying
the progress we make by taking steps in the direction of x̄(θ). The rest of our proof essentially
shows how to control for the observation noise, i.e. the fact that we use xt(θ, z0:t) rather than x̄(θ)
to make updates. To remind the readers of the results, we first restate Theorem 4 below.

Theorem 4 Suppose the Projected TD(λ) algorithm is applied with parameter R ≥ ‖θ∗‖2 under
the Markov chain observation model with Assumption 1. Set B = (rmax+2R)

(1−γλ)
. Then the following

claims hold.
(a) With a constant step-size αt = α0 = 1/

√
T ,

E
[∥∥Vθ∗ −Vθ̄T ∥∥2

D

]
≤
‖θ∗− θ0‖22 +B2

(
13 + 28τmix

λ (1/
√
T )
)

2
√
T (1−κ)

.

(b) With a constant step-size αt = α0 < 1/(2ω(1−κ)) and T > 2τmix
λ (α0) ,

E
[
‖Vθ∗ −VθT ‖

2

D

]
≤
(
e−2α0(1−κ)ωT

)
‖θ∗− θ0‖22 +α0

(
B2 (13 + 24τmix

λ (α0))

2(1−κ)ω

)
.

(c) With a decaying step-size αt = 1/(ω(t+ 1)(1−κ)),

E
[∥∥Vθ∗ −Vθ̄T ∥∥2

D

]
≤ B2 (13 + 52τmix

λ (αT ))

T (1−κ)2ω
(1 + logT ) .
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B.1. Proof strategy and key lemmas

We now describe our proof strategy and give key lemmas used to establish Theorem 4. Throughout,
we consider the Markov chain observation model with Assumption 1 and study the Projected TD
(λ) algorithm applied with parameter R≥ ‖θ∗‖2 and step-size sequence (α0, . . . , αT ). To simplify
our exposition, we introduce some notation below.

Notation: We specify the notation used throughout this section. Define the set ΘR = {θ ∈ Rd :
‖θ‖2≤ R}, so θt ∈ΘR for each t because of the algorithm’s projection step. Next, we generically
define zl:t =

∑t−l
k=0(γλ)kφ(st−k) for any lower limit l≤ t. Thus, zl:t denotes the eligibility trace as a

function of the states (sl, . . . , st). Next, we define ζt(θ, zl:t) as a general function of θ and zl:t,

ζt(θ, zl:t) = (δt(θ)zl:t− x̄(θ))
>

(θ− θ∗). (EC.7)

Here, the subscript t in ζt encodes the dependence on the tuple Ot = (st, rt, s
′
t) which is used to

compute the Bellman error, δt(·) at time t. Finally, we set B := (rmax + 2R)/(1−γλ) which implies
B > 2R, a fact we use many times in our proofs to simplify constant terms. As a reminder, note
that our bounds depend on the mixing time, which we defined in Section 9 as

τmix
λ (ε) = max{τMC(ε), τAlgo(ε)},

where τMC(ε) = min{t∈N0 | mρt ≤ ε} and τAlgo(ε) = min{t∈N0 | (γλ)t ≤ ε}.

Proof outline: The analysis for TD(λ) can be broadly divided into three parts and closely
mimics the steps used to prove TD(0) results.

1. As a first step, we do an error decomposition, similar to the result shown in Lemma 8. This
is enabled by two key lemmas, which are analogues of Lemma 3 and Lemma 6 for Projected
TD(0). The first one spells out a clear relationship of how the updates following x̄(θ) point in
the descent direction of ‖θ∗− θ‖22 while the second one upper bounds the norm of the update
direction, xt(θ, z0:t), by the constant B (as defined above).

2. The error decomposition that we obtain from Step 1 can be stated as:

E[‖θ∗− θt+1‖22]≤E[‖θ∗− θt‖22]− 2αt(1−κ)E[‖Vθ∗ −Vθt‖
2

D] + 2αtE[ζt(θt, z0:t)] +α2
tB

2.

In the second step, we establish an upper bound on the bias term, E [ζt(θt, z0:t)], which is the
main challenge in our proof. Recall that the dependent nature of the state transitions may
result in strong coupling between the tuples Ot−1 and Ot under the Markov chain observation
model. Therefore, this bias in update direction can potentially be non-zero. Presence of the
eligibility trace term, z0:t, which is a function of the entire history of states, (s0, . . . , st), further
complicates the analysis by introducing subtle dependencies.

To control for this, we use information-theoretic techniques shown in Lemma 9 which exploit
the geometric ergodicity of the MDP, along with the geometric weighting of state features in
the eligibility trace term. Our result essentially shows that the bias scales the noise in update
direction by a factor of the mixing time. Mathematically, for a constant step-size α, we show
that E [αζt(θt, z0:t)]≈B2(6 + 12τmix

λ (α))α2. We show a similar result for decaying step-sizes as
well.

3. In the final step, we combine the error decomposition from Step 1 and the bound on the
bias from Step 2, to establish finite time bounds on the performance of Projected TD(λ) for
different step-size choices. We closely mimic the analysis of Nemirovski et al. (2009) for a
constant, aggressive step-size of (1/

√
T ) and the proof ideas of Lacoste-Julien et al. (2012) for

decaying step-sizes.
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B.1.1. Error decomposition under Projected TD(λ) We first state two important lemmas
below which enable the error decomposition shown in Lemma EC.3.

Lemma EC.1 (Tsitsiklis and Van Roy (1997)). Let Vθ∗ be the unique fixed point of ΠDT
(λ)
µ (·)

i.e. Vθ∗ = ΠT (λ)
µ Vθ∗. For any θ ∈Rd,

(θ∗− θ)>x̄(θ)≥ (1−κ)‖Vθ∗ −Vθ‖2D.

Proof of Lemma EC.1. We use the definition of x̄(θ) = 〈Φ>, T (λ)
µ Φθ−Φθ〉D as shown in Equa-

tion (EC.6) along with the fact that ΠDT
(λ)
µ (·) is a contraction with respect to ‖·‖D with modulus

κ. See Appendix C for a complete proof. �

Lemma EC.2. For all θ ∈ΘR, ‖xt(θ, z0:t)‖2 ≤B with probability 1. Additionally, ‖x̄(θ)‖2 ≤B.

Proof of Lemma EC.2. See Subsection B.3 for a complete proof. �
The above two lemmas can be easily combined to establish a recursion for the error under

projected TD(λ) that holds for each sample path.

Lemma EC.3. With probability 1, for every t∈N0,

‖θ∗− θt+1‖22 ≤ ‖θ
∗− θt‖22− 2αt(1−κ)‖Vθ∗ −Vθt‖

2

D + 2αtζt(θt, z0:t) +α2
tB

2.

Proof of Lemma EC.3. The Projected TD(λ) algorithm updates the parameter as: θt+1 =
Π2,R[θt +αtxt(θt, z0:t)] ∀ t∈N0. This implies,

‖θ∗− θt+1‖22 = ‖θ∗−Π2,R(θt +αtxt(θ, z0:t))‖22
= ‖Π2,R(θ∗)−Π2,R(θt +αtxt(θt, z0:t))‖22
≤ ‖θ∗− θt−αtxt(θt, z0:t)‖22
= ‖θ∗− θt‖22− 2αtxt(θt, z0:t)

>(θ∗− θt) +α2
t‖xt(θt, z0:t)‖22

≤ ‖θ∗− θt‖22− 2αtxt(θt, z0:t)
>(θ∗− θt) +α2

tB
2

= ‖θ∗− θt‖22−2αtx̄(θt)
>(θ∗− θt) + 2αtζt(θt, z0:t) +α2

tG
2.

≤ ‖θ∗− θt‖22− 2αt(1−κ)‖Vθ∗ −Vθ‖2D + 2αtζt(θt, z0:t) +α2
tB

2.

The first inequality used that orthogonal projection operators onto a convex set are non-expansive,
the second used Lemma EC.2 together with the fact ‖θt‖2≤ R due to projection, and the third
used Lemma EC.1. Note that we used ζt(θt, z0:t) to simplify the notation for the error in the update
direction. Recall the definition of the error function from Equation (EC.7) which implies,

ζt(θt, z0:t) = (δt(θt)z0:t− x̄(θt))
>(θt− θ∗) = (xt(θt, z0:t)− x̄(θt))

>(θt− θ∗).

B.1.2. Upper bound on the bias in update direction. We give an upper bound on the
expected error in the update direction, E[ζt(θt, z0:t)], which as explained above, is the key challenge
for our analysis. For this, we first establish some basic regularity properties of the error function
ζt(·, ·) in Lemma EC.4 below. In particular, part (a) shows boundedness, part (b) shows that it is
Lipschitz in the first argument and part (c) bounds the error due to truncation of the eligibility
trace. Recall that zl:t denotes the eligibility trace as a function of the states (sl, . . . , st).

Lemma EC.4. Consider any l≤ t and any θ, θ′ ∈ΘR. With probability 1,
(a) |ζt(θ, zl:t)| ≤ 2B2.

(b) |ζt(θ, zl:t)− ζt(θ′, zl:t)| ≤ 6B
∥∥∥(θ− θ′)

∥∥∥
2
.

(c) The following two bounds also hold,

|ζt(θ, z0:t)− ζt(θ, zt−τ :t)| ≤B2(γλ)τ for all τ ≤ t,
|ζt(θ, z0:t)− ζt(θ, z−∞:t)| ≤B2(γλ)t.
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Proof of Lemma EC.4. We essentially use the uniform bound on xt(θ, z0:t) and x̄(θ) as stated
in Lemma EC.2 to show this result. See Subsection B.3 for a detailed proof. �

Lemma EC.4 can be combined with Lemma 9 to give an upper bound on the bias term,
E [ζt(θt, z0:t)], as shown below.

Lemma EC.5. Consider a non-increasing step-size sequence, α0 ≥ α1 . . .≥ αT . Then the following
hold.
(a) For 2τmix

λ (αT )< t≤ T ,

E [ζt(θt, z0:t)]≤ 6B2(1 + 2τmix
λ (αT ))αt−2τmix

λ
(αT ).

(b) For 0≤ t≤ 2τmix
λ (αT ),

E [ζt(θt, z0:t)]≤ 6B2
(
1 + 2τmix

λ (αT )
)
α0 +B2(γλ)t.

(c) For all t∈N0,

E [ζt(θt, z0:t)]≤ 6B2

t−1∑
i=0

αi +B2(γλ)t

Proof of EC.5. We proceed in two cases below. Throughout the proof, results from Lemma
EC.4 are applied using the fact that θt ∈ΘR, because of the algorithm’s projection step.

Case (a): Let t > 2τ and consider the following decomposition for all τ ∈ {0,1, . . . , t/2}. We show
an upper bound on each of the three terms separately.

E [ζt(θt, z0:t)]≤ |E [ζt(θt, z0:t)]−E[ζt(θt−2τ , z0:t)]|+ |E[ζt(θt−2τ , z0:t)]−E[ζt(θt−2τ , zt−τ :t)]|
+|E[ζt(θt−2τ , zt−τ :t)]|.

Step 1: Use regularity properties of the error function to bound first two terms.

We relate ζt(θt, z0:t) and ζt(θt−τ , z0:t) using the Lipschitz property shown in part (b) of Lemma
EC.4 to get,

|ζt(θt, z0:t)− ζt(θt−2τ , z0:t)|= 6B‖θt− θt−2τ‖2 ≤ 6B2

t−1∑
i=t−2τ

αi. (EC.8)

Taking expectations on both sides gives us the desired bound on the first term. The last inequality
used the norm bound on update direction as shown in Lemma EC.2 to simplify,

‖θt− θt−2τ‖2 ≤
t−1∑

i=t−2τ

‖Π2,R (θi+1 +αixi(θi, z0:i))− θi‖2 ≤
t−1∑

i=t−2τ

αi‖xi(θi, z0:i)‖2 ≤B
t−1∑

i=t−2τ

αi.

Similarly, by part (c) of Lemma EC.4, we have a bound on the second term.

|E[ζt(θt−2τ , z0:t)]−E[ζt(θt−2τ , zt−τ :t)]| ≤B2(γλ)τ . (EC.9)

Step 2: Use information-theoretic arguments to upper bound E[ζt(θt−2τ , zt−τ :t)].

We will essentially use Lemma 9 to upper bound E[ζt(θt−2τ , zt−τ :t)]. We first introduce some
notation to highlight subtle dependency issues. Note that ζt(θt−2τ , zt−τ :t) is a function of
(θt−2τ , st−τ , . . . , st−1,Ot). To simplify, let Yt−τ :t = (st−τ , . . . , st−1,Ot). Define,

f(θt−2τ , Yt−τ :t) := ζt(θt−2τ , zt−τ :t).
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Consider random variables θ′t−2τ and Y ′t−τ :t drawn independently from the marginal distributions
of θt−2τ and Yt−τ :t, so P(θ′t−2τ = ·, Y ′t−τ :t = ·) = P(θt−τ = ·)⊗P(Yt−τ :t = ·). By Lemma EC.4 we have
that |f(θ,Yt−τ :t)| ≤ 2B2 for all θ ∈ΘR with probability 1. As

θt−2τ → st−2τ → st−τ → st→Ot

form a Markov chain, a direct application of Lemma 9 gives us:∣∣E[f(θt−2τ , Yt−τ :t)]−E[f(θ′t−2τ , Y
′
t−τ :t)]

∣∣≤ 4B2mρτ . (EC.10)

We also have the following bound for all fixed θ ∈ΘR. Using x̄(θ) =E[δt(θ)z−∞:t], we get

E[f(θ,Yt−τ :t)] = (E[δt(θ)zt−τ :t]− x̄(θ))
>

(θ− θ∗)≤
∣∣∣(δt(θ)z−∞:t−τ )

>
(θ− θ∗)

∣∣∣≤B2(γλ)τ (EC.11)

Combining the above with Equation (EC.10), we get

|E[ζt(θt−2τ , zt−τ :t)]|= |E[f(θt−2τ , Yt−τ :t)]|
≤
∣∣E[f(θt−2τ , Yt−τ :t)]−E[f(θ′t−2τ , Y

′
t−τ :t)]

∣∣+ ∣∣E[f(θ′t−2τ , Y
′
t−τ :t)]

∣∣
≤ 4B2mρτ +

∣∣E[E[f(θ′t−2τ , Y
′
t−τ :t)|θ′t−2τ ]]

∣∣
≤ 4B2mρτ +B2(γλ)τ . (EC.12)

Step 3. Combine terms to show part (a) of our claim.

Taking τ = τmix
λ (αT ) and combining Equations (EC.8), (EC.9) and (EC.12) establishes the first

claim.

E [ζt(θt, z0:t)]≤ 6B2

t−1∑
i=t−2τ

αi + 4B2mρτ + 2B2(γλ)τ ≤ 12B2τmix
λ (αT )αt−2τmix

λ
(αT ) + 6B2αT

≤ 6B2(1 + 2τmix(αT ))αt−2τmix
λ

(αT ).

Here we used that letting τ = τmix
λ (αT ) implies: max{mρτ , (γλ)τ} ≤ αT . Two additional facts which

we also use follow from a non-increasing step-size sequence,
∑t−1

i=t−2τ αi ≤ 2ταt−2τ and αT ≤ αt−2τ .

Case (b) and (c): Consider the following decomposition for all t∈N0,

E [ζt(θt, z0:t)]≤ |E [ζt(θt, z0:t)]−E[ζt(θ0, z0:t)]|+ |E[ζt(θ0, z0:t)]−E[ζt(θ0, z−∞:t)]|+ |E[ζt(θ0, z−∞:t)]|.
Step 1: Use regularity properties of the error function to upper bound the first two terms.

Using parts (b), (c) of Lemma EC.4 and following the arguments shown in Step 1, 2 of case (a)
above, we get

|E [ζt(θt, z0:t)]−E[ζt(θ0, z0:t)]|+ |E[ζt(θ0, z0:t)]−E[ζt(θ0, z−∞:t)]| ≤ 6B2

t−1∑
i=0

αi +B2(γλ)t. (EC.13)

Step 2: Characterizing E[ζt(θ, z−∞:t)] for any fixed (non-random) θ.

Recall the definition of x̄(θ) from Equation (EC.5). For any fixed θ, we have x̄(θ) = E[δt(θ)z−∞:t].
Therefore,

E[ζt(θ0, z−∞:t)] = (E[δt(θ0)z−∞:t]− x̄(θ0))
>

(θ0− θ∗) = 0. (EC.14)

Step 3. Combine terms to show parts (b), (c) of our claim.

Combining Equations (EC.13) and (EC.14) establishes part (c) which states,

E [ζt(θt, z0:t)]≤ 6B2

t−1∑
i=0

αi +B2(γλ)t ∀ t∈N0.

We establish part (b) by using that the step-size sequence is non-increasing which implies:
∑t−1

i=0 αi ≤
tα0. For all t≤ 2τmix

λ (αT ), we have the following loose upper bound.

E [ζt(θt, z0:t)] ≤ 6B2tα0 +B2(γλ)t ≤ 6B2
(
1 + 2τmix

λ (αT ))
)
α0 +B2(γλ)t. �
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B.2. Proof of Theorem 4

In this subsection, we establish convergence bounds for Projected TD(λ) as stated in Theorem 4
using Lemmas EC.3 and EC.5. From Lemma EC.3 we have,

E
[
‖θ∗− θt+1‖22

]
≤E

[
‖θ∗− θt‖22

]
− 2αt(1−κ)E

[
‖Vθ∗ −Vθt‖

2

D

]
+ 2αtE [ζt(θt, z0:t)] +α2

tB
2. (EC.15)

Equation (EC.15) will be used as a starting point for analyzing different step-size choices.

Proof of part (a): Fix a constant step-size of α0 = . . . = αt = 1/
√
T in Equation (EC.15),

rearrange terms and sum from t= 0 to t= T − 1, we get

2α0(1−κ)
T−1∑
t=0

E‖Vθ∗ −Vθt‖
2

D ≤
T−1∑
t=0

(
E‖θ∗− θt‖22−E‖θ∗− θt+1‖22

)
+B2 + 2α0

T−1∑
t=0

E [ζt(θt, z0:t)] .

Using Lemma EC.5 where αt−2τmix
λ

(αT ) = α0 along with the fact that (γλ)< 1, we simplify to get

T−1∑
t=0

E‖Vθ∗ −Vθt‖
2

D ≤
‖θ∗− θ0‖22 +B2

2α0(1−κ)
+

6B2T (1 + 2τmix
λ (1/

√
T ))α0

(1−κ)
+

1

(1−κ)

2τmix
λ ( 1√

T
)∑

t=0

B2(γλ)t

≤

√
T
(
‖θ∗− θ0‖22 +B2

)
2(1−κ)

+
6B2
√
T (1 + 2τmix

λ (1/
√
T ))

(1−κ)
+

2B2τmix
λ (1/

√
T )

(1−κ)
.

Adding these terms, we conclude

E
[∥∥Vθ∗ −Vθ̄T ∥∥2

D

]
≤ 1

T

T−1∑
t=0

E
[
‖Vθ∗ −Vθt‖

2

D

]
≤
‖θ∗− θ0‖22 +B2

(
13 + 28τmix

λ (1/
√
T )
)

2
√
T (1−κ)

.

Proof of part (b): For a constant step-size of α0 < 1/(2ω(1− κ)), we show that the expected
distance between the iterate θT and the TD(λ) limit point, θ∗ converges at an exponential rate
below some level that depends on the choice of step-size and λ. Starting with Equation (EC.15)
and applying Lemma 1 which shows that ‖Vθ∗ −Vθ‖2D ≥w‖θ∗− θ‖

2

2 for any θ, we have that for all
t > 2τmix

λ (α0),

E
[
‖θ∗− θt+1‖22

]
≤ (1− 2α0(1−κ)ω)E

[
‖θ∗− θt‖22

]
+α2

0B
2 + 2α0E [ζt(θt, z0:t)]

≤ (1− 2α0(1−κ)ω)E
[
‖θ∗− θt‖22

]
+α2

0B
2
(
13 + 24τmix

λ (α0)
)
,

where we used part (a) of Lemma EC.5 for the second inequality. Iterating over it gives us our
final result. For any T > 2τmix

λ (α0),

E
[
‖θ∗− θT‖22

]
≤ (1− 2α0(1−κ)ω)

T ‖θ∗− θ0‖22 +α2
0B

2
(
13 + 24τmix

λ (α0)
) ∞∑
t=0

(1− 2α0(1−κ)ω)
t

≤
(
e−2α0(1−κ)ωT

)
‖θ∗− θ0‖22 +

B2α0 (13 + 24τmix
λ (α0))

2(1−κ)ω
.

Final inequality follows by solving the geometric series and using that (1− 2α0(1−κ)ω) ≤
e−2α0(1−κ)ω along with Lemma 1.
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Proof of part (c): Consider a decaying step-size of αt = 1/(ω(t + 1)(1 − κ)). We start with

Equation (EC.15) and use Lemma 1 which showed E
[
‖Vθ∗ −Vθ‖2D

]
≥ wE

[
‖θ∗− θ‖22

]
for all θ to

get,

E
[
‖Vθ∗ −Vθt‖

2

D

]
≤ 1

(1−κ)αt

(
(1− (1−κ)ωαt)E

[
‖θ∗− θt‖22

]
−E

[
‖θ∗− θt+1‖22

]
+α2

tB
2
)

+

2

(1−κ)
E [ζt(θt, z0:t)] .

Substituting αt = 1
ω(t+1)(1−κ)

, simplify and sum from t= 0 to T − 1 to get,

T−1∑
t=0

E
[
‖Vθ∗ −Vθt‖

2

D

]
≤−ωTE

[
‖θ∗− θT‖22

]
+

B2

ω(1−κ)2

T−1∑
t=0

1

t+ 1
+

2

(1−κ)

T−1∑
t=0

E [ζt(θt, z0:t)]

≤−ωTE
[
‖θ∗− θT‖22

]
︸ ︷︷ ︸

<0

+
B2(1 + logT )

ω(1−κ)2
+

2

(1−κ)

T−1∑
t=0

E [ζt(θt, z0:t)] , (EC.16)

where we use that
∑T−1

t=0
1
t+1
≤ (1 + logT ). To simplify notation, we put τ = τmix

λ (αT ) for the

remainder of the proof. We use Lemma EC.5 to upper bound the total bias,
∑T−1

t=0 E [ζt(θt, z0:t)]
which can be decomposed as:

T−1∑
t=0

E [ζt(θt, z0:t)] =
2τ∑
t=0

E [ζt(θt, z0:t)] +
T−1∑

t=2τ+1

E [ζt(θt, z0:t)] . (EC.17)

First, note that for a decaying step-size αt = 1
ω(t+1)(1−γ)

we have

T−1∑
t=0

αt =
1

ω(1− γ)

T−1∑
t=0

1

(t+ 1)
≤ 1 + logT

ω(1− γ)
.

We will combine this with Lemma EC.5 to upper bound each term separately. First,

2τ∑
t=0

E [ζt(θt, z0:t)]≤
2τ∑
t=0

(
6B2

t−1∑
i=0

αi

)
+

2τ∑
t=0

B2(γλ)t

≤ 6B2

ω(1−κ)

2τ∑
t=0

T−1∑
i=0

1

(i+ 1)
+ 2B2τ ≤ 14B2τ

ω(1−κ)
(1 + logT ),

where we used the fact that ω,κ, (γλ)< 1. Similarly,

T−1∑
t=2τ+1

E [ζt(θt, z0:t)]≤ 6B2(1 + 2τ)
T−1∑

t=2τ+1

αt−2τ ≤ 6B2(1 + 2τ)
T−1∑
t=0

αt ≤
6B2(1 + 2τ)

ω(1−κ)
(1 + logT ) .

Combining the two parts, we get

T−1∑
t=0

E [ζt(θt, z0:t)]≤
B2(6 + 26τ)

ω(1−κ)
(1 + logT ).

Using this in conjunction with Equation (EC.16) we get,

E
[∥∥Vθ∗ −Vθ̄T ∥∥2

D

]
≤ 1

T

T−1∑
t=0

E
[
‖Vθt −Vθ∗‖

2

D

]
≤ B2 (1 + logT )

ωT (1−κ)2
+

2

T (1−κ)

T−1∑
t=0

E [ζt(θt, z0:t)] .
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Simplifying and putting back τ = τmix
λ (αT ), we get our final result.

E
[∥∥Vθ∗ −Vθ̄T ∥∥2

D

]
≤ B2

ωT (1−κ)2
(1 + logT ) +

2B2 (6 + 26τmix
λ (αT ))

ωT (1−κ)2
(1 + logT )

≤ B2 (13 + 52τmix(αT ))

ωT (1−κ)2
(1 + logT ). �

We remark that Equation (EC.16) implies a convergence rate of O(logT/T ) for the iterate θT
(and hence the value function VθT ) itself but the bounds degrade by a factor of ω. In particular,
we have

E
[
‖Vθ∗ −VθT ‖

2

D

]
≤E

[
‖θ∗− θT‖22

]
≤ B2 (13 + 52τmix

λ (αT ))

ω2T (1−κ)2
(1 + logT ) (EC.18)

where the first inequality follows using Lemma 1.

B.3. Proof of supporting lemmas.

In this subsection, we provide standalone proofs of Lemma EC.2 and EC.4 used above.

Lemma EC.2 For all θ ∈ΘR, ‖xt(θ, z0:t)‖2 ≤B with probability 1. Additionally, ‖x̄(θ)‖2 ≤B.

Proof of Lemma EC.2. We start with the mathematical expression for xt(θ, z0:t).

xt(θ, z0:t) = δt(θ)z0:t ⇒ ‖xt(θ, z0:t)‖2 = |δt(θ)|‖z0:t‖2.
We give an upper bound on both |δt(θ)| and ‖z0:t‖2. Starting with the definition of δt(θ) and using
that ‖φ(st)‖2 ≤ 1 ∀ t along with ‖θ‖2 ≤R, we get

|δt(θ)|=
∣∣rt + γφ(s′t)

>θ−φ(st)
>θ
∣∣≤ rmax + ‖φ(s′t)‖2‖θ‖2 + ‖φ(st)‖2‖θ‖2 ≤ (rmax + 2R) .

Next,

‖z0:t‖22 =

∥∥∥∥∥
t∑

k=0

(γλ)kφ(st−k)

∥∥∥∥∥
2

2

≤

(
t∑

k=0

(γλ)k

)2

≤

(
∞∑
k=0

(γλ)k

)2

=
1

(1− γλ)2
.

Combining these two implies the first part of our claim.

‖xt(θ, z0:t)‖2 = |δt(θ)|‖z0:t‖2 ≤
(rmax + 2R)

(1− γλ)
=B.

Note that can easily show an upper bound ‖δt(θ)zl:t‖2 ≤B for any pair (θ, zl:t) with l≤ t. Consider,

‖zl:t‖22 ≤ ‖z−∞:t‖22 ≤

(
∞∑
k=0

(γλ)k

)2

=
1

(1− γλ)2

⇒ ‖δt(θ)zl:t‖2 = |δt(θ)|‖zl:t‖2 ≤
(rmax + 2R)

(1− γλ)
=B.

Taking l→−∞ implies that ‖δt(θ)z−∞:t‖2 ≤ B. As x̄(θ) = E [δt(θ)z−∞:t], we also have a uniform
norm bound on the expected updates, ‖x̄(θ)‖2 ≤B, as claimed. �

Lemma EC.4 Consider any l≤ t and any θ, θ′ ∈ΘR. With probability 1,
(a) |ζt(θ, zl:t)| ≤ 2B2.

(b) |ζt(θ, zl:t)− ζt(θ′, zl:t)| ≤ 6B
∥∥∥(θ− θ′)

∥∥∥
2
.

(c) The following two bounds also hold,

|ζt(θ, z0:t)− ζt(θ, zt−τ :t)| ≤B2(γλ)τ for all τ ≤ t,
|ζt(θ, z0:t)− ζt(θ, z−∞:t)| ≤B2(γλ)t.

Proof of Lemma EC.4. Throughout, we use the assumption that basis vectors are normalized
i.e. ‖φ(st)‖2 ≤ 1 ∀ t.
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Proof of Part (a): We show a uniform norm bound on ζt(θ, zl:t) ∀ θ ∈ ΘR. First consider the
following:

‖δt(θ)zl:t‖2 = |δt(θ)|‖zl:t‖2 ≤
∣∣rt + γφ(s′t)

>θ−φ(st)
>θ
∣∣∥∥∥∥∥

t−l∑
k=0

(γλ)kφ(st−k)

∥∥∥∥∥
2

≤ |rt + ‖φ(s′t)‖2‖θ‖2 + ‖φ(st)‖2‖θ‖2|

∥∥∥∥∥
∞∑
k=0

(γλ)kφ(st−k)

∥∥∥∥∥
2

≤ (rmax + 2R)

(1− γλ)
=B.

Using this along with the fact that ‖θ− θ∗‖2 ≤ 2R≤B and ‖x̄(θ)‖2 ≤B for all θ ∈ΘR, we get

|ζt(θ, zl:t)|=
∣∣∣(δt(θ)zl:t− x̄(θ))

>
(θ− θ∗)

∣∣∣≤ ‖δt(θ)zl:t− x̄(θ)‖2‖(θ− θ
∗)‖2

≤ (‖δt(θ)zl:t‖2 + ‖x̄(θ)‖2)‖(θ− θ∗)‖2
≤ 2B‖(θ− θ∗)‖2 ≤ 2B2.

Proof of Part (b): To show that ζt(·, zl:t) is L-Lipschitz, consider the following inequality for
any four vectors (a1, b1, a2, b2), which follows as a direct application of Cauchy-Schwartz.∣∣a>1 b1− a>2 b2

∣∣= ∣∣a>1 (b1− b2) + b>2 (a1− a2)
∣∣≤ ‖a1‖2‖b1− b2‖2 + ‖b2‖2‖a1− a2‖2.

This implies,

|ζt(θ, zl:t)− ζt(θ′, zl:t)|=
∣∣∣(δt(θ)zl:t− x̄(θ))

>
(θ− θ∗)− (δt(θ

′)zl:t− x̄(θ′))
>

(θ′− θ∗)
∣∣∣

≤ ‖δt(θ)zl:t−x̄(θ)‖2‖θ−θ
′‖2+‖θ′−θ∗‖2‖(δt(θ)zl:t−x̄(θ))− (δt(θ

′)zl:t−x̄(θ′))‖2
≤ 2B‖θ− θ′‖2 + 2R

[
‖zl:t (δt(θ)− δt(θ′))‖2 + ‖x̄(θ)− x̄(θ′)‖2

]
≤ 2B‖θ− θ′‖2 +

8R

(1− γλ)
‖θ− θ′‖2

≤ 6B‖θ− θ′‖2,

where the last inequality follows as R
1−γλ ≤ B/2 by definition. In the penultimate inequality, we

used that ‖zl:t (δt(θ)− δt(θ′))‖2 ≤
2

(1−γλ)
‖θ− θ′‖2 which is easy to prove. Consider,

‖zl:t (δt(θ)− δt(θ′))‖2 ≤ ‖zl:t‖2|(δt(θ)− δt(θ
′))|

≤

∥∥∥∥∥
∞∑
k=0

(γλ)kφ(st−k)

∥∥∥∥∥
2

|(δt(θ)− δt(θ′))|

≤ 1

(1− γλ)

∣∣∣(γφ(s′t)−φ(st))
>

(θ− θ′)
∣∣∣

≤
(‖φ(s′t)‖2 + ‖φ(st)‖2)

(1− γλ)
‖θ− θ′‖2 ≤

2

(1− γλ)
‖θ− θ′‖2.

As x̄(θ) = E [δt(θ)z−∞:t], this also implies ‖x̄(θ)− x̄(θ′)‖2 ≤
2

(1−γλ)
‖θ− θ′‖2 which completes the

proof.
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Proof of Part (c): To show that |ζt(θ, z0:t)− ζt(θ, zt−τ :t)| ≤B2(γλ)τ for all θ ∈ΘR and τ ≤ t, we
use that ‖θ− θ∗‖2 ≤ 2R≤B.

|ζt(θ, z0:t)− ζt(θ, zt−τ :t)|=
∣∣∣(δt(θ)z0:t− δt(θ)zt−τ :t)

>
(θ− θ∗)

∣∣∣
≤ |δt(θ)|‖z0:t− zt−τ :t‖2‖θ− θ

∗‖2

≤
∣∣rt + γφ(s′t)

>θ−φ(st)
>θ
∣∣∥∥∥∥∥
∞∑
k=τ

(γλ)kφ(st−k)

∥∥∥∥∥
2

B

≤ |rt + 2‖θ‖2| ·
(γλ)τ

(1− γλ)
·B

≤B (rmax + 2R)

(1− γλ)
(γλ)τ

=B2(γλ)τ .

Similarly,

|ζt(θ, z0:t)− ζt(θ, z−∞:t)| ≤
∣∣δt(θ)(z0:t− z−∞:t)

>(θ− θ∗)
∣∣

≤ |δt(θ)|‖z0:t− z−∞:t‖2‖θ− θ
∗‖2

≤
∣∣(rt + γφ(s′t)

>θ−φ(st)
>θ
)∣∣∥∥∥∥∥

∞∑
k=t

(γλ)kφ(st−k)

∥∥∥∥∥
2

B

≤B (rmax + 2R)

(1− γλ)
(γλ)t

≤B2(γλ)t. �
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Appendix C: Proofs of Additional Lemmas

In this section, we prove some additional lemmas stated and used in other parts of the paper. We
first give a proof of Lemma 7 which gives an upper bound on the projection radius, R.

Lemma 7 ‖θ∗‖Σ≤ 2rmax

(1−γ)3/2
and hence ‖θ∗‖2≤ 2rmax√

ω(1−γ)3/2
.

Proof of Lemma 7. Because rewards are uniformly bounded, |Vµ(s)|≤ rmax/(1−γ) for all s∈ S.
Recall that Vµ denotes the true value function of the Markov reward process. This implies that

‖Vµ‖D ≤ ‖Vµ‖∞ ≤
rmax

(1− γ)
.

Lemma 2 along with simple matrix inequalities enable a simple upper bound on ‖θ∗‖2. We have

‖Vθ∗ −Vµ‖D ≤
1√

1− γ2
‖Vµ−ΠDVµ‖D ≤

1√
1− γ2

‖Vµ‖D ≤
1√

1− γ
‖Vµ‖D,

where the penultimate inequality holds by the Pythagorean theorem. By the reverse triangle
inequality we have

∣∣‖Vθ∗‖D−‖Vµ‖D∣∣≤ ‖Vθ∗ −Vµ‖D. Thus,

‖Vθ∗‖D ≤ ‖Vθ∗ −Vµ‖D + ‖Vµ‖D ≤
2√

1− γ
‖Vµ‖D ≤

2√
1− γ

rmax

(1− γ)
.

Recall from Section 2 we have, ‖Vθ∗‖D= ‖θ∗‖Σ which establishes first part of the claim. The second
claim uses that ‖θ∗‖Σ≥ ω‖θ∗‖2 which follows by Lemma 1. �

Next, we give a combined proof of Lemmas EC.1 and 13 which quantify the progress of the
expected updates towards the limit point θ∗ for TD(λ) and the Q-function approximation algorithm
respectively. These lemmas can be restated more generally as shown below, instead of using the
Bellman operators F (·) and T (λ)(·).
Lemma EC.6. Consider a linear function approximation such that Jθ = Φθ. Let ΠDH(·) be a
contraction with respect to ‖·‖D with modulus γ and let Jθ∗ be the unique fixed point of ΠDH(·),
i.e. Jθ∗ = ΠDHJθ∗. Define ḡ(θ) = Φ>D (HΦθ−Φθ) for all θ ∈Rd to be the expected update. Then,

ḡ(θ)>(θ∗− θ)≥ (1− γ)‖Jθ∗ −Jθ‖2D.

Proof of Lemma EC.6. We have

(θ∗− θ)>ḡ(θ) = (θ∗− θ)>Φ>D (HΦθ−Φθ)

= 〈Φ(θ∗− θ), (HΦθ−Φθ)〉D
= 〈ΠDΦ(θ∗− θ), (HΦθ−Φθ)〉D (EC.19)

= 〈Φ(θ∗− θ),ΠD (HΦθ−Φθ)〉D (EC.20)

= 〈Φ(θ∗− θ),ΠDHΦθ−Φθ〉D
= 〈Φ(θ∗− θ),ΠDHΦθ−Φθ∗+ Φθ∗−Φθ〉D
= ‖Φ(θ∗− θ)‖2D−〈Φ(θ∗− θ),Φθ∗−ΠDHΦθ〉D
≥ ‖Φ(θ∗− θ)‖2D−‖Φ(θ∗− θ)‖D·‖ΠDHΦθ−Φθ∗‖D
≥ ‖Φ(θ∗− θ)‖2D−γ · ‖Φ(θ∗− θ)‖2D (EC.21)

= (1− γ) · ‖Φ(θ∗− θ)‖2D = (1− γ) · ‖Jθ∗ −Jθ‖2D,

where in going to Equation (EC.19), we used that ∀ x∈ Span(Φ), we have ΠD x = x. In Equation
(EC.20), we used that the projection matrix ΠD is symmetric. In going to Equation (EC.21), we
used that that ΠDH(·) is a contraction operator with modulus γ with Φθ∗ as its fixed point, which
implies that ‖ΠDHΦθ−Φθ∗‖D = ‖ΠDHΦθ−ΠDHΦθ∗‖D ≤ γ‖Φθ−Φθ∗‖D. �
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Finally, we restate and prove Lemmas 14 and 15 used in Section 10 to analyze Q-learning for
optimal stopping problems under a linear approximation model.

Lemma 14 For any fixed θ ∈Rd, E [‖gt(θ)‖22] ≤ 2σ2 + 8‖Qθ−Qθ∗‖2D where σ2 =E [‖gt(θ∗)‖22].

Proof of Lemma 14. We use notation and proof strategy mirroring the proof of Lemma 5. Set
φ= φ(st), φ

′ = φ(s′t) and U ′ = U(s′). Define ξ = (θ∗− θ)>φ and ξ′ = (θ∗− θ)>φ′. By stationarity ξ
and ξ′ have the same marginal distribution and E[ξ2] = ‖Qθ∗ −Qθ‖2D. Using the formula for gt(θ)
in Equation (33), we have

E
[
‖gt(θ)‖22

]
≤ 2E

[
‖gt(θ∗)‖22

]
+ 2E

[
‖gt(θ)− gt(θ∗)‖22

]
= 2σ2 + 2E

[∥∥∥φ(φ>(θ∗− θ)− γ
[
max

(
U ′, φ′

>
θ∗
)
−max

(
U ′, φ′

>
θ
)])∥∥∥2

2

]
≤ 2σ2 + 2E

[∥∥∥φ(∣∣φ>(θ∗− θ)
∣∣+ γ

∣∣∣max
(
U ′, φ′

>
θ∗
)
−max

(
U ′, φ′

>
θ
)∣∣∣)∥∥∥2

2

]
≤ 2σ2 + 2E

[∥∥∥φ(∣∣φ>(θ∗− θ)
∣∣+ γ

∣∣∣φ′>(θ∗− θ)
∣∣∣)∥∥∥2

2

]
(EC.22)

≤ 2σ2 + 2E[|ξ+ γξ′|2]

≤ 2σ2 + 4
(
E
[
|ξ|2
]

+ γ2E
[
|ξ′|2

])
= 2σ2 + 4(1 + γ2)‖Qθ−Qθ∗‖2D≤ 2σ2 + 8‖Qθ−Qθ∗‖2D,

where we used the assumption that features are normalized so that ‖φ‖22 ≤ 1 almost surely. Addi-
tionally, in going to Equation (EC.22), we used that |max(c1, c3)−max(c2, c3)| ≤ |c1− c2| for any
scalars c1, c2 and c3. �

Lemma 15 Define G= (rmax + 2R). With probability 1, ‖gt(θ)‖2 ≤G for all θ ∈ΘR.

Proof of Lemma 15. We start with the mathematical expression for the semi-gradient,

gt(θ) =
(
u(st) + γmax{U(s′t), φ(s′t)

>θ}−φ(st)
>θ
)
φ(st).

As rmax ≤R, we have: max{U(s′t), φ(s′t)
>θ} ≤max{U(s′t),‖φ(s′t)‖2‖θ‖2} ≤R. Then,

‖gt(θ)‖22 =
(
u(st) + γmax{U(s′t), φ(s′t)

>θ}−φ(st)
>θ
)2 ‖φ(st)‖2

≤
(
rmax + γR−φ(st)

>θ
)2

≤ (rmax + γR+ ‖φ(st)‖2‖θ‖2)
2 ≤ (rmax + 2R)

2
=G2.

We used here that the basis vectors are normalized, ‖φ(st)‖2 ≤ 1 for all t. �


