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Abstract. This paper considers the optimal adaptive allocation of measurement effort for
identifying the best among a finite set of options or designs. An experimenter sequentially
chooses designs to measure and observes noisy signals of their quality with the goal of
confidently identifying the best design after a small number of measurements. This paper
proposes three simple and intuitive Bayesian algorithms for adaptively allocating mea-
surement effort and formalizes a sense in which these seemingly naive rules are the best
possible. One proposal is top-two probability sampling, which computes the two designs
with the highest posterior probability of being optimal and then randomizes to select
among these two. One is a variant of top-two sampling that considers not only the
probability that a design is optimal, but the expected amount by which its quality exceeds
that of other designs. The final algorithm is a modified version of Thompson sampling that
is tailored for identifying the best design. We prove that these simple algorithms satisfy a
sharp optimality property. In a frequentist setting where the true quality of the designs is
fixed, one hopes that the posterior definitively identifies the optimal design, in the sense
that that the posterior probability assigned to the event that some other design is optimal
converges to zero as measurements are collected. We show that under the proposed al-
gorithms, this convergence occurs at an exponential rate, and the corresponding exponent
is the best possible among all allocation rules. It should be highlighted that the proposed
algorithms depend on a single tuning parameter, which determines the probability used
when randomizing among the top-two designs. Attaining the optimal rate of posterior
convergence requires either that this parameter is set optimally or is tuned adaptively
toward the optimal value. The paper goes further, characterizing the exponent attained on
any problem instance and for any value of the tunable parameter. This exponent is
interpreted as being optimal among a constrained class of allocation rules. Finally, con-
siderable robustness to this parameter is established through numerical experiments and
theoretical results. When this parameter is set to 1/2, the exponent attained is within a
factor of 2 of best possible across all problem instances.

History: First Place Winner, Junior Faculty Forum Paper Competition, 2016.
Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2019.1911.
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1. Introduction
This paper considers the optimal adaptive allocation
of measurement effort in order to identify the best
among a finite set of options or designs. An experi-
menter sequentially chooses designs to measure and
observes independent noisy signals of their quality.
The goal is to allocate measurement effort intelli-
gently so that the best design can be identified con-
fidently after a small number ofmeasurements. Just as
the multiarmed bandit problem crystallizes the trade-
off between exploration and exploitation in sequen-
tial decision making, this “pure-exploration” problem
crystallizes the challenge of efficiently gathering in-
formation before committing to a final decision. It

serves as a fundamental abstraction of issues faced
in many practical settings. For example:
• EfficientA/B/CTesting: An e-commerce platform is

considering a change to its website and would like to
identify the best-performing candidate among many
potential new designs. To do this, the platform runs
an experiment, displaying different designs to dif-
ferent users who visit the site. How should the plat-
form decidewhat percentage of traffic to allocate to each
website design?
• Simulation Optimization: An engineer would like

to identify the best-performing aircraft design among
several proposals. She has access to a realistic sim-
ulator through which she can assess the quality of the
designs, but each simulation trial is very time consuming
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and produces only noisy output.How should she allocate
simulation effort among the designs?

• Design of Clinical Trials: A medical research or-
ganizationwould like to find themost effective treatment
out of several promising candidates. They run a clini-
cal trial in which they experiment with the treatments.
The results of the studymay influence practice formany
years to come, so it is worth reaching a definitive con-
clusion. At the same time, clinical trials are extremely
expensive, and careful experimentation can help to mit-
igate the associated costs.1 Multiarmed bandit models
of clinical trials date back to Thompson (1933), but ban-
dit algorithms lack statistical power in detecting the
best treatment at the end of the trial (Villar et al. 2015).
Canwedevelop adaptive ruleswithbetter performance?

We study Bayesian algorithms for adaptively al-
locating measurement effort. Each begins with a
prior distribution over the unknown quality of the
designs. The experimenter learns as measurements
are gathered, and beliefs are updated to form a pos-
terior distribution. This posterior distribution gives a
principled mechanism for reasoning about the uncer-
tain quality of designs and for assessing the proba-
bility that any given design is optimal. By formulating
this problem as a Markov decision process whose
state-space tracks posterior beliefs about the true
quality of each design, dynamic programming could,
in principle, be used to optimize many natural mea-
sures of performance. Unfortunately, computing or even
storing an optimal policy is usually infeasible due to the
curse of dimensionality. Instead, thiswork proposes three
simple and intuitive rules for adaptively allocating mea-
surement effort and, by characterizing fundamental limits
on the performance of any algorithm, formalizes a sense in
which these seemingly naı̈ve rules are the best possible.

The first algorithm we propose is called top-two
probability sampling. It computes at each time step
the two designswith the highest posterior probability
of being optimal. It then randomly chooses among
them, selecting the design that appears most likely to
be optimal with some fixed probability, and selecting
the second most likely otherwise. Beliefs are updated
as observations are collected, so the top-two designs
change over time. The long-run fraction of measure-
ment effort allocated to each design depends on the
true quality of the designs and the distribution of ob-
servation noise. Top-two value sampling proceeds in a
similar manner, but in selecting the top-two designs,
it considers not only the probability that a design is
optimal, but the expected amount by which its qual-
ity exceeds that of other designs. The final algo-
rithm we propose is a top-two sampling version of
the Thompson sampling algorithm for multiarmed ban-
dits. Thompson sampling has attracted a great deal
of recent interest in both academia and industry
(Graepel et al. 2010, Chapelle and Li 2011, Agrawal

and Goyal 2012, Kaufmann et al. 2012, Tang et al.
2013, Gopalan et al. 2014, Scott 2016, Russo and Van
Roy 2017), but it is designed to maximize the cumula-
tive reward earned while sampling. As a result, in the
long run, it allocates almost all effort to measuring the
estimated-best design and requires a huge number of
total measurements to certify that none of the alter-
native designs offer better performance. We introduce
a natural top-two variant of Thompson sampling that
avoids this issue and, as a result, offers vastly superior
performance for the best-arm identification problem.
Remarkably, these simple heuristic algorithms sat-

isfy a strong optimality property. Our analysis focuses
on frequentist consistency and rate convergence of
the posterior distribution (see, e.g., Freedman 1963)
and therefore takes place in a setting where the true
quality of the designs is fixed, but unknown to the
experimenter. One hopes that as measurements are
collected, the posterior distribution definitively iden-
tifies the true best design, in the sense that the posterior
probability assigned to the event that some other de-
sign is optimal converges to zero. We show that under
the proposed algorithms, this convergence occurs at
an exponential rate, characterize the exponent attained
for each problem instance, and relate this to the best
possible exponent among allocation rules.
To make a precise statement, it is important to high-

light that the top-two algorithms described above de-
pend on a tunable parameter; each method identifies
the top-two designs and then flips a biased coin to
decide which of these to sample. The paper’s theo-
retical results offer a fairly complete characterization
of the asymptotic performance of these algorithms
and are summarized more precisely below.

(1) Optimality with tuning: For any problem in-
stance and any choice of tuning parameter, the pro-
posed top-two algorithms attain an exponential
rate of posterior convergence. This exponent is care-
fully characterized. If the tuning parameter is set op-
timally, the exponent is optimal among all possible
adaptive allocation rules. Moreover, it is possible to
attain this rate of convergence by adaptively adjusting
the tuning parameter.

(2) Robustness with an unbiased coin: Uniformly
across problem instances, the exponent attained by
top-two sampling with an unbiased coin is within a
factor of two of what could be attained by an optimal
allocation rule. This robustness is further validated
through numerical experiments: Across 14 problem in-
stances, top-two Thompson samplingwith an unbiased
coin offers similar performance to a version of top-two
Thompson sampling that is applied with the best tun-
ing parameter for that particular problem setting.

(3) Optimality among a restricted class of allo-
cation rules for any tuning parameter: To simplify
the discussion, imagine that top-two sampling is
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appliedwith an unbiased coin. Then, as the number of
measurements tends to infinity, exactly half of the
measurement effort is allocated to the best design.
Now, consider any possible adaptive allocation rule,
which, like top-two sampling, allocates half of the
measurement effort to the true best design asymp-
totically. There is no problem instance for which this
alternative algorithm attains an exponential rate of
posterior convergence exceeding that of the proposed
top-two sampling algorithms. An analogous result
applies when a biased coin is used.

It is worth elaborating on the third result described
above, as it is the main insight that prompted this
paper. We face the problem of adaptively allocating
measurements among k competing designs. We can
imagine decomposing this problem into two parts:
First, the experimenter chooses which fraction of
measurements to dedicate to what is believed to
be the best design, and, second, given this choice,
she chooses how to adaptively allocate remaining
measurements among the k − 1 competing designs.
Roughly speaking, this paper shows that the alloca-
tion among the remaining k − 1 designs is handled
automatically and optimally by very simple top-two
sampling algorithms. This offers substantial new
insight into the structure of best-arm identification
problems and effectively reduces the problem to the
choice of a single tuning parameter—the bias of the
coin used by the top-two sampling algorithms. The pa-
per establishes a surprising degree of robustness to this
tuning parameter and shows that it is possible to attain
a fully optimal exponent by setting it adaptively. How-
ever, the proposed tuning method is complex, spoiling
some of the elegance of the top-two sampling algo-
rithms. The search for simpler methods stands as an
interesting open question.

Finally, it should be highlighted that the perfor-
mance metric studied in this paper—concerning the
frequentist rate of convergence of the posterior—is not
the same as the widely studied probability of incorrect
selection metric. The claims in this paper do not imply
the probability of incorrect selection converges at an
optimal rate, and, in fact, the current literature does
not provide such a result for any adaptive algorithm.
Extending the theory in this paper to cover more con-
ventional performance metrics is an important direc-
tion for future work. Thankfully, the paper’s analysis
does seem to have deep connections with other per-
formancemetrics. The interested reader can find amore
careful discussion in Online Appendix EC.2 or in a
follow-up to this paper by Qin et al. (2017). That paper
provides similar asymptotically optimal guarantees
for a top-two sampling algorithm applied to best-arm
identification in the so-called “fixed-confidence” set-
ting, which is a purely frequentist problem formula-
tion that is widely studied in the literature.

1.1. Main Contributions
This paper makes both algorithmic and theoretical
contributions. On the algorithmic side, we develop
three new adaptive measurement rules. The top-two
Thompson sampling rule, in particular, could have
an immediate impact in application areas where
Thompson sampling is already in use. For example,
there are various reports of Thompson sampling being
used in A/B testing (Scott 2016) and in clinical trials
(Berry 2004). But practitioners in these domains typi-
cally hope to commit to a decision after a definitive
period of experimentation, and top-two Thompson
sampling can greatly reduce the number of mea-
surements required to do so. In addition, because of
their simplicity, the proposed allocation rules can be
easily adapted to treat problems beyond the scope
of this paper’s problem formulation. See Section 8
for examples.
The paper also makes several theoretical contri-

butions. Most importantly, it is of broad scientific
interest to understand when very simple measure-
ment strategies are the best possible. This paper
provides sharp links between these top-two sam-
pling rules and the limits of performance under any
adaptive algorithm. In establishing these results, we
exactly characterize the optimal rate of posterior
convergence attainable by an adaptive algorithm
and provide interpretable bounds on this rate when
measurement distributions are sub-Gaussian. The
analysis also provides several intermediate results,
which may be of independent interest, including es-
tablishing consistency and exponential rates of con-
vergence for posterior distributionswith nonconjugate
priors and under adaptive measurement rules. It
should be highlighted, however, that the results do
require some strong regularity properties on the prior
distribution and, in particular, only apply to priors
defined over a compact set.

1.2. Related Literature
Sequential Bayesian Best-Arm Identification. There is
a sophisticated literature on algorithms for Bayesian
multiarmed bandit problems. In discounted ban-
dit problemswith independent arms, Gittins indices
characterize the Bayes optimal policy (Gittins and
Jones 1974, Gittins 1979). Moreover, a variety of sim-
pler Bayesian allocation rules have been devel-
oped, including Bayesian upper-confidence bound al-
gorithms (Kaufmann et al. 2012, Srinivas et al. 2012,
Kaufmann 2018), Thompson sampling (Agrawal and
Goyal 2012, Korda et al. 2013, Gopalan et al. 2014,
Ferreira et al. 2018), information-directed sampling
(Russo and Van Roy 2017), the knowledge gradient
(Ryzhov et al. 2012), and optimistic Gittins indices
(Gutin and Farias 2016). These heuristic algorithms
can be applied effectively to complicated learning
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problems beyond the specialized settings in which
the Gittins index theorem holds, have been shown to
have strong performance in simulation, and have
theoretical performance guarantees. In several cases,
they are known to attain sharp asymptotic limits
on the performance of any adaptive algorithm due
to Lai and Robbins (1985).

The pure-exploration problem studied in this pa-
per is not nearly as well understood. Recent work has
cast this problem in a decision-theoretic framework
(Chick and Gans 2009). However, because the con-
ditions required for the Gittins index theorem do not
hold, computing an optimal policy via dynamic pro-
gramming is generally infeasible due to the curse of
dimensionality. Papers in this area typically focus
on problems with Gaussian observations and priors.
They formulate simpler problems that can be solved
exactly—like a problem where only a single mea-
surement can be gathered (Gupta and Miescke 1996,
Frazier et al. 2008, Chick et al. 2010) or a continuous-
time problem with only two alternatives (Chick and
Frazier 2012)—and then extend those solutions heu-
ristically to build measurement and stopping rules in
more general settings.

For problems with Gaussian priors and noise dis-
tributions, the expected-improvement (EI) algorithm
is a popular Bayesian approach to sequential infor-
mation gathering. Interesting recent work by Ryzhov
(2016) studies the long-run distribution of measure-
ment effort allocated by the expected improvement
and shows that this is related to the optimal-computing-
budget allocation of Chen et al. (2000). This contribu-
tion is very similar in spirit to this paper, as it relates
the long-run behavior of a simple Bayesian measure-
ment strategy to a notion of an approximately optimal
allocation. Unfortunately, EI cannot match the per-
formance guarantees in this paper. In fact, under EI,
the posterior converges only at a polynomial rate, in-
stead of the exponential rate attained by the algo-
rithms proposed here and by the optimal-computing-
budget allocation (OCBA). See Online Appendix EC.4
for a more precise discussion.

Classical Ranking and Selection. The problem of
identifying the best system has been studied for
many decades under the names ranking and selection
or ordinal optimization. A full reviewof this literature is
beyond the scope of this article. See Kim and Nelson
(2006), Kim and Nelson (2007), or Hong et al. (2015)
for thorough reviews. Part of this literature focuses on
a problem called subset selection, where the goal is
not to identify the best design, but tofind a fairly small
subset of designs that is guaranteed to contain the best
design. Beginning with Bechhofer and Sobel (1954),
many papers have focused on an indifference zone
formulation, where, for user-specified ε, δ > 0, the

goal is to guarantee with probability at least 1 − δ the
algorithm returns the true arm mean, as long as no
suboptimal arm is within ε of optimal. Assuming that
measurement noise is Gaussian with known vari-
ance σ2, one can guarantee this indifference-zone crite-
rion by gathering O (σk/ε2) log(k/δ)( )

total measure-
ments, divided equally among the k designs, and then
returning the designwith the highest empirical mean.
For the case of unknown variances, Rinott (1978) pro-
poses a two-stage procedure, where the first stage is
used to estimate the variance of each population, and
the number of samples collected from each design in
the second stage is scaled by its estimated standard
deviation. In the machine learning literature, Even-
Dar et al. (2002) studies the number of samples re-
quired by algorithms delivering ε–PAC guarantees.
Such algorithms are sometimes said to ensure a spec-
ified probability of good selection in the terminology
of the simulation-optimization literature, a strictly
stronger guarantee than an indifference-zone guar-
antee (Ni et al. 2017). Even-Dar et al. (2002) show that
when measurement noise is uniformly bounded, an
ε–PAC guarantee is satisfied by a sequential elimi-
nation strategy that uses only O (k/ε2) log(1/δ)( )

sam-
ples on average. Mannor and Tsitsiklis (2004) provide
a matching lower bound. Similar to minimax bounds,
this shows that the upper bound of Even-Dar et al.
(2002) is tight, up to a constant factor, for a certain
worst-case problem instance. Indifference-zone for-
mulations of ranking and selection problems remains
an area of active research. See, for example, Fan et al.
(2016) and some of the references therein.
Since Paulson (1964), many authors have sought

to reduce the number of samples required on easier
problem instances by designing algorithms that se-
quentially eliminate arms once they are determined
to be suboptimal with high confidence. See the recent
work of Frazier (2014) and the references therein. How-
ever, in a sense described below, Jennison et al. (1982)
show formally that there are problems with Gaussian
observations where any sequential-elimination algo-
rithm will require substantially more samples than op-
timal adaptive allocation rules. See Section 8 for modi-
fied top-two sampling algorithms designed for an
indifference zone criterion.

The Asymptotic Complexity of Best-Arm Identification.
We described attainable rates of performance on a
worst-case problem instance characterized by Even-
Dar et al. (2002) and Mannor and Tsitsiklis (2004).
A great deal of work has sought “problem-dependent”
bounds, which reveal that the best arm can be iden-
tified more rapidly when the true problem instance is
easier. This is the case, for example, when some arms
are of very low quality and can be distinguished from
the best by using a small number of measurements.
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Asymptotic measures of the complexity of best-arm
identification appear to have been derived indepen-
dently in statistics (Chernoff 1959, Jennison et al. 1982),
simulation optimization (Glynn and Juneja 2004),
and, concurrently with this paper, in the machine
learning literature (Garivier and Kaufmann 2016).
Each of these papers studies a slightly different ob-
jective, but each captures a notion of the number of
samples required to identify the best arm as a function
of the problem instance—that is, as a function the
number of designs, each design’s true quality, and the
distribution of measurement noise.

Glynn and Juneja (2004) build on the OCBA of Chen
et al. (2000) to provide a rigorous large-deviations der-
ivation of the optimal fixed allocation. In particular,
assuming the design with the highest empirical mean
is returned, there is a fixed allocation under which the
probability of incorrect selection decays exponentially,
and the exponent is optimal under all fixed-allocation
rules. The setting studied by this paper is often called
the “fixed-budget” setting in the recent multiarmed
bandit literature. Unfortunately, it may be difficult to
implement the allocation in Glynn and Juneja (2004)
without additional prior knowledge, and so it is un-
clear whether their large deviations exponent is attain-
able by an adaptive algorithm. Later work by Glynn
and Juneja (2015) provides a discussion of this issue.

This paper was highly influenced by a classic pa-
per by Chernoff (1959) on the sequential design of
experiments for binary hypothesis testing. Chernoff’s
asymptotic derivations give great insight into best-
arm identification, which can be formulated as a
multiple-hypothesis testing problem with sequentially
chosen experiments, but, surprisingly, this connec-
tion does not seem to be discussed in the literature.
Chernoff looks at a different scaling than Glynn and
Juneja (2004). Instead of taking the budget of available
measurements to infinity, he allows the algorithm to
stop and declare the hypothesis true or false at any
time, but takes the cost of gathering measurements to
zero, while the cost of an incorrect terminal decision
stays fixed. He constructs rules that minimize ex-
pected total costs in this limit. Chernoff makes re-
strictive technical assumptions, some of which have
been removed in subsequent work (Albert 1961, Kiefer
and Sacks 1963, Keener 1984, Naghshvar et al. 2013,
Nitinawarat et al. 2013).

Jennison et al. (1982) study an indifference-zone
formulation of the problem of identifying the best de-
sign. Like Chernoff (1959), they allow the algorithm
to stop and return an estimate of the best arm at any
time, but rather than penalize incorrect decisions, they
require that the probability correct selection (PCS) ex-
ceeds 1 − δ > 0 for every problem instance. Intuitively,
the expected number of samples required by an algo-
rithm satisfying this PCS constraint must tend to in-

finity as δ → 0. In the case of Gaussian measurement
noise, Jennison et al. (1982) characterize the optimal
asymptotic scaling of expected number of samples in
this limit. The recent multiarmed bandit literature re-
fers to this formulation as the fixed-confidence setting.
A large body ofwork in the recentmachine learning

literature has sought to characterize various notions
of the complexity of best-arm identification (Even-
Dar et al. 2002, Mannor and Tsitsiklis 2004, Audibert
et al. 2010, Gabillon et al. 2012, Karnin et al. 2013,
Jamieson andNowak 2014). However, upper and lower
bounds match up only to constant or logarithmic fac-
tors, and only for particular hard problem instances.
Substantial progress was presented by Kaufmann
and Kalyanakrishnan (2013) and Kaufmann et al.
(2014), who seek to exactly characterize the asymp-
totic complexity of identifying the best arm in both
the fixed-budget and fixed-confidence settings. Still,
the upper and lower bounds presented there do not
match. A short abstract of the current paper appeared
in the 2016 Conference on Learning Theory. In the
same conference, independent work by Garivier and
Kaufmann (2016) provided matching upper and
lower bounds on the complexity of identifying the best
arm in the fixed-confidence setting. Like the present
paper, but unlike Jennison et al. (1982), these results
apply whenever observation distributions are in the
exponential family and do not require an indiffer-
ence zone.
The current paper looks at a different measure. We

study a frequentist setting in which the true quality
of each design is fixed and characterize the rate of
posterior convergence attainable for each problem
instance. We also describe, as a function of the problem
instance, the long-run fraction of measurement effort
allocated to each design by any algorithm attaining
this rate of convergence. These asymptotic limits turn
out to be closely related to some of the aforementioned
results. In particular, the optimal exponent given in
Subsection 6.4 mirrors the complexity measure of
Chernoff (1959). In the same subsection, this exponent
is then simplified into a form derived for Gaussian
distributions by Jennison et al. (1982).

Optimal Budget Allocations. Although the complexity
measure we derive is similar to past work, the pro-
posed algorithms differ substantially. The allocation
rules proposed by Chernoff (1959), Jennison et al.
(1982), and Glynn and Juneja (2004) are essentially
developed as a means of proving that certain rates
are attainable asymptotically. To derive these policies,
the authors begin with a thought experiment: Assum-
ing the experimenter actually knew the true quality of
every arm, what proportion of measurements should
she allocate to each arm in order to gather the most
definitive evidence concerning the identity of the
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optimal arm? One approach to constructing such rules
in practice is to use some fraction of samples to estimate
the arm means and then apply the asymptotically
optimal sampling proportions assuming these esti-
mates to be correct. Such an approach dates back to
at least the work of Kiefer and Sacks (1963), which
followed Chernoff’s work on the sequential design
of experiments.

Early authors made a point to highlight limitations
of such an approach. Jennison et al. (1982) writes that
their proposed procedures “typically. . .do not have
good small sample size properties. A better procedure
would have several stages and a more sophisticated
sampling rule.” In a 1975 review of the sequential
design of experiments, Chernoff (1975) notes that
asymptotic approaches to the optimal sequential
design of experiments had been fairly successful in
circumventing the need to compute Bayesian opti-
mal designs via dynamic programming, but “the ap-
proach is very coarse for moderate sample size prob-
lems.” He writes that two-stage procedures of Kiefer
and Sacks (1963), “sidestep the issue of how to ex-
periment in the early stages,” while constructing the
optimal allocations based on point estimates “treats
estimates of θ based on a few observations with as
much respect as that based on many observations.”

Closely related to these approaches is a large body
of work on optimal computing budget allocations
(Chen et al. 2000). Most of this literature studies
problemswith Gaussian observations. They derive an
approximation to the optimal sampling proportions
as they are presented in Glynn and Juneja (2004),
which appears to simplify computation. This allo-
cation is often stated to be optimal as the number of
arms grows large; more rigorous results to this effect
are established in interestingwork by Pasupathy et al.
(2015), who shows that the sampling ratios of the
OCBA coincide with those of Glynn and Juneja (2004)
in the limit of a sequence of problem instances in
which the number of arms tends to infinity but all
suboptimal arms’ means are bounded away from
optimal by a fixed constant. Optimal budget alloca-
tions have been extended in various directions—for
example, to address Bayesian expected loss objectives
(Chick and Inoue 2001), the problem of identifying an
optimum subject to stochastic constraints (Hunter
and Pasupathy 2013), and the problem of identify-
ing the top m alternatives (Chen et al. 2008). See Chen
et al. (2015) for a more thorough review.

In this paper, we study simple adaptive allocation
rules, which, ostensibly, have no relation to the as-
ymptotic calculations used to derive these optimal
budget allocations. The main insight is that these sim-
ple algorithms automatically adapt their measurement
effort in such a way that their long-run behavior is

deeply linked to the ratios suggested in the work of
Chernoff (1959) and Jennison et al. (1982). A major
advantage of top-two sampling algorithms, however,
is that asymptotic analysis is used only to give insight
into the algorithms, and any approximations have
no impact on their practical performance. A suite of
experiments in Section 7 suggest that the approach
can substantially outperform the optimal allocations
derived from asymptotic theory.

2. Problem Formulation
Consider the problem of efficiently identifying the
best among a finite set of designs based on noisy
sequential measurements of their quality. At each
time n ∈ N, a decision maker chooses to measure the
design In ∈ {1, . . . , k} and observes a measurement
Yn,In . The measurement Yn,i ∈ R associated with de-
sign i and time n is drawn from a fixed, unknown
probability distribution, and the vector Yn ≜ (Yn,1, . . . ,
Yn,k) is drawn independently across time. The de-
cision maker chooses a policy, or adaptive allocation
rule, which is a (possibly randomized) rule for choos-
ing a design In to measure as a function of past ob-
servations I1,Y1,I1 , . . . In−1,Yn−1,In−1 . The goal is to effi-
ciently identify the design with highest mean.
We will restrict attention to problems where mea-

surement distributions are in the canonical one-
dimensional exponential family. The marginal dis-
tribution of the outcome Yn,i has density p(y|θ*

i ) with
respect to a base measure ν, where θ*

i ∈ R is an un-
known parameter associated with design i. This den-
sity takes the form

p y|θ( ) � b y
( )

exp θT y
( ) − A(θ){ }

θ ∈ R , (1)
where b, T, and A are known functions, and A(θ) is
assumed to be twice differentiable. We will assume
that T is a strictly increasing function so that μ(θ)≜∫
yp(y|θ)dν(y) is a strictly increasing function of θ.

Many common distributions can be written in this
form, including Bernoulli, normal (with known var-
iance), Poisson, exponential, chi-squared, and Pareto
(with known minimal value).
Throughout the paper, θ* ≜ θ*

1, . . . , θ
*
k

( )
will denote

the unknown true parameter vector, and θ and θ′
will be used to denote possible alternative parameter
vectors. Let I∗ � argmax1≤i≤k θ∗

i denote the unknown
best design. We will assume throughout that θ∗

i �� θ∗
j

for i �� j so that I∗ is unique, although this can be re-
laxed by considering an indifference zone formula-
tion where the goal is to identify an ε–optimal design,
for some specified tolerance level ε > 0.

2.1. Prior and Posterior Distributions
The policies studied in this paper make use of a prior
distribution Π1 over a set of possible parameters Θ
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that contains θ*. Based on a sequence of observations
(I1,Y1,I1 , . . . , In−1,Yn−1,In−1), beliefs are updated to attain
a posterior distributionΠn.We assumeΠ1 has density
π1 with respect to Lebesgue measure. In this case, the
posterior distribution Πn has corresponding density

πn(θ) � π1(θ)Ln−1(θ)∫
Θ
π1(θ′)Ln−1(θ′)dθ′ n ≥ 2, (2)

where

Ln−1(θ) � ∏
n−1

l�1
p Yl,Il |θIl

( )
,

is the likelihood function. Although this formulation
enforces some technical restrictions to facilitate the-
oretical analysis, it allows for very general prior
distributions and, in particular, allows for the quality
of different designs to be correlated under the priors.

2.2. Optimal Action Probabilities
Let

Θi ≜ θ ∈ Θ

⃒⃒⃒⃒
θi > max

j��i
θj

{ }
denote the set of parameters under which design i is
optimal, and let

αn,i ≜Πn(Θi) �
∫
Θi

πn(θ)dθ (3)

denote the posterior probability assigned to the event
that action i is optimal. Our analysis will focus on
Πn(Θc

I∗ ) �1 − αI∗ , which is the posterior probability
assigned to the event that an action other than I∗ is
optimal. The next section will introduce policies un-
der which Πn(Θc

I∗ ) → 0 as n → ∞, and the rate of con-
vergence is essentially optimal. This kind of analysis,
which looks at the long-run dynamics of the posterior
in a frequentist model, has a rich history in statistics
(see, e.g., Freedman 1963, Diaconis and Freedman
1986, Barron et al. 1999, Ghosal et al. 2000).

Let me again highlight that this performance metric
differs from the probability of incorrect selection. To study
the probability of incorrect selection, we would fix a
decision rule, with a conventional choice being to
return the arm în that generated the largest empirical
mean-reward prior to time n. We would then study
the rate atwhichP(în �� I∗)decays as ngrows under the
proposed procedure for sampling arms. This setup is
called the fixed-budget setting in the multiarmed
bandit literature. The techniques in this paper do not
yield exponentially decaying bounds on this metric
and cannot be easily extended to do so. However,
there are deep connections with best-arm identifica-
tion in the so-called fixed-confidence setting, which

are described in Online Appendix EC.2 or Qin et al.
(2017).

2.3. Further Notation
Before proceeding, we introduce some further nota-
tion. Let ^n denote the sigma algebra generated by
(I1,Y1,I1 , . . . In,Yn,In). For all i ∈ {1, . . . , k} and n ∈ N,
define

ψn,i ≜P(In � i|^n−1) Ψ n,i ≜
∑n
	�1

ψ	,i ψn,i ≜ n−1Ψ n,i.

Each of these measures the effort allocated to design i
up to time n.

3. Algorithms
This section proposes three algorithms for allocating
measurement effort. Each depends on a tuning pa-
rameter β > 0,whichwill sometimes be set to a default
value of 1/2. Each algorithm is based on the same
high-level principle. At every time step, each algo-
rithm computes an estimate Î ∈ {1, . . . , k} of the op-
timal design and measures that with probability β.
Otherwise, we consider a counterfactual: In the (pos-
sibly unlikely) event that Î is not the best design, which
alternative Ĵ �� Î is most likely to be the best design?
With probability 1 − β, the algorithm measures the al-
ternative Ĵ. The algorithms differ in how they com-
pute Î and Ĵ. The most computationally efficient is
the modified version of Thompson sampling, under
which Î and Ĵ are themselves randomly sampled from
a probability distribution.
We will see that asymptotically, all three algo-

rithms allocate fraction β of measurement effort to
measuring the estimated-best design, and the re-
maining fraction to gathering evidence about alter-
natives. The algorithms adjust how measurement
effort is divided among these alternative designs as
evidence is gathered, allocating less effort to mea-
suring clearly inferior designs and greater effort to
measuring designs that are more difficult to distin-
guish from the best.

3.1. Top-Two Probability Sampling
With probability β, the top-two probability sampling
(TTPS) policy plays the action În � argmaxi αn,i which,
under the posterior, ismost likely to be optimal.When
the algorithm does not play În, it plays the most likely
alternative Ĵn � argmaxj��În αn,j, which is the action that
is second most likely to be optimal under the poste-
rior. Put differently, the algorithm sets ψn,În � β, and
ψn,Ĵn

� 1 − β.

3.2. Top-Two Value Sampling
We now propose a variant of top-two sampling that
considers not only the probability a design is optimal,
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but the expected amount by which its quality exceeds
that of other designs. In particular, we will define
below ameasureVn,i of the value of design i under the
posterior distribution at time n. Top-two value sam-
pling (TTVS) computes the top-two designs under this
measure: În � argmaxi Vn,i and Ĵn � argmaxj��În Vn,j. It
then plays the top design În with probability β and
the best alternative Ĵn otherwise. As observations are
gathered, beliefs are updated and so the top two de-
signs change over time. The measure of value Vn,i is
defined below.

The definition of TTVS depends on a choice of
(utility) function u : θ �→R, which encodes a measure
of the value of discovering a design with quality θi.
Two natural choices of u are u(θ) � θ and u(θ) � μ(θ).
The paper’s theoretical results allow u to be a general
function, but we assume that it is continuous and
strictly increasing. For a given choice of u, and any
i ∈ {1, . . . , k}, the function

vi(θ) � max
j

u θj
( ) −max

j��i
u θj
( )

�
0 if θ /∈ Θi

u(θi) −max
j��i

u θj
( )

if θ ∈ Θi

{

provides a measure of the value of design i when the
true parameter is θ. It captures the improvement in
decision quality due to design i’s inclusion in the
choice set. Let

Vn,i �
∫
Θ
vi(θ)πn(θ)dθ �

∫
Θi

vi(θ)πn(θ)dθ (4)

denote the expected value of vi(θ) under the posterior
distribution at time n. This can be viewed as the
option value of design i: It is the expected additional
value of having the option to choose design i when it
is revealed to be the best design. Note that the inte-
gral (4) defining Vn,i is a weighted version of the in-
tegral defining αn,i. The paper will formalize a sense
in which Vn,i and αn,i are asymptotically equivalent
as n → ∞, and as a result the asymptotic analysis of
top-two value sampling essentially reduces to the
analysis of top-two probability sampling.

3.3. Thompson Sampling
Thompson sampling is an old and popular heuristic
for multiarmed problems. The algorithm simply
samples actions according to the posterior probability
they are optimal. In particular, it selects action i with
probability ψn,i � αn,i, where αn,i denotes the proba-
bility action i is optimal under a parameter drawn
from the posterior distribution.

Thompson sampling can have very poor asymp-
totic performance for the best-arm identification prob-
lem. Intuitively, this is because once it estimates that a
particular arm is thebestwith reasonablyhighprobability,

it selects that arm in almost all periods at the expense of
refining its knowledge of other arms. If αn,i = 0.95, then
the algorithm will only select an action other than i
roughly once every 20 periods, greatly extending the
time it takes until αn,i > 0.99. This insight can be made
formal; our results imply that Thompson sampling
attains a only attains a polynomial, rather exponential,
rate of posterior convergence. A similar reasoning ap-
plies to other multiarmed bandit algorithms. The work
of Bubeck et al. (2009) shows formally that algorithms
satisfying regret bounds of order log(n) are neces-
sarily far from optimal for the problem of identifying
the best arm.
With this in mind, it is natural to consider a modi-

fication of Thompson sampling that simply restricts
the algorithm from sampling the same action too
frequently. One version of this idea is proposed below.

3.4. Top-Two Thompson Sampling
This section proposes top-two Thompson sampling
(TTTS), which modifies standard Thompson sampling
by adding a resampling step. As with TTPS and TTVS,
this algorithm depends on a tuning parameter β > 0
that will sometimes be set to a default value of 1/2.
As in Thompson sampling, at time n, the algorithm

samples a design I ∼ αn. Design I is measured with
probability β, but, in order to prevent the algorithm
from exclusively focusing on one action, with prob-
ability 1 − β, an alternative design is measured. To
generate this alternative, the algorithm continues sam-
pling designs J ∼ αn until the first time J �� I. This can
be viewed as a top-two sampling algorithm, where
the top two are chosen by executing Thompson sam-
pling until two distinct designs are drawn.
Under top-two Thompson sampling, the proba-

bility of measuring design i at time n is

ψn,i � αn,i β + 1 − β
( )∑

j��i

αn,j

1 − αn,j

( )
.

This expression simplifies as the algorithm defini-
tively identifies the best design. As αn,I* → 1, ψn,I∗ → β,
and for each i �� I∗,

ψn,i

1 − ψn,I∗
∼ αn,i

1 − αn,I∗
.

In this limit, the true best design is sampled with
probability β. The probability i is sampled given I∗ is
not is equal to the posterior probability i is optimal
given I∗ is not.

3.5. Computing and Sampling According to Optimal
Action Probabilities

Here, we provide some insight into how to efficiently
implement the proposed top-two rules in important
problem classes. We begin with top-two Thompson
sampling, which is often the easiest to implement.
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Note that given an ability to sample fromΠn, it is easy
to sample from the posterior distribution over the
optimal design αn. In particular, if θ̂ ∼ Πn is drawn
randomly from the posterior, then argmaxi θ̂i is a
random sample from αn. Either through the choice
of conjugate prior distributions or through the use
of Markov chain Monte Carlo, it is possible to effi-
ciently sample from the posterior formany interesting
models. Algorithm 1 shows how to directly sample an
action according to TTTS by sampling from the pos-
terior distribution. With this algorithm, the number of
times step 7 is repeated is a geometrically distributed
random variable withmean 1/(1 − αn,I). Therefore, this
step only becomes inefficient once the posterior is
very highly concentrated on a single action and there
is little benefit to further exploration. It is worth high-
lighting that this algorithm does not require computing
or approximating the distribution αn.

Algorithm 1 Top-Two Thompson Sampling (β)
1: Sample θ̂ ∼ Πn and set I ← argmaxi θ̂i

8 Apply Thompson sampling
2: Sample B ∼ Bernoulli(β)
3: if B � 1 then 8Occurs with probability β.
4: Play I
5: else
6: repeat
7: Sample θ̂ ∼ Πn and set J ← argmaxj θ̂j

8 Repeat Thompson sampling
8: until J �� I
9: Play J

10: end if

The optimal action probabilities αn,i and values Vn,i

are defined by k-dimensional integrals, which may be
difficult to compute in general, even if the posterior
Πn has a closed form. Algorithm 2 shows how to
approximate αn,i and Vn,i using samples θ1, · · · ,θM,
which enables efficient approximations to TTPS and
TTVS whenever posterior samples can be efficiently
generated.

Algorithm 2 SampleApprox(K, M, u, θ1, . . . ,θM)
1: 6i ← {m|i � argmaxj θm

j } ∀i ∈ {1, . . . ,K}
2: α̂i ← |6i|/m ∀i ∈ {1, . . . ,K}
3: V̂i ← M−1∑

m∈6i

(
u(θm

i ) −maxj ��i u(θm
j )
)

∀i ∈ {1, . . . ,K}
4: return α̂, V̂

Thankfully, the computation of αn,i and Vn,i sim-
plifies when the algorithm begins with an indepen-
dent prior over the qualities θ1, . . .θk of the k designs.
To understand this fact, suppose X1, . . . ,Xk ∈ R are
independently distributed and continuous random
variables. Then,

P X1 � max
i

Xi

( )
�
∫
x∈R

f1(x)∏
k

j�2
Fj(x)dx, (5)

where f1 denotes the probability density function of
X1 and F2, . . . , FK are the cumulative distribution
functions ofX2, . . ,Xk. In particular, P(X1 �maxi Xi) can
be computed by solving a one-dimensional integral.
Based on this insight, Online Appendix EC.3 provides
an efficient implementation of TTPS for a problem with
independent beta priors and binary observations. That
implementation approximates one-dimensional inte-
grals like (5) using quadrature with m points and has
the time and space complexity that scale as O(km).

4. First Insights from a
Numerical Experiment

Some of the paper’s main insights are reflected in a
simple numerical experiment. Consider a problem
where observations are binary Yn,i ∈ {0, 1}, and the
unknown vector θ* � (.1, .2, .3, .4, .5) defines the true
success probability of each design. Each algorithm
begins with an independent uniform prior over the
components of θ*. The experiment compares the per-
formance of top-two probability sampling, top-two
value sampling,2 and top-two Thompson sampling
with β � 1/2 against Thompson sampling and a uni-
form allocation rule, which allocates equal measure-
ment effort (ψn,i � 1/5) to each design. The uniform
allocation is a natural point of comparison. In the
author’s experience, it is widely used in practice in a
variety of domains. Figure 1 displays the average
number ofmeasurements required for the posterior to
reach a given confidence level. In particular, the ex-
periment tracks the first time when maxi αn,i ≥ c for
various confidence levels c ∈ (0, 1). Figure 1 displays
the average number of measurements required for
each algorithm to reach each fixed confidence level,
where the average was taken over 100 trials in panel
(a) and 500 in panel (b). Even for this simple problem
with five designs, the proposed algorithms can reach
the same confidence level by using fewer than half the
measurements required by a uniform allocation rule.
Although all the top-two rules attain the same as-
ymptotic rate of convergence, we can see that top-two
probability sampling is slightly outperformed in this
experiment. Figure 1(a) compares Thompson sam-
pling to top-two Thompson sampling. Thompson
sampling (TS) appears to reach low confidence levels as
rapidly as top-two TS, but as suggested in Section 3.3, is
very slow to reach high levels of confidence. It re-
quires more than 60% more measurements to reach
confidence 0.95 and over 250%moremeasurements to
reach confidence 0.99. TS requires an onerous number
of measurements to reach confidence 0.999, and so we
omit this experiment.
Figure 2 provides insight into how the proposed

algorithms differ from the uniform allocation. It dis-
plays the distribution of measurements and posterior
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beliefs at the first time when a confidence level of
0.999 is reached. Again, all results are averaged
across 500 trials. Figure 2(a) displays the average
number of measurements collected from each design.
It is striking that although TTTS, TTPS, and TTVS
seem quite different, they all settle on essentially the
same distribution of measurement effort. Because β �
1/2, roughly one-half of the measurements are col-
lected from I∗ � 5. Moreover, fewer measurements are
collected from designs that are farther from optimal,
and most of the remaining half of measurement
effort is allocated to design 4. Notice that using the

same number of noisy samples, it is much more dif-
ficult certify that θ∗

4 < θ∗
5 than that θ∗

1 < θ∗
5, both be-

cause θ∗
4 is closer to θ∗

5 and because observations from
a Bernoulli distribution with parameter 0.4 have
higher variance than under a Bernoulli distribution
with parameter 0.1.
Figure 2(b) investigates the posterior probability

αn,i assigned to the event that design i is optimal. To
make the insights more transparent, these are plotted
on log-scale, where the value log(1/αn,i) can roughly
be interpreted as the magnitude of evidence that al-
ternative i is not optimal. By using an equal allocation of

Figure 1. (Color online) Number of Measurements Required to Reach Given Confidence Level

Notes. (a) TS vs. top-two TS. (b) Comparison with uniform allocation.

Figure 2. (Color online) Distribution of Measurements and Posterior Beliefs at Termination

Notes. (a) Measurements collected of each design. (b) Value of log(1/αn,i) for each design i.
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measurement effort across the designs, the uniform
sampling rule gathers an enormous amount of evi-
dence to rule out design 1, but an order-of-magnitude
less evidence to rule out design 4. Instead of allocating
measurement effort equally across the alternatives,
TTTS, TTPS, and TTVS appear to exactly adjust mea-
surement effort to gather equal evidence that each of
the first four designs is not optimal.

Intuitively, in the long run, each of the proposed
algorithms will allocate measurement effort to design
5—the true best design—and to whichever other de-
signs could most plausibly be optimal. If too much
measurement effort has been allocated to a particular
design, then the posterior will indicate that it is clearly
suboptimal, and effort will be allocated elsewhere
until a similar amount of evidence has been gathered
about other designs. In this way, measurement effort
is automatically adjusted to the appropriate level.

5. Main Theoretical Results
Our main theoretical results concern the frequentist
consistency and rate of convergence of the posterior
distribution. Recall that

Πn Θc
I∗

( ) � ∑
i ��I∗

αn,i

captures the posterior mass assigned to the event
that an action other than I∗ is optimal. One hopes that
Πn(Θc

I∗ ) → 0 as the number of observations n tends to
infinity, so that the posterior distribution converges
on the truth.Wewill show that under the TTTS, TTPS,
and TTVS allocation rules, Πn(Θc

I∗ ) converges to zero
an exponential rate and that the exponent governing
the rate of convergence is nearly the best possible.

To facilitate theoretical analysis, wewillmake three
additional boundedness assumptions, which are as-
sumed throughout all formal proofs. This rules out
some cases of interest, such as the use of multivariate
Gaussian priors. However, we otherwise allow for
quite general correlated priors, expressed in terms of
a density over a compact set. This stands in contrast,
for example, to previous analyses of Thompson sam-
pling, which typically rely heavily on the use of in-
dependent conjugate priors.Assumption 1 is used only
in establishing certain asymptotic results concerning
the rate of posterior concentration. Analogous results
are easily established for certain unbounded conjugate
priors,3 but the author still has not identified the right
technical conditions that generalize these results.

Assumption 1. The parameter space is a bounded open
hyper-rectangle Θ � (θ, θ)k, the prior density is uniformly
bounded with

0 < inf
θ∈Θ

π1(θ) < sup
θ∈Θ

π1(θ) < ∞,

and the log-partition function has bounded first derivative
with supθ∈[θ,θ] |A′(θ)| < ∞.

The paper’s main results, as stated in the next the-
orem, characterize the rate of posterior convergence
under the proposed algorithms, formalize a sense in
which this is the fastest possible rate, and bound the
impact of the tuning parameter β ∈ (0, 1). The state-
ment depends on distribution-dependent constants
Γ*β > 0 and Γ∗ > 0 that are presented here but will be
more explicitly characterized in Section 6.
The first part of the theorem shows that there is an

exponent Γ∗ > 0 such that Πn(Θc
I∗ ) cannot converge to

zero at a rate faster than e−nΓ∗ under any allocation rule
and shows that TTPS, TTVS, and TTTS attain this
optimal rate of convergence when the tuning pa-
rameter β is set optimally. This optimal exponent is
shown to equal

Γ∗ � max
ψ

min
θ∈Θc

I∗

∑k
i�1

ψid θ∗
i ‖θi

( )
,

where d(θi‖θ′
i ) denotes the Kullback–Leibler diver-

gence between the observation distributions p(y|θi)
and p(y|θ′

i ). This can be viewed as the value of a game
between two players. An experimenter first chooses a
probability distributionψ, determining the frequency
with which arms are measured. An adversary then
chooses the worst-case configuration of arm means,
selecting an alternative θ � (θ1, . . . , θk) that is hard to
distinguish from θ∗ under the measurement alloca-
tion ψ, but under which the arm I∗ is no longer op-
timal. Complexity terms of this formdate back over 60
years to classic work of Chernoff (1959) on the se-
quential design of experiments.
The remainder of the theorem investigates the role

of the tuning parameter β ∈ (0, 1). Part 2 shows that
there is an exponent Γ∗β > 0 such that Πn(Θc

I∗ ) → 0 at
rate e−nΓ

∗
β under TTPS, TTVS, or TTTS with parameter

β, and this is shown to be optimal among a restricted
class of allocation rules. In particular, we observe that
β controls the fraction ofmeasurement effort allocated
to the true best design I∗, in the sense that ψn,I∗ → β as
n → ∞ under each of the proposed algorithms. These
algorithms attain the error exponent

Γ∗β � max
ψ:ψI∗ �β

min
θ∈Θc

I∗

∑k
i�1

ψid θ∗
i ‖θi

( )
,

which differs from Γ∗ because the experimenter is
constrained tomeasure the true best armwith fraction
β of measurement effort. A lower bound shows that
this exponent is optimal among a constrained class:
Precisely, on any sample path on which an adaptive
algorithm allocates a faction β of overall effort to
measuring I∗, the posterior cannot converge at rate
faster than e−nΓ

∗
β . In this sense, while a tuning param-

eter controls the long-run measurement effort allocated
to the true best design, TTPS, TTVS, and TTTS all
automatically adjust how the remaining measurement
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effort is allocated among the k − 1 suboptimal designs
in an asymptotically optimal manner.

The final part of the theorem shows that the con-
strained exponent Γ*β is close to the largest possible
exponent Γ∗ whenever β is close to the optimal value.
The choice of β � 1/2 is particularly robust: Γ∗1/2 is
never more than a factor of 2 away from the optimal
exponent. This result implies that e−2nΓ

∗
1/2 ≤ e−nΓ∗ , so 2n

samples collected with top-two Thompson sampling
using β � 1/2 give a faster asymptotic rate of poste-
rior convergence than n samples collected using any
adaptive algorithm.

Theorem 1. There exist constants {Γ∗β > 0 : β ∈ (0, 1)} such
that Γ∗ � maxβ Γ∗β exists, β∗ � argmaxβ Γ∗β is unique, and
the following properties are satisfied with probability 1:

1. Under TTTS, TTPS, or TTVS with parameter β∗,

lim
n→∞ − 1

n
logΠn(Θc

I∗ ) � Γ∗.

Under any adaptive allocation rule,

lim sup
n→∞

− 1
n
logΠn(Θc

I∗ ) ≤ Γ∗.

2.UnderTTTS, TTPS, orTTVSwithparameterβ ∈ (0, 1),

lim
n→∞− 1

n
logΠn(Θc

I∗ ) � Γ∗β and lim
n→∞ψn,I∗ � β.

Under any adaptive allocation rule,

lim sup
n→∞

− 1
n
logΠn(Θc

I∗ ) ≤ Γ∗β

on any sample path with lim
n→∞ψn,I∗ � β.

3. Γ∗ ≤ 2Γ∗1
2
and

Γ∗

Γ∗β
≤ max

β∗

β
,
1 − β∗

1 − β

{ }
.

This theorem is established in a sequence of results in
Section 6. The lower bounds in parts 1 and 2 are given,
respectively, in Propositions 6 and 7. Proposition 8
shows that the top-two rules attain these optimal
exponents. Part 3 is stated as Lemma 3 in Section 6.

A key element of the proof is to show that, under the
proposed top-two sampling algorithms applied to
any problem instance θ*, the long-run fraction of sam-
ples collected from each arm converges almost surely
to the vector ψ*

β(θ*) that attains the maximum in the
definition of Γ∗β. If β is set or tuned appropriately, sam-
pling proportions converge almost surely to the sam-
pling proportions that attain the maximum in the defi-
nition of Γ∗. Interestingly, these optimal asymptotic
sampling proportions and the exponent Γ∗ have been
derived several times, seemingly independently, by

authors aiming to optimize different performance
criteria (Chernoff 1959, Jennison et al. 1982, Glynn
and Juneja 2004). In this sense, the allocation ψ*(θ*) to
which top-two algorithms converge appears to be
linked to many notions of optimal performance in
best-arm identification problems. However, sub-
stantial subtleties arise because convergence to this
allocation with probability 1, as established in this
paper, may not be sufficient alone to guarantee op-
timality according to these performance criteria.
A more complete discussion of related work is given
in Section 1.2, and a more technical discussion of al-
ternative performance criteria is given in Online Ap-
pendix EC.2.

5.1. An Upper Bound on the Error Exponent
Before proceeding, we will state an upper bound on
the error exponent when β � 1/2 that is closely related
to complexity terms that have appeared in the liter-
ature on best-arm identification (e.g., Audibert et al.
2010). This bound depends on the gaps between the
means of the different observation distributions.
We say that a real valued random variable X is

σ-sub-Gaussian if E exp{λ(X − E[X])}[ ] ≤ exp λ2σ2

2

{ }
so

that the moment-generating function of X − E[X] is
dominated by that of a zero mean Gaussian random
variable with variance σ2. Gaussian random variables
are sub-Gaussian, as are uniformly bounded random
variables. The next result applies to both Bernoulli
and Gaussian distributions, as each can be parame-
terized with sufficient statistic T(y) � y.

Proposition 1. Suppose the exponential family distribution
is parameterized with T(y) � y and that for each θ ∈ [θ, θ],
if Y ∼ p(y|θ), then Y is sub-Gaussian with parameter σ.
Then,

Γ∗1
2
≥ 1
16σ2

∑
i ��I∗ Δ−2

i
,

where for each i ∈ {1, . . . , k},
Δi � E[Yn,I∗ ] − E[Yn,i]

is the difference between the mean under θ∗
I∗ and the mean

under θ∗
i .

This shows that Πn(Θc
I∗ ) decays at asymptotic rate

faster than exp − nmini Δ2
i

16kσ2

{ }
, so convergence is rapid

when there is a large gap between the means of dif-
ferent designs. In fact, Proposition 1 replaces the
dependence on (1/k) times the smallest gap Δi with a
dependence on (∑k

i�2 Δ−2
i )−1, which captures the av-

erage inverse gap. This rate is attained only by an
intelligent adaptive algorithm that allocates more
measurement effort to designs that are nearly optimal
and less to designs that are clearly suboptimal. In fact,
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the next result shows that the asymptotic perfor-
mance of uniform allocation rule depends only on the
smallest gap mini��I∗ Δ2

i , and therefore even if some
designs could be quickly ruled out, the algorithm can’t
leverage this to attain a faster rate of convergence.

Proposition 2. If Yn,I∗ ∼ 1(0, σ2) andYn,i ∼ 1(−Δi, σ2) for
each i �� I∗,

lim
n→∞− 1

n
logΠn Θc

I∗
( ) � −mini Δ

2
i

4kσ2

under a uniform allocation rule, which sets ψn,i � 1/k for
each i and n.

5.2. Consistent Tuning of β
Our previous results show that if the top-two sam-
pling algorithms are applied with the optimal problem-
dependent tuning parameter β* � argmaxβ Γ∗, then
these algorithms attain the optimal rate of poste-
rior convergence e−Γ∗n. Unfortunately, β* is typically
unknown, and so we also investigate robustness to
the choice of β, both in theory, as in Theorem 1 above,
and in simulation experiments presented in Sec-
tion 7. Still, a natural question is whether this tuning
parameter can be adjusted in a dynamic fashion to
converge on β*. We initiate the study of such exten-
sions in this section.

First, note that it is easy to extend the definition of
each top-two sampling algorithm so that they use an
adaptive sequence of tuning parameters (βn : n ∈ N).
For example, top-two probability sampling identifies
În � argmaxi αn,i and Ĵn � argmaxj��În αn,j and then
chooses among these with respective probabilities
ψn,În � βn and ψn,Ĵn

� 1 − βn. The next lemma confirms
that, if applied with such a sequence of tuning pa-
rameters such that βn→ β∗, the top-two sampling
algorithms attain the optimal convergence rate e−nΓβ∗ .

Proposition 3. Suppose TTTS, TTVS, and TTPS are ap-
plied with an adaptive sequence of tuning parameters (βn :
n ∈ N), where for each n, βn is ^n−1 measurable. Then, with
probability 1, on any sample path on which βn → β∗,

Πn Θc
I∗

( )�. e−nΓ∗ .
The next lemma confirms that such consistent tuning is
possible. The method for tuning β, presented in Algo-
rithm 3, simply solves numerically for the optimal value
of β assuming that the true values of the parameters
(θ1, . . .θk) are given by their respective posterior means.

Unfortunately, this tuning method is complex, spoil-
ing some of elegance of the top-two sampling algo-
rithms. A significant open question is whether sim-
pler methods for adapting β could be adopted.

Lemma 1. Under TTTS, TTPS, or TTVS with an adap-
tive sequence of tuning parameters (βn : n ∈ N) adjusted
according to Algorithm 3, βn → β* almost surely. Therefore,
Πn(Θc

I∗ ) �. e−nΓ∗ .

Algorithm 3 Top-Two Sampling with β-Tuning
1: Input κ ≥ 2, β̂ ∈ (0, 1).
2: Set counter 	 � 1
3: for n ∈ {1, 2, 3, 4, . . .} do
4: Sample In ∼ TopTwo(πn, β̂)
5: Measure In and observe Yn,In
6: Update play-count Sn+1, In ← Sn,In+1
7: Update posterior πn+1(θ) ∝ πn(θ)p Yn,In | θIn

( )
8: if mini Sn,i ≥ κ	 then
9: 	 ← 	+ 1

10: Compute posteriormean θ̂ ← ∫
Θ
θπn+1(θ)dθ

11: if argmaxi θ̂i is unique then
12: Estimate best arm Î ← argmaxi θ̂i

13: Estimate best allocation
ψ̂ ← argmaxψ minθ∈Θc

Î
Dψ(θ̂‖θ)

14: β̂ ← ψ̂Î
15: end if
16: end if
17: end for

6. Analysis
6.1. Asymptotic Notation
To simplify the presentation, it is helpful to intro-
duce additional asymptotic notation. We say two se-
quences an and bn taking values in R are logarithmi-
cally equivalent, denoted by an �. bn, if 1

n log
( an
bn

)→ 0 as
n → ∞. This notation means that an and bn are equal
up to first order in the exponent. With this notation,
Theorem 1 implies that the top-two sampling rules
with parameter β attain the convergence rate Πn(Θc

I∗ ) �.
e−nΓ

∗
β . This is an equivalence relation, in the sense that

if an �. bn and bn �. cn, then an �. cn. Note that an + bn �.
max{an, bn}, so that the sequence with the largest ex-
ponent dominates. In addition, for any positive con-
stant c, can �. an, so that constant multiples of sequences
are equal up to first order in the exponent. When ap-
plied to sequences of random variables, these relations
are understood to apply almost surely.
It is natural to wonder whether the proposed al-

gorithms asymptotically minimize expressions like∑
i��I∗ (θ∗

I∗ − θi)αn,i, which account for how far some de-
signs are from optimal. We note, in passing, that∑

i��I∗
ciαn,i �. max

i��I∗
αn,i

for any positive costs ci > 0, and so any such perfor-
mance measures are equal to first order in the ex-
ponent. Similar observations have been used to jus-
tify the study of the probability of incorrect selection,
rather than notions of the expected cost of an in-
correct decision (Glynn and Juneja 2004, Audibert
et al. 2010).

6.2. Posterior Consistency
The next proposition provides a consistency and
anticonsistency result for the posterior distribution.
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The first part says that if design i receives infinite
measurement effort, the marginal posterior distri-
bution of its quality concentrates around the true
value θ∗

i . The second part says that when restricted to
designs that are not measured infinitely often, the
posterior does not concentrate around any value. The
posterior converges to the truth as infinite evidence is
collected, but nothing can be ruled out with certainty
based on finite evidence.

Proposition 4. With probability 1, for any i ∈ {1, . . , k}, if
Ψ n,i → ∞, then, for all ε > 0,

Πn θ ∈ Θ|θi /∈ θ∗
i − ε, θ∗

i + ε
( ){ }( ) → 0.

If( � {j ∈ {1, . . . , k}| limn→∞ Ψ n,j < ∞} is nonempty, then

inf
n∈N Πn θ ∈ Θ|θi ∈ θ′

i , θ
′′
i

( ) ∀i ∈ (
{ }( )

> 0

for any collections of open intervals (θ′
i , θ

′′
i ) ⊂ (θ, θ)

ranging over i ∈ (.

This result is the key to establishing that αn,I∗ → 1
under each of the proposed algorithms. The next sub-
section gives a more refined result that allows us to
characterize the rate of convergence.

6.3. Posterior Large Deviations
This section provides an asymptotic characteriza-
tion of posterior probabilities Πn(Θ̃) for any open set
Θ̃ ⊂ Θ and under any adaptive measurement strat-
egy. The characterization depends on the notion of
Kullback–Leibler divergence. For two parameters
θ, θ′ ∈ R, the log-likelihood ratio, log p(y|θ)/p(y|θ′)( )

,
provides a measure of the amount of information y
provides in favor of θ over θ′. The Kullback–Leibler
divergence

d(θ‖θ′)≜
∫

log
p y|θ( )
p y|θ′( )( )

p y|θ( )
dν y
( )

is the expected value of the log-likelihood under ob-
servations drawn p(y|θ). Then, if the design tomeasure
is chosen by sampling from a probability distribu-
tion ψ over {1, . . , k},

Dψ(θ‖θ′)≜ ∑k
i�1

ψid θi‖θ′
i

( )
is the average Kullback–Leibler divergence between
θ and θ′ under ψ.

Under the algorithms, we consider, the effort allo-
cated tomeasuring design i, ψn,i ≜P(In �i|^n−1), changes
over time as data are collected. Recall that ψn,i ≜
n−1∑n

	�1 ψ	,i captures the fraction of overall effort al-
located to measuring design i over the first n periods.
Under an adaptive allocation rule, ψn is function of
the history (I1,Y1,I1 , . . . In−1,Yn−1,In−1) and is therefore a

random variable. Given that measurement effort has
been allocated according to ψn, Dψn

(θ*‖θ) quantifies
the average information acquired that distinguishes
θ from the true parameter θ*. The following prop-
osition relates the posterior mass assigned to Θ̃ to
infθ∈Θ̃ Dψn

(θ*‖θ), which captures the element in Θ̃ that
is hardest to distinguish from θ* based on samples
from ψn.

Proposition 5. For any open set Θ̃ ⊂ Θ,

Πn(Θ̃) �. exp −n inf
θ∈Θ̃

Dψn
(θ*‖θ)

{ }
.

To understand this result, consider a simpler setting
where the algorithm measures design i in every pe-
riod, and consider some θwith θi �� θ∗

i . Then, the log-
ratio of posterior densities

log
πn(θ)
πn(θ∗)
( )

� log
π1(θ)
π1(θ∗)
( )

+∑n−1
	�1

log
p(Y	,i|θi)
p Y	,i|θ∗

i

( )( )

can bewritten as the sum of the log-prior ratio and the
log-likelihood ratio. The log-likelihood ratio is neg-
ative drift random walk: It is the sum of n − 1 inde-
pendent and identically distributed terms, each of
which has mean

E log
p(Y1,i|θi)
p Y1,i|θ∗

i

( )( )[ ]
� E − log

p Y1,i|θ∗
i

( )
p(Y1,i|θi)
( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� −d θ∗
i ‖θi

( )
.

Therefore, by the law of large numbers, as n → ∞,
n−1 log πn(θ)/πn(θ∗)( ) → −d(θ∗

i ‖θi), or, equivalently,
the ratio of the posterior densities decays exponen-
tially as

πn(θ)
πn(θ∗) �

. exp −nd θ∗
i ‖θi

( ){ }
.

This calculation can be carried further to show that if
the designs measured (I1, I2, I3, . . .) are drawn in-
dependently of the observations (Y1,Y2,Y3, . . .) from a
fixed probability distribution ψ, then

πn(θ)
πn(θ∗) �

. exp −nDψ θ*‖θ( ){ }
. (6)

Now, by a Laplace approximation, one might expect
that the integral

∫
Θ̃
πn(θ)dθ is extremely well approx-

imated by integrating around a vanishingly small ball
around the point

θ̂ � argmin
θ∈Θ̃

Dψ θ*‖θ( )
.

These are the main ideas behind Proposition 5, but
there are several additional technical challenges in-
volved in a rigorous proof. First, we need that a
property like (6) holds when the allocation rule is
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adaptive to the data. Next, convergence of the integral
of the posterior density requires a form of uniform
convergence in (6). Finally, sinceψn changes over time,
thepoint argminθ∈Θ̃ Dψn

(θ*‖θ) changes over time, and
basic Laplace approximations don’t directly apply.

6.4. Characterizing the Optimal Allocation
Throughout this paper, an experimenter wants to
gather enough evidence to certify that I∗ is optimal,
but because she does not know θ*, she does not know
which measurements will provide the most infor-
mation. To characterize the optimal exponent Γ∗,
however, it is useful to consider the easier problem of
gathering the most effective evidence when θ* is
known. We can cast this as a game between two
players:

• An experimenter, who knows the true parameter
θ∗, chooses a (possibly adaptive) measurement rule.

• A referee observes the resulting sequence of ob-
servations (I1,Y1,I1 , . . . , In−1,Yn−1,In−1) and computes pos-
terior beliefs (αn,1, . . , αn,k) according to Bayes rule (2, 3).

• How can the experimenter gather the most com-
pelling evidence? A rule which is optimal asymptot-
ically should maximize the rate at which αn,I∗ →1 as
n → ∞.

In order to drive the posterior probability αn,I∗ to 1,
the decision maker must be able to rule out all pa-
rameters in Θc

I∗ under which the optimal action is
not I∗. Our analysis shows that the posterior proba-
bility assigned to Θc

I∗ is dominated by the parame-
ter that is hardest to distinguish from θ∗ under ψn.
In particular, by Proposition 5,

Πn Θc
I∗

( )�. exp −n min
θ∈Θc

I∗
Dψn

(θ∗‖θ)
( ){ }

,

as n → ∞. Therefore, the solution to the max-min
problem

max
ψ

min
θ∈Θc

I∗
Dψ(θ∗‖θ), (7)

represents an asymptotically optimal allocation rule.
As highlighted in the literature review, the max-min
problem (7) closely mirrors the main sample com-
plexity term in Chernoff’s classic paper on the se-
quential design of experiments (Chernoff 1959).

Simplifying the Optimal Exponent. Thankfully, the
best-arm identification problem has additional struc-
ture that allows us to simplify the optimization
problem (7). Much of our analysis involves the pos-
terior probability assigned to the event some action
i �� I∗ is optimal. This can be difficult to evaluate,
because the set of parameter vectors under which i
is optimal

Θi � θ ∈ Θ|θi ≥ θ1, . . .θi ≥ θk{ },

involves k separate constraints. Consider instead a
simpler problem of comparing the parameter θ*

i
against θ*

I∗ . For each i �� I∗, define the set

Θi ≜ θ ∈ Θ|θi ≥ θI∗{ } ⊃ Θi,

under which the value at i exceeds that at I∗. Because,
ignoring the boundary of the set, Θc

I∗ � ∪i ��I∗Θi,

max
i��I∗

Πn(Θi) ≤ Πn Θc
I∗

( ) ≤ kmax
i��I∗

Πn(Θi),
and, therefore,

Πn Θc
I∗

( )�. max
i��I∗

Πn(Θi). (8)

This yields an analogue of (7) that will simplify our sub-
sequent analysis. Combining (8) with Proposition 5
shows that the solution to the max-min problem

Γ∗ ≜ max
ψ

min
i ��I∗ min

θ∈Θi

Dψ θ*‖θ( )
(9)

represents an asymptotically optimal allocation rule.
Because the set Θi involves only a constraints on θi
and θI∗ , we can derive an expression of the inner-
minimization problem over θ in terms of the mea-
surement effort allocated to i and I∗. Define

Ci(β,ψ)≜ min
x∈R βd θ∗

I∗ ‖x
( ) + ψd θ∗

i ‖x
( )

. (10)
The next lemma shows that the function Ci arises as
the solution to the minimization problem over θ ∈ Θi
in (9). It also shows that the minimum in (10) is
attained by a parameter θ, under which the mean
observation is a weighted combination of the means
under θ∗

I∗ and θ∗
i . Recall that, for an exponential family

distribution A′(θ) � ∫
T(y)p(y|θ)dν(y) is the mean ob-

servation of the sufficient statistic T(y) under θ.
Lemma 2. For any i ∈ {1, . . , k} and probability distribu-
tion ψ over {1, . . . , k},

min
θ∈Θi

Dψ θ*‖θ( ) � Ci ψI∗ ,ψi

( )
.

In addition, each Ci is a strictly increasing concave func-
tion satisfying

Ci(ψI∗ ,ψi) � ψI∗d θ∗
I∗ ‖θ

( ) + ψid θ∗
i ‖θ

( )
,

where θ ∈ [θ∗
i , θ

∗
I∗ ] is the unique solution to

A′(θ) � ψI∗A
′ θ∗

I∗
( ) + ψiA

′ θ∗
i

( )
ψI∗ + ψi

.

Lemma 2 and Equation (9) immediately imply

Γ∗ � max
ψ

min
i��I∗ Ci ψI∗ ,ψi

( )
. (11)
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This result essentially simplifies the earlier formof the
exponent, which is similar to a problem complexity
measure in Chernoff (1959), into a form that mirrors4

the large deviations exponent suggested inGlynn and
Juneja (2004). The function Ci(β,ψ) captures the ef-
fectiveness with which one can certify θ∗

I∗ ≥ θ∗
i using

an allocation rule that measures actions I∗ and i with
respective frequencies β and ψ. Naturally, it is an
increasing function of the measurement effort (β,ψ)
allocated to designs I∗ and i. For given β and ψ,
Ci(β,ψ) ≥ Cj(β,ψ) when θ*

i ≤ θ*
j , reflecting that θ∗

i is
easier to distinguish from θ∗

I∗ than θ∗
j .

Example 1 (Gaussian Observations). Suppose each out-
come distribution p(y|θ∗

i ) is Gaussian with unknown
mean θ∗

i . Then, direct calculation using Lemma 2 shows

Ci(β,ψi) �
1

1/β + 1/ψi

( )
θ*
I∗ − θ∗

i

( )2
2

.

To understand this formula, imagine we use a de-
terministic allocation rule that collects nβ and nψi
observations from I∗ and i. Let XI∗ and Xi denote the
respective sample means. The empirical difference is
normally distributed: XI∗ − Xi ∼ 1 Δ, σ2/n

( )
, where Δ �

θ∗
I∗ − θ∗

i and σ2 � 1/β+ 1/ψi. Standard Gaussian tail
bounds imply that as n → ∞, P(XI∗ − Xi < 0) �. exp(−n/
2(σΔ)2), and so Ci(β,ψi) appears to characterize the
probability of error.

The next proposition formalizes the derivations in
this section and states that the solution to the above
maximization problem attains the optimal error ex-
ponent. Recall that ψn,i ≜P(In � i|^n−1) denotes the
measurement effort assigned design i at time n.

Proposition 6. Let ψ* denote the optimal solution to the
maximization problem (11). If ψn � ψ* for all n, then

Πn Θc
I∗

( )�. exp{−nΓ∗}.
Moreover, under any other adaptive allocation rule,

lim sup
n→∞

− 1
n
logΠn Θc

I∗
( ) ≤ Γ∗.

This shows that under the fixed allocation rule ψ*

error decays as e−nΓ∗ , and that no faster rate of decay is
possible, even under an adaptive allocation.

An Optimal Constrained Allocation. Because the al-
gorithms studied in this paper always allocate β–
fraction of their samples to measuring I∗ in the long
run, they may not exactly attain the optimal error
exponent. To make rigorous claims about their per-
formance, consider a modified version of the error

exponent (11) given by the constrained max-min
problem

Γ∗β ≜ max
ψ:ψI∗�β

min
i ��I∗ Ci β,ψi

( )
. (12)

This optimization problem yields the optimal allo-
cation subject to a constraint that β–fraction of the
samples are spent on I∗. The next subsectionwill show
that TTTS, TTPS, and TTVS attain the error exponent
Γ∗β. The next proposition formalizes that the solution
to this optimization problem represents an optimal
constrained allocation. In addition, it shows that the
solution is the unique feasible allocation, underwhich
Ci(β,ψi) is equal for all suboptimal designs i �� I∗. To
understand this result, consider the case where there
are three designs and θ∗

1 > θ∗
2 > θ∗

3. If ψ2 � ψ3, then
C2(β,ψ2) < C3(β,ψ3), reflecting that it is more difficult
to certify that θ∗

2 ≤ θ∗
I∗ than θ∗

3 ≤ θ∗
I∗ . The next prop-

osition shows that it is optimal to decrease ψ2 and
increase ψ1, until the point when C2(β,ψ2) � C3(β,ψ3).
Instead of allocating equal measurement effort to each
alternative, it is optimal to adjust measurement effort
to gather equal evidence to rule out each suboptimal
alternative. The results in this proposition are very
closely related to those in Glynn and Juneja (2004), in
which large deviations rate functions take the place of
the functions Ci.

Proposition 7. The solution to the optimization problem (12)
is the unique allocation ψ* satisfying ψ*

I∗ � β and

Ci β,ψ
*
i

( ) � Cj β,ψ
*
j

( )
∀ i, j �� I∗.

If ψn � ψ* for all n, then

Πn Θc
I∗

( )�. exp −nΓ∗β
{ }

.

Moreover, under any other adaptive allocation rule, if
ψn,I∗ → β, then

lim sup
n→∞

− 1
n
logΠn Θc

I∗
( ) ≤ Γ∗β,

almost surely.

The following lemma relates the constrained ex-
ponent Γ∗β to Γ∗. This result implies that e−2nΓ

∗
1/2 ≤ e−nΓ∗ .

Therefore, 2n samples collected from an algorithm
that attains the exponent Γ∗1/2 give a faster asymptotic
rate of posterior convergence than n samples collected
using any adaptive algorithm.

Lemma 3. For β* � argmaxβ Γ∗β and any β ∈ (0, 1),
Γ∗

Γ∗β
≤ max

{
β*

β
,
1 − β*

1 − β

}
.

Therefore, Γ∗ ≤ 2Γ∗1/2.
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6.5. Convergence of Top-Two Algorithms
Instead of attempting to directly solve the optimi-
zation problem (11), this paper focuses on simple and
intuitive sequential strategies. These algorithms have
the potential to explore much more intelligently in
early stages, as they carefully measure and reason
about uncertainty. Although they ostensibly have no
connection to the derivations earlier in this section,we
establish that, remarkably, all three automatically
converge to the unknown optimal allocation. This is
shown formally in the next result.

We are now ready to establish the paper’s main
claim, which shows that TTTS, TTPS, and TTVS each
attain the error exponent Γ∗β.

Proposition 8. Under the TTTS, TTPS, or TTVS algo-
rithm with parameter β > 0, ψn → ψβ, where ψβ is the
unique allocation with ψ

β
I∗ � β satisfying

Ci β,ψ
β
i

( )
� Cj β,ψ

β
j

( )
∀i, j �� I∗.

Therefore,

Πn Θc
I∗

( )�. e−nΓ∗β .
To understand this result, imagine that n is very large,
and ψn,I∗ ≈β. If the algorithm has allocated too much
measurement effort to a suboptimal action i, with
ψn,i > ψ

β
i + δ for a constant δ > 0, then it must have

allocated too little measurement effort to at least one
other suboptimal design j �� i. Because much less
evidence has been gathered about j than i, we expect
αj,n >>αj,i. When this occurs, TTTS, TTPS, and TTVS
essentially never sample action i until the average
effortψn,i allocated to design idips back down toward
ψ
β
i . This seems to suggest that the algorithm cannot

allocate toomuch effort to any alternative, but that, in
turn, implies that it never allocates too little effort to
measuring any alternative.

6.6. Asymptotics of the Value Measure
The proof for top-two value sampling relies on the
following lemma, which shows that the posterior
value of any suboptimal design is logarithmically
equivalent to its probability of being optimal.

Lemma 4. For any i �� I∗, Vn,i �. αn,i.

Note that by this lemma,

Πn Θc
I∗

( ) � ∑
i��I∗

αn,i �.
∑
i ��I∗

Vn,i,

and so all of the asymptotic results in this could be
reformulated as statements concerning the value as-
signed to suboptimal alternatives under the posterior.

The lemma is not so surprising, asVn,i �
∫
Θi
vi(θ)πn ·

(θ)dθ differs from αn,i �
∫
Θi
πn(θ)dθ only because

of the function vi(θ). The πn(θ) term dominates this

integral as n → ∞, because it tends to zero at an ex-
ponential rate in n, whereas vi(θ) is a fixed function
of n.

7. Further Simulation Experiments
This section presents further simulation results. The
focus is not on competitive benchmarking across the
wide array of algorithms that have been proposed
by researchers in statistics, operations research, and
computer science. Although this could be enormously
valuable, carrying out such experiments in a fair
manner has proved challenging, as these algorithms
are often derived under differing modeling assump-
tions and differing problem objectives, as well as with
numerous tuning parameters that muddle compari-
sons. We instead aim here to focus on gaining clear
insight into two questions. Specifically:

1. How robust is the performance of the proposed
top-two sampling algorithm to the choice of tuning
parameter? Precisely, across a range of problem in-
stances, how does top-two sampling with the default
choice of β � 1/2 compare relative to an omniscient
version of the algorithm, which uses the optimal
tuning parameter β* for that instance?

2. How do top-two sampling algorithms, which
need to learn and adapt to the long-run optimal
sampling proportions on each problem instance θ*,
perform relative to an omniscient policy that knows
and tracks the ideal sampling proportions ψ*(θ*) on
each problem instance? The sampling proportions
ψ*(θ*) are those that attain the maximum in Equa-
tion (11) defining the optimal exponent Γ∗.
This section presents simulation results across 14

problem settings. To reduce computational burden,
as well as simplify the presentation of the results, the
section focuses on top-two Thompson sampling and
omits the other two variants of top-two sampling. The
results reveal strong performance of top-two Thomp-
son sampling with the ad-hoc choice of tuning pa-
rameter β � 1/2. Interestingly, this method also con-
sistently, and often substantially, outperforms the
oracle policy ψ*(θ*).
Each of the 14 experiments investigates a different

problem setting as described in Table 1. The problems
are divided between those with binary observations
and those with standard Gaussian observation noise.
For the binary experiments, an independent uniform
prior is used, whereas an independent standard
normal prior is used for the second experiment. We
consider several types of configurations for the arm
means. Experiments 10–14 present randomly drawn
instances, where each θ∗

i was sampled independently
from a standard normal distribution. These were
drawn by using the numpy.random.normal func-
tion with seeds 1, 2, 3, 4, and 5, respectively. In the
configurations labeled “ascending,” the arm means
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increase from lowest to highest with uniform sepa-
ration between the arms. The slippage configuration
was included specifically to investigate cases where
top-two sampling performs poorly. In such settings,
an equal allocation across arms attains an exponent
that is quite competitive, as there are no very poor
arms that can be easily ruled out using fewer samples.
In addition, the exponent Γ1

2
attained by TTTS with

β � 1/2 can be farther from the optimal Γ∗ than under
other problem instances. The ratio of exponents Γ∗/Γ1

2
is displayed for each instance.

Figure 3 displays the average number of mea-
surements required for the posterior to reach a given
confidence level. In particular, the experiment tracks
the first time when maxi αn,i ≥ c for confidence levels
c = 0.9 and c = 0.99. All results are averaged over 400

trials. This experiment can be thought of as com-
paring the expected number of samples collected if a
natural Bayesian stopping rule is employed. I have
chosen to use a Bayesian stopping rule because I do
not wish to muddle the comparison between alloca-
tion rules by employing a flawed stopping rule that
comes with some provable frequentist guarantees.
There has been impressive recent progress toward
stopping rules that guarantee a frequentist probability
of correct selection, but whose stopping regions have
a similar shape to the Bayesian one (Garivier and
Kaufmann 2016, Kaufmann and Koolen 2018). How-
ever, these stopping rules are still highly conservative.
The “large deviations oracle,” labeled “LD oracle”

in Figure 3, implements the optimal fixed allocation
ψ*(θ*) as prescribed by large deviations theory. At

Table 1. Experiment Specifications

Experiment Noise Configuration k True arm means (θ∗
1, . . .θ

∗
k) Γ*/Γ1

2

1 Binary Slippage 5 (0.3, 0.3, 0.3, 0.3, 0.5) 1.12
2 Binary Slippage 10 (0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.5) 1.26
3 Binary Slippage 15 (0.3, 0.3, 0.3, 0.3, . . . , 0.3, 0.3, 0.3, 0.3, 0.5) 1.34
4 Binary Ascending 5 (0.1, 0.2, 0.3, 0.4, 0.5) 1.01
5 Binary Ascending 10 (0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5) 1.01
6 Gaussian Ascending 5 (−0.5, −0.25, 0, 0.25, 0.5) 1.01
7 Gaussian Ascending 10 (−0.5, −0.5, −0.5, −0.5, −0.5, −0.5, −0.25, 0, 0.25, 0.5) 1.03
8 Gaussian Slippage 5 (0, 0, 0, 0, 0.5) 1.11
9 Gaussian Slippage 10 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5) 1.25
10 Gaussian Random 10 (−2.3, −1.1, −0.8, −0.6, −0.5, −0.2, 0.3, 0.9, 1.6, 1.7) 1.00
11 Gaussian Random 10 (−2.1, −1.8, −1.2, −1.1, −0.9, −0.8, −0.4, −0.1, 0.5, 1.6) 1.10
12 Gaussian Random 10 (−1.9, −0.6, −0.5, −0.4, −0.3, −0.1, −0.0, 0.1, 0.4, 1.8) 1.19
13 Gaussian Random 10 (−1.6, −1.1, −1.0, −0.6, −0.4, 0.1, 0.3, 0.5, 0.6, 0.7) 1.01
14 Gaussian Random 10 (−0.9, −0.6, −0.3, −0.3, −0.3, 0.1, 0.2, 0.4, 1.6, 2.4) 1.04

Figure 3. (Color online) Average Sample Size Required to Reach Confidence Relative to “Oracle” Allocations
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each time n, the algorithm constructs the target
proportions n · ψ*(θ*) and plays the arm that is most
undersampled relative to these proportions. For
problems with Gaussian noise, the optimal comput-
ing budget allocation of Chen et al. (2000) is a widely
used approximation to the fixed allocation ψ*(θ*). The
algorithm labeled OCBA oracle implements the true
sampling proportions specified by Chen et al. (2000)
for each problem instance. We also compare the
uniform or equal allocation, TTTS with tuning pa-
rameter β � 1/2 and TTTS Oracle, which is TTTS with
the optimal problem-dependent tuning parameter β*.

At a high level, there are two key findings from
these experiments. In all cases, sample size compar-
isons refer to the confidence level c = 0.99.

1. Top-two Thompson sampling with tuning pa-
rameter 1/2 generally offers similar performance to
top-two Thompson sampling with the optimal tuning
parameter β*. The most significant separation in per-
formance was on slippage configurations, where TTTS
with optimal tuning parameter saved up to 15% of
samples on average. On most other instances, using
the optimal tuning parameter offered no improvement.

2. The large deviations oracle and the OCBA oracle
were consistently, and sometimes dramatically, out-
performed. Each one required least 19% more samples
on average than TTTS(1/2) for all 14 experiments. In
their worst experiments, the LD oracle and OCBA
oracle used, respectively, more than 200% and 300%
the average number of samples used by TTTS(1/2).

The second findingmay be quite surprising to some
readers. There is a quite a large literature that aims to
implement optimal large deviations allocations de-
rived in Glynn and Juneja (2004), or a simpler ap-
proximation to these in the Gaussian case known as
the OCBA (Chen et al. 2000). Such approaches have
also been extended to a number of related problem
settings. The allocation ψ*(θ*) has desirable theoret-
ical properties, including maximizing the asymptotic
rate of posterior convergence. A major challenge, how-
ever, is that such allocations cannot be directly imple-
mented, as they require knowledge of the true prob-
lem instance θ*. Researchers typically implement an
approach that solves for the optimal budget alloca-
tion under point estimate θ̂ of θ*, aiming to converge
to the prescribed optimal sampling proportions as rap-
idly as possible. Here, we instead compete against an
oracle that knows and carefully follows the asymp-
totically optimal sampling proportions for each prob-
lem instance. Even these oracle policies are signifi-
cantly outperformed by top-two Thompson sampling
with the ad-hoc choice of tuning parameter.

To provide some assurance that this performance
gap is not an artifact of the performance criterion, we
ran further experiments focused on two alterna-
tive performance measures. For each trial and each

algorithm, we tracked the identity of the arm with
highest empirical mean as measurements were gath-
ered. Figure 4 displays the probability of incorrect
selection and expected simple regret (Bubeck et al.
2009), averaged across 1,000 trials. Figure 4(a),
Figure 4(b), and Figure 4(c), respectively, correspond
to problems 4, 5, and 2 from Table 1. Confidence
bands are hardly visible to the naked eye, and hence
are omitted. Again, according to these experiments,
top-two Thompson sampling substantially outper-
forms the static allocation ψ*(θ*), to which it converges
asymptotically. One stark feature of the experiments
is the high “simple regret” incurred under the ψ*(θ*)
allocation. This, apparently, is because the allocation
sometimes mistakenly identifies highly inferior arms
as optimal, whereas when the uniform allocation mis-
identifies the optimal arm, it still tends to return a near-
optimal one.
Current theory does not explain why top-two

Thompson sampling appears to outperform the static
oracle allocations in these experiments. It is worth of-
fering some possible intuition, however. First, the
oracle allocations are based on a number of approxi-
mations, either in the formof tail approximations to the
posterior of each arm or certain union bounds. By
contrast, Thompson sampling uses exact samples from
the posterior distribution and may more accurately
reflect uncertainty in early stages. Second, even if the
oracle allocations know the true-arm means, they do
not adapt in response tounusual observations. Thompson
sampling, on the other hand, is fully adaptive, and can
gather fewer samples from an arm if early samples
provide strong evidence that arm is suboptimal.

8. Extensions and Open Problems
This paper studies efficient adaptive allocation of
measurement effort for identifying the best among a
finite set of options or designs. We propose three
simple Bayesian algorithms. Each is a variant of what
we call top-two sampling, which, at each time step,
measures one of the two designs that appear most
promising given current evidence. Surprisingly, these
seemingly naive algorithms are shown to satisfy a
strong asymptotic optimality property.
Top-two sampling appears to be a general design

principle that can be extended to address a variety of
problems beyond to the scope of this paper. To spur
research in this area, we briefly discuss a number of
extensions and open questions below.

8.1. Top-Two Sampling Via Constrained Maximum a
Posteriori Estimation

Here, we present a version of top-two sampling that
uses maximum a posteriori (MAP) estimation. This
can simplify computations, as MAP estimates can
be computed without solving for the normalizing
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constant of the posterior density πn(θ). Consider the
following procedure for selecting a design at time n:

1. Compute θ̂ ∈ argmaxθ∈Θ πn(θ) and set În �
argmaxi θ̂i.

2. Compute θ̂′ ∈ argmaxθ∈Θc
În
πn(θ) and set Ĵn �

argmaxi θ̂′
i .

3. Play (În, Ĵn) with respective probabilities (β, 1 − β).
The first step uses MAP estimation to make a

prediction În of the best design, whereas the second

uses constrained MAP estimation to identify the al-
ternative design that is most likely to be optimal when
În is not. Many of the asymptotic calculations in the
previous section appear to extend to this algorithm,
but proving this formally is left as an open problem.

8.2. Indifference-Zone Criterion
Suppose our goal is to confidently identify an ε–optimal
arm, for a user-specified indifference parameter ε > 0.

Figure 4. (Color online) Comparison of Frequentist Probability of Incorrect Selection and Simple Regret on Three Problem
Instances with Binary Observations

Note. Panels (a), (b), and (c), respectively, correspond to Experiments 4, 5, and 2 from Table 1.
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Much of the paper investigates the set of parame-
ters Θi under which arm i is optimal and studies the
rate at which Πn(ΘI∗ ) → 1. Now, let us instead con-
sider the set of parameters

Θε,i � θ|θi ≥ max
j

θj − ε

{ }
,

under which i is ε–optimal. It is easy to develop a
variety of modified top-two sampling rules under
whichmaxi Πn(Θε,i) → 1 rapidly. For example, we can
extend TTPS as follows: Set În � argmaxi Πn(Θε,i).
Define Ĵn � argmaxj ��În Πn(θ|θj � maxiθi & θj >θÎn+ ε)
to be the alternative design that is most likely to be
optimal and offer an ε-improvement over În. A top-
two Thompson sampling approach might instead
continue sampling θ ∼ Πn until maxi θi > θÎn+ ε and
then set Jn � argmaxi θi.

8.3. Top m-Arm Identification
Suppose now that our goal is to identify the top m < k
designs. Consider choosing a design to measure at
time n by the following steps:

1. Sample θ ∼ Πn and compute the top m designs
under θ.

2. Continue sampling θ′ ∼ Πn until the top m de-
signs under θ′ differ from those under θ.

3. Identify the set of designs that are in the top m
under θ or under θ′, but not under both. Choose a
design to measure by sampling one uniformly at
random from this set.

This is the natural extension of top-two Thompson
sampling to the top-m armproblem. In fact, whenm � 1,
this is exactly TTTS with β � 1/2. I conjecture that,
like the case where m � 1, this algorithm attains a rate
of posterior convergence within a factor of 2 of op-
timal for general m. The optimal exponent for this
problem can be calculated by mirroring the steps in
Section 6.4.

8.4. Extremely Correlated Designs
Although our results apply in the case of correlated
priors, the proposed algorithms may be wasteful
when there are a large number of designs whose
qualities are extremely correlated. As an example,
consider an extension of our techniques to a pure-
exploration variant of a linear bandit problem. Here,
we associate each action iwith a feature vector xi ∈ Rd

and seek an action that maximizes xTi θ. The vector θ ∈
Rd is unknown, but we begin with a prior θ ∼ N(0, I)
and see noisy observations of xTi θwhenever action i is
selected. To apply top-two sampling to this problem,
we should modify the algorithm’s second step.
For example, under top-two Thompson sampling,
we usually begin drawing a design according to
î ∼ αn, and then continue drawing designs ĵ ∼ αn until
î �� ĵ. These are played with respective probabilities
(β, 1 − β). But even if î �� ĵ, their features may be nearly

identical. A more natural extension of top-two Thomp-
son sampling would modify the second step, and con-
tinue sampling ĵ ∼ αn, until a sufficiently different
action is drawn—for example, until the angle between
xĵ and xî exceeds a threshold.

8.6. Tuning β
The most glaring gap in this work may be arbitrary
choice of tuning parameter β. Optimal asymptotic
rates can be attained by adjusting this parameter over
time by solving for an optimal allocation, as in (11). It
is an open problem to instead develop simple algo-
rithms that set β automatically through value of in-
formation calculations, or avoid the need for such a
parameter altogether.

8.7. Adaptive Stopping
This paper proposed only an allocation rule, which
determines the sequence of measurements to draw,
but this can be coupled with a rule that determines
when to stop sampling. One natural stopping rule in a
Bayesian framework is to stop when maxi αn,i > 1 − δ
for some δ > 0. Let τδ be a random variable indicat-
ing the stopping time under constraint δ. Because
1 −maxi αn,i �. e−nΓ∗β under top-two sampling, our re-
sults imply that for each sample path τδ ∼ Γ∗β log(1/δ) as
δ → 0. It is natural to conjecture that E[τδ] ∼ Γ∗β log(1/δ)
as well. This closely mirrors optimal results in Chernoff
(1959), Jennison et al. (1982), and Kaufmann (2018).
Does this rule also yield a frequentist probability of
incorrect selection that is O(δ) as δ → 0? More gen-
erally, an open problem is to show that, when com-
bined with an appropriate stopping rule, top-two sam-
pling schemes nearly minimize the expected number of
samplesE[τδ], as in Jennison et al. (1982) or Kaufmann
(2018). A follow-up to the current paper has addressed
this for a particular top-two sampling algorithm in the
case of Gaussian observations (Qin et al. 2017).
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Endnotes
1 Interpreted in the context of clinical trials, this paper’s results are
stated in terms of the number of patients required to reach a confident
conclusion of the best treatment. However, we will see that optimal
rules from this perspective also allocate fewer patients to very poor
treatments, potentially leading to more ethical trials (Berry 2004).
2TTVS is executed with the utility function u(θ) � θ.
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3 See, for example, Qin et al. (2017), which is a follow-up to the current
paper.
4 For Gaussian distributions, this is exactly the exponent presented in
Glynn and Juneja (2004). In general, it differs. Our exponent depends
on Kullback–Leibler (KL) divergences of the form d(θ∗

i , θi), which is
mirrors the optimal sample complexity terms in the fixed confidence
setting (Chernoff 1959, Jennison et al. 1982, Glynn and Juneja 2004).
The exponent in Glynn and Juneja (2004) is derived for the fixed
budget setting and depends everywhere on flipped KL divergence
terms of the form d(θi‖θ∗

i ).
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