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Abstract. We consider a principal who repeatedly interacts with a strategic agent holding
private information. In each round, the agent observes an idiosyncratic shock drawn inde-
pendently and identically from a distribution known to the agent but not to the principal.
The utilities of the principal and the agent are determined by the values of the shock and
outcomes that are chosen by the principal based on reports made by the agent. When the
principal commits to a dynamicmechanism, the agent best-responds to maximize his aggre-
gate utility over the whole time horizon. The principal’s goal is to design a dynamic mecha-
nism to minimize his worst-case regret, that is, the largest difference possible between the
aggregate utility he could obtain if he knew the agent’s distribution and the actual aggregate
utility he obtains. We identify a broad class of games in which the principal’s optimal mech-
anism is static without anymeaningful dynamics. The optimal dynamic mechanism, if it ex-
ists, simply repeats an optimal mechanism for a single-round problem in each round. The
minimax regret is the number of rounds times the minimax regret in the single-round prob-
lem. The class of games includes repeated selling of identical copies of a single good or mul-
tiple goods, repeated principal-agent relationships with hidden information, and repeated
allocation of a resource without money. Outside this class of games, we construct examples
in which a dynamic mechanism provably outperforms any static mechanism.
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1. Introduction
Individuals increasingly have repeated interactions
with the same online platform. Commuters check the
same ride-hailing app each morning, freelancers fre-
quently hunt for short-term work on the same online
marketplace, and advertisers bid daily on the same ad
exchange. These interactions generate data the plat-
form could use to personalize future offerings. Some-
times, the objectives of the platform and users are
aligned—such as when an online music service rec-
ommends songs tailored to a user’s tastes and the
user’s experience improves as accurate data are gath-
ered. But often, the incentives of the platform and
users are misaligned and repeated interactions be-
come more complicated when a user strategically
responds to the platform’s strategy. Consider a plat-
form that targets discount coupons at users who
appear price-sensitive. This incentivizes loyal price-
insensitive customers to mimic those who are not,
complicating any inference from past data. Similar
concerns arise in online ad exchanges—where, due to
ad targeting, a meaningful fraction of auctions contain

only a single bidder with a significantly high bid and
appropriately setting reserve prices is a key driver of
revenue—or online freelancing platforms—where a
freelancer might reject an otherwise profitable con-
tract to avoid signaling they are open to working for a
low wage in the future.

In such environments, the platform could employ a
myriad of dynamic strategies under which the offers
available to an individual depend on all the past inter-
actions. How much additional benefit can be derived
from such dynamic strategies when an individual is
strategic? We use the language of robust mechanism
design to formalize a stark impossibility result. We
identify a broad class of problems in which an optimal
dynamic mechanism is static and simply repeats a
single-round mechanism over and over. In this
sense, the platform cannot benefit by using a more
complex mechanism with meaningful dynamics, in-
cluding any schemes that attempt to infer the private
information of an individual and exploit this informa-
tion using, for example, dynamic schemes (Bakos and
Brynjolfsson 1999, Jackson and Sonnenschein 2007)
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that link together outcomes across periods. Intuitively,
dynamic mechanisms that adapt based on previous
actions can be manipulated by a strategic individual
to induce future outcomes that are beneficial for him
at the expense of the platform. Therefore, the platform
finds it optimal to commit to implementing a static
mechanism that does not exploit the individual’s pri-
vate information beyond what is known at the begin-
ning of their repeated interactions.

For these problems, our results could be interpreted
negatively as showing the impossibility of learning
and exploiting the private information of a strategic
individual. Viewed more positively, these results lead
to massive simplification in that static mechanisms are
not only robust to strategic manipulations but also op-
timal, allowing the platform to search over the more
tractable space of single-round mechanisms. In addi-
tion, these results justify the use of simple mecha-
nisms with substantial practical advantages: static
mechanisms are simple to implement and alleviate
the need for individuals to engage in complex strate-
gic behavior. Interestingly, for some other problems, it
is still possible for the platform to implement a dy-
namic mechanism and perform strictly better than im-
plementing static mechanisms.

1.1. Contributions
We study a model where a principal and a strategic
agent repeatedly play a game over a discrete-time
finite horizon of length T. In each round, the agent
privately observes an idiosyncratic shock drawn inde-
pendently and identically from a distribution known
to the agent but not to the principal, and the principal
and agent interact through the game to realize an out-
come and respective utilities. Both parties derive ag-
gregate utility equal to the sum of their utilities across
individual rounds. When the principal commits to a
dynamic mechanism, the agent is strategic in the sense
that he plays a best-response strategy to maximize his
aggregate utility. Drawing inspiration from the enor-
mous literature on dynamic learning in nonstrategic
environments (see, e.g., Kleinberg and Leighton 2003,
Besbes and Zeevi 2009), we measure the performance
of a dynamic mechanism through its worst-case re-
gret, that is, the largest difference possible between
the aggregate utility he could obtain if he knew the
agent’s distribution and the actual aggregate utility he
obtains. The principal’s objective is minimax regret
and the principal designs a dynamic mechanism to
minimize the worst-case regret.

We provide false-dynamics results for a broad class
of games, showing the principal’s optimal mechanism
is static without any meaningful dynamics. More spe-
cifically, we show the minimax regret is T times the
minimax regret of a single-round problem and repeat-
ing T times a (near) optimal single-round mechanism

from the single-round problem is correspondingly
(near) optimal in the multiround problem. We prove
our results under two assumptions. First, the set of
possible distributions for the agent includes all point
masses, that is, the principal must guard against the
possibility that the agent’s preferences are constant
over time. Second, the optimal performance achiev-
able by the principal with the knowledge of the
agent’s distribution should be extreme-point convex,
that is, for any possible agent’s distribution, the opti-
mal performance achievable for that distribution is at
most the convex combination of optimal performances
corresponding to point masses where the convex com-
bination is determined by the distribution.

Our analysis relies on leveraging point-mass distri-
butions as worst-case distributions. When restricted to
point-mass distributions, we obtain a static informa-
tion structure where the agent’s shock is constant and
an optimal dynamic mechanism for the principal is
static and repeats a single-round mechanism. Under
the extreme-point convexity assumption, the optimali-
ty of static mechanisms over point masses as worst-
case distributions extends to all possible distributions.
We explain the extreme-point convexity assumption
in terms of two opposing effects of shock uncertain-
ty—information asymmetry and trade across
shocks—and provide sufficient conditions for the as-
sumption to hold. To the best of our knowledge, the
second effect of trade across shocks is novel and may
be of independent interest.

For specific applications of our general false-
dynamics results, we consider (1) the dynamic selling
mechanism design problem where a seller sells inde-
pendent units of a single or multiple goods sequential-
ly over time to a buyer and maximizes revenue or
welfare, (2) the principal-agent model with hidden
costs where a principal has a nonlinear revenue func-
tion and repeatedly contracts with an agent to pro-
duce at particular output levels, and (3) the repeated
resource allocation problem without monetary trans-
fers where a social planner allocates a costly resource
in settings where monetary transfers are not allowed.
In all these applications, our assumptions hold and an
optimal mechanism for the multiperiod problem sim-
ply repeats an optimal mechanism for a single-round
problem.

When our assumptions do not hold, it is possible
that static mechanisms are not optimal and we show
specific games in which either assumption does not
hold and a dynamic mechanism provably outper-
forms any static mechanism. Finally, we extend our
results in several directions and discuss connections
to other related settings: a multiplicative performance
guarantee, saddle-point properties, alternative bench-
marks, serially correlated shock processes, a stronger
notion of regret, and the maximin utility objective.
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1.2. Related Work
We discuss connections between our work and sever-
al streams of literature including Bayesian dynamic
mechanism design, robust mechanism design, and
strategic learning.

1.2.1. Bayesian Mechanism Design. This stream of lit-
erature studies Bayesian mechanism design problems
where the principal and agent share a common
known prior over the distribution of shocks. False dy-
namics is a recurring phenomenon where optimal
mechanisms do not display meaningful dynamics in
sequential problems with static information (Laffont
and Tirole 1993, Börgers et al. 2015). It was first ob-
served by Baron and Besanko (1984) who considered
a continuing relationship between a firm who reports
cost information and a regulator who grants a license
to operate. Similar results hold in many other dynam-
ic allocation models where the agent’s shock is cons-
tant (e.g., Baron and Besanko 1984) or changing over
time (e.g., Bakos and Brynjolfsson 1999, Kakade et al.
2013, Pavan et al. 2014). Although generally depen-
dent on the time horizon, optimal mechanisms may
determine the outcomes of all future periods in the
first round in these results. To the best of our knowl-
edge, our paper is the first to study false-dynamics in
a general class of problems with respect to a minimax
regret objective. Although our model is more aligned
with sequential screening models (e.g., Courty and Li
2000, Krähmer and Strausz 2015, Bergemann et al.
2017) where the optimal mechanisms are dynamic, we
still obtain false-dynamics results. Under more strin-
gent liquidity or participation constraints, false-
dynamics disappears and adaptive mechanisms can
outperform the optimal static mechanism in Bayesian
settings (Krishna et al. 2013, Ashlagi et al. 2016, Balseiro
et al. 2018). Our results reveal a stronger collapse of
dynamics for a class of problems in that they hold even
when these participation constraints are imposed.

1.2.2. Robust Mechanism Design. Although Bayesian
models have appealing philosophical foundations, the
resulting mechanisms sometimes place impractical re-
quirements on the prior information of the designer.
Wilson (1987) argues that mechanisms should not ex-
cessively rely on probabilistic assessments on the
agents’ types. Our work contributes to the robust
mechanism design literature that was pioneered by
Bergemann and Schlag (2008, 2011). In particular, the
authors consider the single-round problem where the
principal (i.e., seller) sells a good to an agent (i.e., buy-
er) to minimize the worst-case regret without the
knowledge of the agent’s distribution in Bergemann
and Schlag (2008). Carrasco et al. (2019) is perhaps the
most closely related work to ours. They show a similar
false-dynamics result in an auction setting with respect

to the maximin utility objective where the principal
knows the mean of the unknown distribution and
maximizes the worst-case utility over distributions
that are potentially correlated over time. They bound
the worst-case utility of any dynamic mechanisms by
considering a worst-case distribution that is perfectly
correlated across time and then invoking standard
false-dynamics results from the Bayesian literature.
Our approach in the minimax regret setting relies on
considering point masses as worst-case distributions,
which are not feasible in Carrasco et al. (2019) because
of the moment constraints, and applies for a broader
class of games. There are many other works in this lit-
erature (e.g., Carrasco et al. 2019; Kos and Messner
2015; Carroll 2017; Pınar and Kızılkale 2017; Carrasco
et al. 2018a, b; Kocyigit et al. 2018), but they consider
single-round problems whereas our problem is a mul-
tiround problem.

1.2.3. Strategic Learning. For a special case of our gen-
eral problem, Amin et al. (2013) has previously shown
that regret must grow linearly with the time horizon.
Such results show that the principal bears a cost of
asymmetric information that does not vanish regard-
less of the length of the time horizon. This formalizes
the common folklore that learning about a strategic
agent is fundamentally more difficult than learning
about a myopic one. However, such results tend to be
only asymptotic in nature and do not speak to the ex-
act, absolute potential benefits of dynamic mecha-
nisms over static ones, which is our main contribution.

Numerous papers in the learning theory literature
consider assumptions that enable efficient dynamic
learning on the part of the principal. Most notably,
positive results are available when the principal re-
peatedly interacts with a myopic agent who optimizes
without internalizing future consequences of his ac-
tions or a population of agents who each interact with
the principal only once or when the principal simulta-
neously interacts with multiple agents whose values
are drawn i.i.d. from the same distribution (e.g.,
Kleinberg and Leighton 2003, Kanoria and Nazerza-
deh 2020). When the principal interacts with an agent
who is forward-looking but less patient, usually mod-
eled through unequal discount factors, the principal
can learn and exploit the agent’s private information
to the extent that their time-preferences differ (e.g.,
Amin et al. 2013, 2014; Mohri and Munoz 2014, 2015;
Golrezaei et al. 2020). Not surprisingly, the perfor-
mance guarantees obtained in these settings degrade
as the difference between the principal’s and agent’s
discount factors becomes small. A distinguishing fea-
ture of our model is that the principal and agent are
placed on a more equal footing in that they are both
forward-looking and equally patient (i.e., the same
discount factor). Many online platforms are
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characterized by short planning horizons and a high
frequency of transactions. Although both parties
might discount future payoffs in the one-to-one rela-
tionship, the difference in the discount factors can be
expected to be small as planning horizons span only
for weeks or months.

2. Model
We consider games described in terms of a time hori-
zon T and an environment (Ω,Θ,u,v) where Ω is a set
of outcomes, Θ is a set of idiosyncratic shocks of the
agent, u :Θ ×Ω→ R is the utility function of the prin-
cipal, and v :Θ ×Ω→ R is the utility function of the
agent. A principal and an agent repeatedly interact in
the given environment over T rounds, producing out-
comes ω1, : : : ,ωT ∈Ω. Independently and identically
distributed shocks θ1, : : : ,θT ~ F might influence the
utility of both the principal and agent. The shock dis-
tribution F ∈ Δ(Θ) is private to and learned by the
agent in Round 0 before the shocks, and the shock θt is
privately observed by the agent at the start of Round t.
Assume that Ω contains a designated no-interaction
outcome denoted by ∅. Both the principal and agent at-
tain a utility of zero in any round with no interaction.

Example 1 (Selling Problem). The principal (or seller)
repeatedly offers identical copies of an item to the
agent (or buyer). The outcome ωt � (xt,pt) realized in
Round t consists of a quantity xt ≥ 0 of the good re-
ceived by the agent and a payment pt ∈ R. The shock
θt is the agent’s willingness-to-pay or valuation for
the good in Round t and F is his private valuation dis-
tribution. The agent’s utility function is v(θ, (x,p)) �
θx− p and the principal’s is his revenue u(θ, (x,p)) � p.
The no-interaction outcome is one where x � 0 and
p � 0. The private distribution F could be thought of
as the agent’s type and is persistent over time. Addi-
tional randomness in the shock θt, beyond F, repre-
sents unpredictable external factors that influence the
agent’s preferences in that round.

As is standard in the mechanism design literature,
the principal can commit to implement a dynamic
mechanism, which specifies a full protocol of interac-
tion between the principal and agent.1 Formally, a
dynamic mechanism can be written as a tuple A �
({Mt}0:T, {πt}1:T, {σt}0:T), where we use a : b as short-
hand for a, : : : ,b. For each t, the set Mt is the report
space and defines the space of possible messages the
agent can transmit to the principal in Round t. Let M �
{Mt}0:T. A decision rule πt specifies an outcome ωt �
πt(mt,ht,zt) ∈Ω in Round t as a function of the report
mt ∈Mt, the history of prior interaction ht � (m0:t−1,
ω1:t−1), and a private random variable zt drawn inde-
pendently over time from a uniform distribution over
[0, 1]. Let π � {πt}1:T. The private random variable zt

allows outcomes to be determined on a randomized
basis. Assuming it to be uniformly distributed is with-
out loss of generality since more complex random vari-
ables can be generated by inverse transform sampling.

A dynamic mechanism A allows the principal to im-
plement per-round decision rules that may be linked
across rounds and depend on the history of past
interactions. For example, in the selling problem, the
principal may post a reserve price that he adjusts dy-
namically, bundle the current item and future items
together, or provide some discount scheme that offers
a future item at a low price if the current item is
bought at a high price.

Following the convention in the mechanism design
literature, the principal’s mechanism specifies a recom-
mended agent strategy σ :� {σt}0:T. We later constrain
the choice of the recommended strategy such that the
mechanism is incentive compatible. In each round t, σt
specifies the reportmt � σt(θt,h+t ,yt) ∈Mt as a function
of the realization of the private shock θt, the augment-
ed history h+t containing all information available (i.e.,
the public history ht and the agent’s private informa-
tion) to the agent prior to Round t, and a private ran-
dom variable yt drawn independently from a uniform
distribution over [0, 1]. The initial augmented history
is h+0 :� F while h+t � (F,θ1:t−1,m0:t−1,ω1:t−1) for t > 0.
Notice that no outcome is determined in Round 0, but
the agent’s initial message m0 � σ0(F,y0) could influ-
ence subsequent outcomes.

Given the principal’s dynamic mechanism
A � (M,π,σ), the agent’s strategy σ̃ � {σ̃t}0:T (which
may be different from σ), the distribution F, and the
time horizon T, the principal and agent’s total ex-
pected utilities are defined, respectively, as

PrincipalUtility A, σ̃,F,T( ) :� Eπ,σ̃
∑T
t�1

u θt,ωt( )
[ ]

and

AgentUtility A, σ̃,F,T( ) :� Eπ,σ̃
∑T
t�1

v θt,ωt( )
[ ]

:

The expectations above are taken over the realizations
of the shocks (θ1, : : : ,θT) and the private random
variables {zt}1:T and {yt}0:T which are omitted. The sub-
script indicates that the agent’s messages are deter-
mined by σ̃ and the mechanism’s outcomes are deter-
mined by π, meaning mt � σ̃t(θt,h+t ,yt) for t ∈ {0, : : : ,T}
and ωt � πt(mt,ht,zt) for t ∈ {1, : : : ,T}. It is implicitly
understood that the agent’s augmented histories h+0 :�
F and h+t � (F,θ1:t−1,m0:t−1,ω1:t−1) for t ≥ 1 contain in-
formation about the same distribution F from which
the shocks are drawn. We typically omit the subscripts
from the above expectations, as they are clear from the
context. We remark that the principal may not directly
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observe his utility if it depends on the agent’s private
shocks as, for example, in the case of welfare maximi-
zation. Figure 1 summarizes the order of events over
the time horizon.

We say that dynamic mechanism A � (M,π,σ) is in-
centive compatible (IC) if the inequality

AgentUtility A,σ,F,T( ) ≥AgentUtility A, σ̃,F,T( )
holds for every probability distribution F over Θ and
every feasible agent strategy σ̃, that is, the agent is
weakly better off following the principal’s recommen-
dation. We follow the convention in mechanism de-
sign of assuming the agent follows the recommended
strategy if the mechanism is incentive compatible.2

With this convention, we simplify the notation when

A is IC and write PrincipalUtility(A,F,T) :� Eπ,σ
∑T

t�1
[

u(θt,ωt)
]
and AgentUtility(A,F,T) :� Eπ,σ

∑T
t�1

[
v(θt,ωt)

]
with the understanding that the omitted recom-
mended strategy is the utility-maximizing strategy for
the agent chosen by the principal.

We model an individual rationality (IR) constraint
(equivalently, participation constraint) by providing a
no-participation option in Round 0 and imposing IC
with respect to this option. More specifically, we as-
sume M0 contains a special report denoted by QUIT.
If the agent reports QUIT in Round 0, he does not par-
ticipate and the outcome is understood to be the
no-interaction outcome over the whole time horizon.
Because reporting QUIT is a feasible deviation, an in-
centive compatible mechanism should always provide
the agent a nonnegative expected utility. This is com-
monly known as the ex-ante IR constraint in that the
agent decides to participate or not while knowing
only his distribution but not future shocks.

Let A denote the set of all incentive compatible
dynamic mechanisms. If the agent has private distri-
bution F, the optimal performance attainable by a
principal who knows this distribution is

OPT F,T( ) :� sup
A∈A

PrincipalUtility A,F,T( ):

An optimal solution for this Bayesian dynamic mecha-
nism design problem can be characterized recursively
using the promised utility framework pioneered by
Green (1987), Spear and Srivastava (1987), and Thomas

and Worrall (1990). Alternatively, when the T is large,
asymptotically optimal mechanisms can sometimes be
provided (see, e.g., Fudenberg et al. 1994, Jackson and
Sonnenschein 2007). The regret defined as

Regret A,F,T( ) :�OPT F,T( ) − PrincipalUtility A,F,T( )
measures the shortfall in the performance of a dynam-
ic mechanism A ∈A against this known-distribution
benchmark. The principal’s objective is to design an
incentive compatible mechanism with minimal worst-
case regret where the worst-case regret for mechanism
A is defined as

Regret A,T( ) :� sup
F∈F

Regret A,F,T( ),

where F ⊆ Δ(Θ) is a given set of probability distribu-
tions over Θ that are possible for the agent. We can
equivalently interpret that nature is selecting a worst-
case distribution F against the principal’s mechanism
and the principal is guarding against all such possibilities
in F . The optimal minimax regret in the multiround
problem is given by Regret(T) :� infA∈ARegret(A,T). To
ensure this quantity is well defined, we assume through-
out that supF∈F OPT(F,T) <∞.

Remark 1. It may seem natural to instead formulate a
maximin utility problem where the principal wants to
solve supA∈A infF∈F PrincipalUtility(A,F,T). The chal-
lenge with this formulation is that, in some games
such as dynamic selling, nature could select a distribu-
tion under which the agent does not value the good at
all, leading to a maximin utility of zero. If the distribu-
tion F were known, minimizing regret is equivalent to
maximizing utility, but worst-case distributions are
more natural under a regret objective. Our main
result also applies to other robust objectives. We can
show that static mechanisms are optimal for the maxi-
min ratio objective where the principal wants to
solve supA∈A infF∈F PrincipalUtility(A,F,T)=OPT(F,T).
In addition, static mechanisms are optimal for a con-
strained maximin utility objective studied by Carrasco
et al. (2019) in the dynamic selling problem. These ex-
tensions are discussed in Section 6. Our primary rea-
son for focusing on regret instead of, say, the maximin
ratio objective is that minimax regret is a widely stud-
ied objective for dynamic learning in nonstrategic
environments.

Figure 1. The Order of Events over the Time Horizon

Round 0

begins

Round 1

begins

Round 2

begins
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ends
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3. Optimality of Direct Static Mechanisms
In this section, we provide our main results. For a
general class of games satisfying two sufficient condi-
tions, we determine the minimax regret of the multi-
round problem to be T times that of a single-round
minimax regret problem restricted to point-mass dis-
tributions and show an optimal dynamic mechanism
is static, that is, it simply repeats a single-round direct
mechanism, without any meaningful dynamics.

3.1. Direct Static Mechanisms
Our paper will focus on the special class of direct static
mechanisms, denoted by S×T ⊂A. These mechanisms
are direct, meaning that the report spaces Mt contain
the shock space Θ and the recommended strategy for
the agent is to truthfully report his shocks to the
principal. They satisfy interim IR constraints, meaning
that the agent prefers to participate in each round given
his information up to that point (including his shock for
that round). Finally, they are simple repetitions of
single-round mechanisms, meaning that the outcome in
a given round is determined solely by the agent’s re-
ported shock in that round and does not depend directly
on the history or the current round. To be precise, S×T is
the space of repeated single-round, direct, IC/IR mecha-
nisms, but we refer to them as direct static mechanisms.

More formally, an IC mechanism A � (M,π,σ) is an
element of S×T if:

1. The message space allows for reporting the
agent’s shock or a choice to not participate in this
round or, equivalently, pass: Mt �Θ

⋃{PASS} for
each t ∈ {1, : : : ,T}.

2. The mechanism honors a request to pass:
πt(PASS,ht,zt) � ∅ for all ht and zt.

3. The recommended agent strategy is truthful re-
porting: σt(θt,h+t ,yt) � θt holds for each possible
(θt,h+t ,yt) and for t ∈ {1, : : : ,T}.

4. The mechanism’s decision rule does not depend
on the history or current round: there exists π̃ :M1 ×
[0, 1] →Ω such that πt(mt,ht,zt) � π̃(mt,zt) for each
possible (mt,ht, zt) and t ∈ {1, : : : ,T}.

A direct static mechanism is uniquely identified
by a direct mechanism for a single-round problem,
that is, a problem with T � 1. For a single-round
direct mechanism S ∈ S×1, we let S×T ∈ S×T denote
the direct static mechanism that simply repeats S for
T rounds. Note that rounds decouple under direct
static mechanisms.

As in the case of the ex-ante IR constraint we
considered previously, we implicitly enforce IR
constraints by requiring the mechanism to be incen-
tive compatible in the presence of no-participation
options. Notice that for static mechanisms, we have
not specified a report space M0 in Round 0. We can
take M0 � {CONTINUE,QUIT}, where CONTINUE

advances the agent to the first round and, as before,
QUIT indicates a choice to not participate in any fu-
ture rounds. Because the agent has the freedom to
choose PASS in each round, but instead prefers to re-
port his shock truthfully, this initial round is redun-
dant and is included only for consistency with the
general formulation.

3.2. Main Result
We prove our results for the general class of games
satisfying the following two assumptions. We defer
most discussion of these until Section 5. For any
θ ∈Θ, let δθ denote a point mass at θ, that is, a proba-
bility distribution with δθ({θ}) � 1. The first
assumption states that the set of possible distributions
F contains all point masses. Interpreted differently, it
says that the principal must guard against the possi-
bility that the agent’s private shock is some unknown
value in Θ and is constant across time.

Assumption 1 (Possibility of Deterministic Shocks). For
every θ ∈Θ, we have δθ ∈ F .

The next assumption imposes a condition on the
known-distribution benchmark OPT(F,T). In words,
the assumption means that the principal is better off
when the agent’s shock is constant across time and
publicly known than when shocks are random
across time and are privately observed by the agent.
As we discuss in Section 5, the condition holds for a
broad class of games and has an interesting eco-
nomic interpretation. Mathematically, it imposes
the defining condition of convexity, but only with
respect to the point-mass distributions—which are
extreme points in the simplex of probability distri-
butions Δ(Θ). Note any distribution F is a convex
combination of point-mass distributions where the
combination is given by the distribution F, that is, F
and Eθ~F[δθ] are equivalent in the distributional
sense.

Assumption 2 (Extreme-Point Convexity). For all
F ∈ F , OPT(F,T) ≤ Eθ~F[OPT(δθ,T)].

The following theorem shows a complete reduction
from the multiround problem to a single-round prob-
lem (with T � 1) in terms of their objective values,
their (nearly) optimal solutions, and the existence of
optimal solutions. Recall that Regret(T) � infA∈A
supF∈F Regret(A,F,T) is the minimax regret attainable
in the multiround problem.

Theorem 1. Suppose Assumptions 1 and 2 hold. Then,
Regret(T) � T · infS∈S×1 supθ∈ΘRegret(S,δθ, 1). More-
over, for any ε ≥ 0, if a mechanism S ∈ S×1 satisfies

sup
θ∈Θ

Regret S,δθ, 1( ) ≤ inf
S′∈S×1

sup
θ∈Θ

Regret S′,δθ, 1( ) + ε

T
, (1)
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then,

sup
F∈F

Regret S×T,F,T
( ) ≤ Regret T( ) + ε:

Finally, arg minA∈A supF∈F Regret(A,F,T) is empty if
and only if arg minS∈S×1 supθ∈ΘRegret(S,δθ, 1) is empty.

Our result is easier to interpret when the infimum
in (1) is attained, that is, there exists an optimal single-
round mechanism. In this case, our main theorem
says that an optimal dynamic mechanism can be con-
structed by first solving for an optimal direct mecha-
nism for the single-round problem S∗ ∈ arg minS∈S×1

supθ∈ΘRegret(S,δθ, 1) and then simply repeating this
mechanism over the rounds, that is, implementing
(S∗)×T. Such a mechanism is myopic and nonadaptive:
it plans over a single round even when there are many
and it does not adjust its decision rule based on prior in-
teractions with the same agent. This provides insight
into the character of an optimal mechanism and also lets
us formulate more tractable optimization problems. Ad-
ditionally, our result states that the minimax regret in the
multiround problem is T times the minimax regret in the
single-round problem, that is, Regret(T) � T ·Regret(1).
The final part of the result concerns the existence of di-
rect static mechanisms that are exactly optimal.

Depending on the value of the minimax regret for
the single-round problem, different interpretations are
possible. If Regret(1) � 0, repeating a single-round
mechanism obtains essentially the optimal performance
achievable with the knowledge of the agent’s private
distribution. Then, the distributional information is not
necessary and learning/adaptive schemes are not bene-
ficial to begin with and the multiround problem is easy.
On the other hand, if Regret(1) > 0, the minimax regret
for the multiround problem is linear in the time horizon
and repeating a single-round mechanism is still a (near)
optimal dynamic mechanism. Even though knowing
the agent’s private distribution would be valuable, it is
impossible to increase the principal’s utility by employ-
ing an adaptive learning scheme. Welfare maximization
in the dynamic selling mechanism design problem
(Section 4.1) is of the former kind. Revenue maximiza-
tion in the same problem, the principal-agent contract
model (Section 4.2) and the dynamic resource allocation
problem without monetary transfers (Section TR.5 of
the technical report Balseiro et al. 2019) are of the latter.
We defer further details to respective sections.

3.3. Characterizing Direct Static Mechanisms
Theorem 1 reduces a complex dynamic mechanism
design problem to the following single-round optimi-
zation problem over direct mechanisms and restricted
to point-mass distributions:

inf
S∈S×1

sup
θ∈Θ

Regret S, δθ, 1( ): (2)

In this subsection, we describe the structure of (2) in
more detail.3 We first describe the space of single-
round direct mechanisms in a more explicit form.
Recall from Subsection 3.1 that S ∈ S×1 is uniquely de-
termined by decision rule π1 :Θ

⋃{PASS} × [0, 1] →
Ω that determines the outcome ω1 � π1(θ1, z1) as a
function of the reported shock θ1 and the random var-
iable z1 that enables randomized decision rules. Put
differently, S is effectively defined by a rule that asso-
ciates each possible report θ ∈Θ with a distribution
over outcomes; we ignore the possibility of a report of
PASS under the recommended truthful reporting
strategy. We make this explicit and, abusing notations,
equivalently define a single-round direct mechanism
S ∈ Δ(Ω)Θ by

Sθ W( ) � Pz~Uniform 0,1[ ] π1 θ,z( ) ∈W( ),
for every shock θ ∈Θ and measurable setW ⊆Ω.

Consider the following optimization problem in
terms of the outcome distribution representation:

inf
S∈Δ Ω( )Θ

sup
θ∈Θ

OPT δθ, 1( ) −
∫
Ω

u θ,ω( )dSθ ω( )
{ }

(3)

s:t:
∫
Ω

v θ,ω( )dSθ ω( ) ≥
∫
Ω

v θ,ω( )dSθ′ ω( ) ∀ θ,θ′ ∈ Θ,

(IC)∫
Ω

v θ,ω( )dSθ ω( ) ≥ 0 ∀ θ ∈ Θ: (IR)

It is simple to conclude that the constraints (IC) and
(IR) are a rewriting of the incentive compatibility and
(implicit) individual rationality constraints we have
placed on the set S×1 in Subsection 3.1. The following
lemma leverages this representation of single-round
direct mechanisms to simplify (2) and shows its equiv-
alence to (3); see Online Appendix A.2 for the proof.

Lemma 1. The optimization problems (2) and (3) attain
the same objective value. Moreover, a single-round direct
mechanism S∗ with decision rule π1 :Θ

⋃{PASS} ×
[0, 1] →Ω is an optimal solution of (2) if and only if its out-
come distributions S∗θ(W) :� Pz~Uniform[0,1](π1(θ,z) ∈W)
for θ ∈Θ,W ⊆Ω are an optimal solution of (3). Finally,
the objective of (3) can be equivalently replaced with
supF∈Δ(Θ){

∫
Θ
OPT(δθ, 1)dF(θ) − ∫

Θ

∫
Ω
u(θ,ω)dSθ(ω)dF(θ)}.

It is easy to see that the known-distribution bench-
mark in (3) can be equivalently written as

OPT δθ, 1( ) � sup
G∈Δ Ω( )

∫
Ω

u θ,ω( )dG ω( )

s:t:
∫

Ω

v θ,ω( )dG ω( ) ≥ 0:

Therefore, OPT(δθ, 1) can be thought of as a “first-
best” benchmark without IC constraints in which the
principal chooses, for the given shock, the best
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possible distribution over outcomes subject to an
ex-ante IR constraint.

When the spaces of shocks and of outcomes are dis-
crete, (3) is a finitely-sized linear program that can be
efficiently solved. When the shock space is single-
dimensional, an optimal single-round direct mecha-
nism can be sometimes determined analytically using
the Myersonian theory (which involves using the en-
velope theorem to simplify the IC constraints) and
minimax duality theory (on the version of (3) with
the alternative objective stated in Lemma 1 in which
the inner supremum is a convex program). We il-
lustrate this approach in Section 4. We are not aware
of a general approach to solve (3) in general, multidi-
mensional mechanism design problems.

3.4. Proof Sketch for Theorem 1
To prove our main theorem, we show a lower bound
and an upper bound on the minimax regret of the
multiround problem in terms of direct static mecha-
nisms. Essentially, the multiround problem reduces to
a static problem when the principal restricts to point-
mass distributions that are possible candidates for
the agent’s distribution under Assumption 1 and this
restriction is without loss for the principal under
Assumption 2. Both the lower bound and upper
bound arguments rely crucially on how the single-
round benchmark OPT(δθ, 1) relates to the optimal
performance achievable OPT(F,T) in T rounds. As
already mentioned, point-mass distributions will be
important and we have the following result on the
benchmark. When the distribution F is a point-mass
and is known to the principal, the agent holds no pri-
vate information and the principal can (nearly) attain
OPT(δθ,T) by simply repeating a (near) optimal mech-
anism that (nearly) attains OPT(δθ, 1) over T rounds.

Proposition 1. For any θ ∈Θ, OPT(δθ,T) � T·
OPT(δθ, 1).

The following result lower bounds the regret of any
incentive compatible dynamic mechanism in terms of
the regret of direct static mechanisms restricted to
point-mass distributions and it directly implies a low-
er bound on the minimax regret in the multiround
problem.

Lemma 2 (Lower Bound). Suppose Assumption 1 holds.
For any incentive compatible dynamic mechanism A ∈A,
there exists a single-round direct IC/IR mechanism S ∈ S×1
such that

sup
F∈F

Regret A,F,T( ) ≥ T · sup
θ∈Θ

Regret S,δθ, 1( ): (4)

To see the lower bound Regret(T) ≥ T · infS∈S×1

supθ∈ΘRegret(S,δθ, 1), first take the infimum over all
single-round direct IC/IR mechanisms S on the right-

hand side and then take the infimum over all incentive
compatible dynamic mechanisms A on the left-hand
side. To prove the lemma, we use a revelation-princi-
ple-type argument to reduce the multiround problem
to the single-round problem. The main idea involves
using Assumption 1 to focus on point-mass distribu-
tions and then imposing structural constraints (the IC/
IR constraints) as we effectively shrink the time horizon;
this idea also appears in Amin et al. (2013). More specif-
ically, we can construct a single-round direct mecha-
nism S from any incentive compatible dynamic mecha-
nism A by letting Sθ for θ ∈Θ to be the time-averaged
distribution of outcomes when the agent’s distribution
is the point-mass distribution δθ and the agent plays
the recommended strategy (as given in A). By construc-
tion, truthfully reporting a shock θ under S gives the
same utilities to both parties, when scaled by T, as im-
plementing the recommended strategy under A. Then,
the resulting single-round mechanism S is incentive
compatible and individually rational because the rec-
ommended strategy is utility-maximizing for the agent
and guarantees the agent utility of at least 0 for the
point-mass distributions in the multiround problem.

The next result upper bounds the regret of direct
static mechanisms in the multiround problem under
Assumption 2. For any single-round direct IC/IR
mechanism, the regret incurred by repeating it T times
is no greater than T times its regret in the single-round
problem when restricted to point-mass distributions.

Lemma 3 (Upper Bound). Suppose Assumption 2 holds.
For every single-round direct IC/IR mechanism S ∈ S×1,

sup
F∈F

Regret S×T,F,T
( ) ≤ T · sup

θ∈Θ
Regret S,δθ, 1( ): (5)

The lemma implies the upper bound Regret(T) ≤
T · infS∈S×1 supθ∈ΘRegret(S,δθ, 1) because we can take
the infimum over all single-round direct IC/IR mech-
anisms on both sides in the stated inequality and note
repetitions of single-round direct IC/IR mechanisms
are a subset of all incentive compatible dynamic
mechanisms A. For a sketch of the proof of the lemma,
we note that when the principal implements S×T
for a single-round direct IC/IR mechanism S and
the agent reports truthfully (as recommended for
direct mechanisms), the individual rounds corre-
spondingly decouple and PrincipalUtility(S×T,F,T) �
T ·PrincipalUtility(S,F, 1) for any distribution F. We
then note Assumption 2 guarantees that the worst-
case regret against point-mass distributions extends to
that against any distributions in F in the single-round
problem. That is, by the extreme-point convexity as-
sumption, the principal can control his regret by pro-
tecting against all point-mass distributions.

Combining Lemmas 2 and 3, we can prove
Theorem 1. From the above discussion, we already
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have Regret(T) � T · infS∈S×1 supθ∈ΘRegret(S,δθ, 1). Sim-
ilarly, we can prove the second part about the (near)
optimality of direct static mechanisms and the third
part about the existence of optimal mechanisms from
these lemmas. For a complete proof, we refer to Online
Appendix A.1. We refer to Online Appendix A.3 for
proofs of Lemmas 2 and 3 and to Online Appendix
A.3.3. for that of Proposition 1.

To conclude, we note restricting to point-mass dis-
tributions is reasonable in hindsight because point-
mass distributions happen to be the right class of
“worst-case” distributions in that for any dynamic
mechanism, there exists a point-mass distribution for
the agent against which the dynamic mechanism is
forced to obtain a regret at least the minimax regret.
See the following proposition; its proof is provided in
Online Appendix A.3.3.

Proposition 2. Suppose Assumptions 1 and 2 hold. For
any incentive compatible dynamic mechanism A ∈A and
ε > 0, there exists a point-mass distribution δθ such that
Regret(A,δθ,T) ≥ Regret(T) − ε.

4. Applications
In this section, we apply our results to a dynamic sell-
ing mechanism design problem where a seller sells in-
dependent goods sequentially over time and a
principal-agent model with hidden costs in which a
principal repeatedly contracts with an agent to pro-
duce at particular output levels. A third application to
a repeated resource allocation problem without mone-
tary transfers is presented, due to space considera-
tions, in Section TR.5 of the technical report Balseiro
et al. (2019).

4.1. Dynamic Selling Mechanism
Consider a repeated setting where the principal (i.e.,
seller) sells independent and identical items to a stra-
tegic agent (i.e., buyer) over T rounds and seeks to
maximize the revenue; this is an extension of the semi-
nal single-round model from Bergemann and Schlag
(2008) to our robust, dynamic mechanism design
framework. The items are being sold one by one se-
quentially and, in each round, the agent realizes his
value (equivalently, his willingness to pay) for the
current item. The agent’s values are drawn from an
underlying private distribution known only to him.
The principal does not know the agent’s private value
distribution except that the agent’s value is in the
range [0, 1].

In the language of the general model, the agent’s
shock is his private value for the item and the shock
space is Θ � [0, 1]. We assume that F � Δ([0, 1]),
which implies that Assumption 1 holds. The outcome
space is Ω � {0, 1} × R and an outcome is ω � (x̂, p̂) ∈
Ω where x̂ is the allocation and p̂ is the payment, that

is, whether the item is allocated to the agent and the
payment the agent makes to the principal. Given an
outcome ω � (x̂, p̂), the agent’s utility function is
v(θ,ω) � θ · x̂ − p̂ and the principal’s utility function is
u(θ,ω) � p̂. Abusing notations, for single-round direct
mechanisms, we use x :Θ→ [0, 1] and p :Θ→ R to
denote the interim rules mapping reported shocks to
expected allocations and payments, respectively, and
the pair (x,p) to represent a single-round direct mech-
anism when convenient.

Note that OPT(δθ,T) � Tθ for all θ ∈Θ because the
principal can extract the full surplus of the agent
and satisfy the IR constraint by charging the agent’s
value when his shock is constant. Because of the
agent’s participation constraint, the principal’s
revenue is at most the agent’s surplus and, thus,
OPT(F,T) ≤ TEθ~F[θ] � Eθ~F[OPT(δθ,T)] for every
distribution F ∈ F . Therefore, Assumption 2 holds
and Theorem 1 applies. We next show the minimax
regret is T=e and an optimal dynamic mechanism is
T repetitions of a randomized posted pricing mech-
anism to be specified below.

Proposition 3. For revenue maximization in the dynamic
selling mechanism design problem with one good, the mini-
max regret is T=e and an optimal solution is T repetitions
of the randomized posted pricing mechanism S∗ with price
distribution Φ∗ given by

Φ∗ p( ) � 0, if p ∈ 0,1=e
[ )

1+ lnp, if p ∈ 1=e, 1[ ] ,
{

such that the interim allocation and payment rules are
x∗(θ) � Φ∗(θ) and p∗(θ) � [θ− 1=e]+ for θ ∈ [0, 1].

For comparison, Amin et al. (2013) showed a lower
bound of T=12 for the restricted class of dynamic
posted pricing mechanisms; they considered a slightly
different benchmark, but their results still hold in our
setting (see section TR.6.1 of the technical report
Balseiro et al. 2019). Their results would imply that stat-
ic posted pricing mechanisms are asymptotically opti-
mal in the restricted class. We consider more general
dynamic mechanisms and determine an exactly opti-
mal dynamic mechanism in this larger class with the
performance that matches the improved lower bound
of T=e exactly. To prove Proposition 3, it suffices to
show that the randomized posted pricing mechanism
S∗ is a solution to the single-round minimax regret
problem (3) and the corresponding minimax regret is
1=e via a saddle-point result, by Theorem 1. Its proof is
deferred to Online Appendix B. An analogous result
restricted to randomized posted pricing strategies ex-
ists due to Bergemann and Schlag (2008). Our single-
round saddle-point result is for the slightly more gen-
eral class of single-round direct IC/IR mechanisms and
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is still obtained with the same optimality structure and
minimax regret value.4

Our results extend to multiple-goods settings (sell-
ing n goods in each round to an agent with additive,
multidimensional valuations) and welfare maximiza-
tion. In the case of welfare maximization, the minimax
regret is zero because, using the Vickrey-Clarke-
Groves mechanism (which reduces to allocating items
for free for one buyer), it is possible to allocate effi-
ciently without any prior beliefs on the agent’s private
information. In the case of revenue maximization with
multiple goods, a robust optimal solution involves
selling each item independently using the above
mechanism S∗ for a total regret of (n=e)T. Due to space
considerations, we defer the analysis of these models
to Sections TR.4.1 and TR.4.2 of the technical report
Balseiro et al. (2019).

4.2. Principal-Agent Model with Hidden Costs
We consider a repeated principal-agent problem
that captures various applications such as retail
franchising, labor contracts, and procurement con-
tracts. Similar to revenue maximization in the dy-
namic selling problem, we show that the minimax
regret is linear in T and an optimal mechanism is
static and repeats a single-round mechanism. Due
to nonlinearity in the problem, our analysis is more
involved.

More formally, the principal repeatedly contracts
with the agent to produce output on his behalf and
obtains revenue R(q̂) when the agent produces q̂ units
of output, which is publicly observable. A contract
specifies a payment p̂ from the principal to the agent
as a function of the number of output units q̂. The
agent has a private marginal production cost θ ∈
[θ, θ̄] where 0 < θ < θ̄ <∞ which is assumed to be in-
dependently and identically distributed according to
distribution F across the rounds. The agent observes
his private cost and then decides on the production
level q̂ in each round. When he produces q̂ units of
output and receives a payment p̂, his utility is p̂ −θ · q̂
where θ is his marginal cost for that round. The prin-
cipal does not know the agent’s private distribution F
but only that realized costs are in the range [θ, θ̄]. In
particular, F � Δ([θ, θ̄]) and Assumption 1 holds. We
assume R(x) is a strictly increasing, strictly concave
function that is twice continuously differentiable on
(0,∞) with R(0) � 0 and limx→0R′(x) � ∞; for example,
R(x) � ��

x
√

.
In terms of our general model, the agent’s shock is

his marginal cost of production and Θ � [θ, θ̄]. The
outcome space is Ω � R+ × R and an outcome ω �
(q̂, p̂) ∈Ω is a pair of the production level q̂ and the
payment p̂. When the outcome is ω � (q̂, p̂) in a round,
the agent’s utility function is v(θ,ω) � p̂ −θ · q̂ and the
principal utility function is u(θ,ω) � R(q̂) − p̂. Abusing

notations, for single-round direct mechanisms, we use
q :Θ→ R+ and p :Θ→ R to denote the interim rules
mapping reported shocks to production levels
and payments, respectively, and the pair (q,p) to
represent a single-round direct mechanism when
convenient.

We now discuss the first-best mechanism that the
principal can implement when he knows the agent’s
shock in a round. Because monetary transfers are al-
lowed, the principal would set payments so that the
IR constraint of the agent binds. Denote by q̄(θ) �
argmaxx≥0{R(x) −θ · x} the optimal production level
when the agent’s shock is known. The first-best
mechanism involves requesting the agent to pro-
duce q̄(θ) units and paying the agent the minimum
amount θ · q̄(θ) that makes him indifferent between
participating or not in the contract (see, e.g., Laf-
font and Martimort 2001). Let R̄(θ) �maxx≥0{R(x) −
θ · x} be the first-best utility of the principal when
the shock is known to be θ. Because of the assump-
tions on R(·), q̄(θ) is uniquely defined such that
R′(q̄(θ)) � θ and R̄(θ) is a strictly decreasing convex
function.

A similar reasoning to the dynamic selling problem
yields that OPT(δθ,T) � TR̄(θ) because, when the
agent’s shocks are constant and equal to θ, the princi-
pal can implement the above first-best solution. The
known-distribution benchmark for distribution F can
be bounded as follows:

OPT F,T( ) ≤ sup
A∈A

Eπ,σ
∑T
t�1

R q̂t
( )−θtq̂t

[ ]

≤∑T
t�1

Eθt R̄ θt( )[ ] � Eθ~F OPT δθ,T( )[ ]
,

where the first inequality follows from the agent’s
participation constraint, which implies Eπ,σ[∑T

t�1p̂t−
θtq̂t] ≥ 0, the second from relaxing the IC constraint
and optimizing pointwise over the shocks, and the
equality because shocks are identically distributed.
Therefore, Assumption 2 holds and Theorem 1 ap-
plies. We formally state the main result of the subsec-
tion as follows:

Proposition 4. For the principal-agent model with hidden
costs, the minimax regret of the multiround problem is cT
for some constant c > 0 and an optimal solution is T repeti-
tions of offering the menu of deterministic contracts
{(q∗(θ),p∗(θ)}θ∈Θ, which is a single-round direct IC/IR
mechanism. The allocation rule is continuous and satisfies
the differential equation characterization

q∗
( )′

θ( ) � − q̄ θ( )
R′ q∗ θ( )( )−θ

, forθ ∈ θ,κ( ),

with boundary conditions q∗(θ) � q̄(θ) and q∗(θ) � 0 for
θ ∈ [κ, θ̄], where κ is the smallest cost for which q∗ equals
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to 0 and is assumed to be θ̄ if q∗ is positive over [θ, θ̄], and
the payment rule is given by

p∗ θ( ) � θ · q∗ θ( ) +
∫ θ

θ

q∗ x( )dx:

For Proposition 4, we prove the stated single-round
direct IC/IR mechanism is an optimal solution to the
single-round minimax regret problem (3) via a saddle-
point result. Because the revenue function R is con-
cave, no randomization is needed and we can restrict
our search of an optimal solution to those single-
round direct IC/IR mechanisms that can be described
in terms of a menu of deterministic contracts
(q(θ),p(θ)) for θ ∈ [θ, θ̄] where the contract terms are
all deterministic without randomization. We refer to
Online Appendix C.1 for further details on the single-
round problem including the IC/IR constraints and to
Online Appendix C.2 for the proof of Proposition 4.

5. Interpretation and Necessity of
Assumptions 1 and 2

In this section, we provide counterexamples showing
that direct static mechanisms are not necessarily optimal
in the absence of Assumptions 1 or 2. We also include a
richer discussion of the extreme-point convexity as-
sumption; we provide an economic interpretation, estab-
lish general sufficient conditions under which it holds,
and provide an approximate form of Theorem 1 under
an approximate extreme-point convexity condition.

5.1. Suboptimality of Static Mechanisms Without
Assumption 1

Assumption 1 requires that the principal must guard
against point-mass distributions because these are fea-
sible choices for nature for the agent’s distribution. To
explore the necessity of this assumption, we show a
game for which Assumption 1 does not hold and in
which repeating a single-round direct mechanism
leads to a suboptimal regret. The game will involve a
class of shock distributions for which the knowledge
of the mean immediately constrains the variance.

We consider a dynamic selling problem as in Sec-
tion 4.1 with one good when the shock space is Θ �
R+ and the class of distributions F is a scaled family
(see, e.g., Casella and Berger 2002, Definition 3.5.4).
For a fixed cumulative distribution function G over
R+, which is assumed to be known by the principal,
we consider the parametric class of distributions FG �
{F(θ;τ) � G(θ=τ) for some τ ∈ [0, 1]} where the scale
parameter τ is known by the agent but not by the
principal. Denoting by γt a random variable distri-
buted according to G, we have that shocks are multi-

plicatively separable in the sense that θt �(d)τγt (i.e.,
equivalent in the distributional sense). The effect of

the scale parameter τ is to contract the distribution G
while maintaining the same shape. For example,
when G is an exponential distribution with mean 1,
FG is the class of all exponential distributions with
mean τ ∈ [0, 1]. Alternatively, when G is a lognormal
distribution with mean 0 and standard deviation σ,
FG is the class of all lognormal distributions with
mean log(τ) ∈ (−∞, 0] and standard deviation σ.

Note we have an ex-ante participation constraint. Be-
cause monetary payments are allowed, Proposition 8 (in
Subsection 5.2) implies that Assumption 2 holds.
Assumption 1, however, does not hold because not all
point-mass distributions are feasible distributions in FG.

We characterize an optimal mechanism using the
relax and verify approach of Kakade et al. (2013):

Proposition 5. Let G be an arbitrary distribution over R+
with mean E[γ] > 0. For revenue maximization in the dy-
namic selling problem with one good and the agent’s distri-
bution restricted to FG, the minimax regret is (E[γ]=e)T
and an optimal mechanism initially screens the agent by
the parameter τ in Round 0, and then in each round, allo-
cates each item with probability x∗(τ) and charges p∗(τ)
with (x∗,p∗) as stated in Proposition 3.

Recall that we can decompose shocks as θt � τγt
with γt drawn i.i.d. from G. We prove the above result
by considering a relaxed environment in which γt are
public and observable by the principal—the agent’s
only private information is the parameter τ. Leverag-
ing our ex-ante participation constraint, we show the
relaxed problem can be reduced to a single-round
problem that can solved to optimality as in the proof
of Proposition 3. We conclude by showing that the re-
sulting mechanism is feasible and, thus, optimal for
the original problem. We remark that the mechanism
presented in the above result is ex-ante individually
rational but not ex-post individually rational, that is,
the agent’s total utility might be negative with a posi-
tive probability. We conjecture that the minimax re-
gret of (E[γ]=e)T can also be asymptotically attained
with an ex-post individually rational mechanism.

Let RegretS(T) :� infS∈S×1 supF∈FG
Regret(S×T,F,T)

be the optimal regret for the class of direct static
mechanisms. Because S×T ⊂A, we have that Regret(T)
≤ RegretS(T). For a specific game where direct static
mechanisms without screening are strictly suboptimal
or, equivalently, Regret(T) < RegretS(T), we let G be
the exponential distribution with mean 1. In this case,
we have that Regret(T) � T=e from the above proposi-
tion. On the other hand, the following proposition
shows that RegretS(T) � (1− 1=e)T.
Proposition 6. Let G be the exponential distribution with
mean 1. For revenue maximization in the dynamic selling
problem with one good and the agent’s distribution restrict-
ed to FG, the minimax regret for direct static mechanisms

Balseiro, Kim, and Russo: Futility of Dynamics
Operations Research, Articles in Advance, pp. 1–17, © 2021 INFORMS 11



is (1− 1=e)T and repeatedly offering a posted price of 1 is
an optimal direct static mechanism.

Therefore, when Assumption 1 does not hold, there
can be a separation between the minimax regrets achiev-
able by incentive compatible dynamic mechanisms and
by direct static mechanisms. The proofs of the above
propositions are provided in Online Appendix D.

5.2 Sufficient Conditions for Assumption 2
This subsection provides sufficient conditions for the
extreme-point convexity requirement in Assumption 2.
Its economic interpretation is deferred until the next sub-
section. All proofs are deferred to Online Appendix E.

It is helpful to replace the known-distribution
benchmark OPT(F,T) with a more tractable object. The
first-best (equivalently, full information) benchmark
ū(F), defined below, is the optimal performance attain-
able when incentive compatibility constraints are
dropped and the mechanism is subject only to an
ex-ante individual rationality constraint. In other
words, this is the optimal principal utility in a surro-
gate single-round problem in which the agent’s distri-
bution F is commonly known, shocks are publicly
observable, and the agent commits to participate be-
fore observing the shock. Relatedly, we also consider
the measure Eθ~F[ū(δθ)] which differs from ū(F) be-
cause it contains an interim IR constraint (on the per-
shock basis) rather than an ex-ante IR constraint. It is
the optimal principal utility in the single-round prob-
lem with full information as in ū(F), but where the
agent can choose not to participate (or report PASS) af-
ter the shock is realized. For any distribution F, we for-
mally define ū(F) and the (derived) measure
Eθ~F[ū(δθ)] as follows:

ū F( ) :� sup
S∈S×1

∫
Θ

∫
Ω

u θ,ω( )dSθ ω( )dF θ( )

s:t:
∫
Θ

∫
Ω

v θ,ω( )dSθ ω( )dF θ( ) ≥ 0

Eθ~F ū δθ( )[ ] � sup
S∈S×1

∫
Θ

∫
Ω

u θ,ω( )dSθ ω( )dF θ( )

s:t:
∫
Ω

v θ,ω( )dSθ ω( ) ≥ 0, ∀ θ ∈Θ:

Because the agent’s distribution F and the shock θ in
Round 1 are publicly known in the full information
setting, it suffices that the principal designs a direct
mechanism that assigns an outcome distribution for
each possible shock value. When scaled by T, Tū(F)
and TEθ~F[ū(δθ)] are optimal performances achiev-
able by the principal in the multiround problem
with full information, respectively, under the ex-ante
IR constraint and under the per-round interim IR
constraint.

The next proposition relates these two quantities to
Assumption 2:

Proposition 7. For any F ∈ F , if ū(F) � Eθ~F[ū(δθ)] then
OPT(F,T) ≤ Eθ~F[OPT(δθ,T)].

Building on this broader sufficient condition,
the next proposition gives more specific sufficient
conditions that cover all applications in Section 4 and
the technical report Balseiro et al. (2019). First,
Assumption 2 holds for games with monetary pay-
ments that enter linearly into the utility functions of
the principal and agent. This is because, given a mech-
anism satisfies the ex-ante IR constraint, the principal
can use monetary transfers to satisfy the interim IR
constraints without changing the expected overall
utilities. The second part observes that Assumption 2
holds when agent utilities are always nonnegative, be-
cause both the ex-ante and interim IR constraints are
satisfied automatically. When monetary transfers are
allowed, and the principal wants to implement out-
comes that lead to negative utility to the agent, our re-
sult may require negative payments to make the agent
participate.

Proposition 8. Assume the game is such that either (1) the
outcome space factorizes as Ω �Ω0 × R and the utility
functions can be written u(θ, (ω0,p)) � u0(θ,ω0) + αp and
v(θ, (ω0,p)) � v0(θ,ω0) − βp for all outcomes (ω0,p) ∈
Ω0 × R for some functions u0 :Θ ×Ω0 → R and v0 :Θ ×
Ω0 → R and scalars α ≥ 0 and β > 0, or (2) v(θ,ω) ≥ 0 for
all θ ∈Θ and ω ∈Ω. Then, ū(F) � Eθ~F[ū(δθ)] for all F ∈
F and, therefore, Assumption 2 holds.

5.3. Economic Intuition for Assumption 2 and
Trade Across Shocks

Whether OPT(F,T) is extreme-point convex depends
on two opposing effects of shock uncertainty. First,
greater uncertainty in the shock distribution leads to
greater information asymmetry between the principal
and agent. To elicit the agent’s private information,
the principal needs to concede information rents, lead-
ing to lower principal utility. This suggests shock un-
certainty can be undesirable from the principal’s point
of view. The second, more subtle effect, which we call
trade across shocks, sometimes allows the principal to
implement a broader set of outcomes when there is
greater shock uncertainty. Subject to the agent’s par-
ticipation, the principal can implement outcomes that
are beneficial to him but unfavorable for the agent
under some realizations of the shock by, in return, of-
fering other more favorable outcomes for the agent
under other realizations of the shock. This kind of
trading off is possible when there is shock uncertainty
and, in this sense, shock uncertainty can be beneficial
for the principal. Whether Assumption 2 holds de-
pends on which of these effects dominates.
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To see these effects directly, we can equivalently
write the inequality in Assumption 2 as

Tū F( ) − TEθ~F ū δθ( )[ ] ≤ Tū F( ) −OPT F,T( ),
by noting OPT(δθ,T) � Tū(δθ) (see Proposition E.1 in
Online Appendix E).5 The right-hand side is the effect
of information asymmetry, which is commonly recog-
nized to be the difference between the first-best (with-
out IC) and “second-best” (with IC) performances in
the Bayesian version of the multiround problem
where F is known to the principal but not the realized
shocks. The left-hand side is the effect of trade across
shocks, which is the difference between optimal per-
formances under different participation options, that
is, the ex-ante IR versus per-round interim IR con-
straints, in the full information version of the problem
where both F and shocks are known to the principal.

In many games where the principal knows F but
not the shocks, the principal may link decisions across
rounds subject to the agent’s participation constraint
so that OPT(F,T)=T→ ū(F) as T→∞ (see, e.g.,
Fudenberg et al. 1994, Jackson and Sonnenschein
2007). Therefore, the information asymmetry effect is
negligible when the number of time periods is large
and the trade across shocks effect ends up being the
determining factor of whether the extreme-point
convexity holds. In fact, Propositions 7 and 8 are
statements about when the left-hand side is exactly 0.

To further explain trade across shocks, we focus on
the full information setting, that is, F and θt are observed
publicly. Consider the game in Table 1. There are two
shocks or states of the world, reflecting the volume of
rain in a given farming season. The principal cultivates a
crop that requires heavy rain, whereas the agent culti-
vates a crop that grows only when the rain is light. There
are two possible outcomes: they do not interact and each
earns a utility of 0, or they share, which yields a utility of
−1 for whoever must share his season-appropriate crop
and a utility of 2 for the recipient (with the magnitude
difference reflecting diminishing marginal returns).

For simplicity, assume each state θi of the world is
equally likely under F. Then, a simple calculation
shows ū(F) � 3=4 by sharing in θ1 and sharing with
probability 1=2 in θ2. On the other hand, ū(δθ1) � 0 and
ū(δθ2) � 0, because the principal prefers not to share in
θ1 and the agent prefers not to in θ2. In particular,

ū(F) > Eθ~F[ū(δθ)] because the principal can implement
a broader set of outcomes when there is shock uncer-
tainty. This gap reflects that sharing is individually ra-
tional for the agent ex-ante, but may not be after the
state of the world is observed, and that the principal
strictly does better under a sharing scheme of his choice
that the agent agrees to before observing shocks.

To tie back to Theorem 1 where the principal does
not know F, Assumption 1 implies the principal has
to account for the possibility that F is a point-mass
distribution and, when shocks are constant over
time, direct static mechanisms that do away with
trade across shocks and satisfy the more stringent in-
terim individual rationality constraint are optimal.
When Assumption 2 holds, by protecting against
point-mass distributions, the principal can hedge
against any other distribution as regret is the largest
for point masses. In other words, because there is no
benefit from trading across shocks, direct static
mechanisms are optimal when the principal does
not know the distribution F.

Now suppose that the extreme-point convexity
does not hold and a nondegenerate distribution is
worst-case optimal. Because the trade across shock
effect dominates, direct static mechanisms might be
suboptimal for two reasons. First, as discussed in
the farming example, the interim individual ratio-
nality constraint limits the set of outcomes imple-
mentable by the principal. Second, even if we relax
the participation constraint to ex-ante individual ra-
tionality, a dynamic mechanism might be necessary
to attain low regret. This follows because, to imple-
ment outcomes that are individually rational for the
agent in expectation over his shocks, the principal
needs a dynamic scheme to infer the agent’s distri-
bution of shocks. In Section 5.4, we exhibit a game
where direct static mechanisms incur linear regret
and provide a dynamic mechanism that attains
sublinear regret by inferring the agent’s distribution
of shocks.

Finally, imagine introducing money to the game
above. From Proposition 8, we know ū(F) � Eθ~F
[ū(δθ)], because the principal could satisfy the more
stringent interim IR constraint by paying the agent
to share if necessary. Put more simply, the principal
could buy crops from the agent in light rain seasons
and sell his own crops in heavy rain seasons. Money
allows for economic interactions that are individual-
ly rational to the agent in every state of the world.
When monetary transfers are infeasible, the princi-
pal can try to mimic them by guaranteeing the agent
beneficial outcomes in other states of the world.
Trade across shocks is this phenomenon where one
mimics money by transferring utilities across differ-
ent states of the world to incentivize the agent’s
participation.

Table 1. A Game (Ω, Θ, u, v) with Outcome Space Ω � { ∅,
ω1}, Shock Space Θ � {θ1, θ2}, and Utility Functions u and
v of the Principal and Agent in Matrix Representation

u(·, ·), v(·, ·) ∅ ω1 � SHARE

θ1 � LIGHT RAIN 0,0 2, −1
θ2 �HEAVY RAIN 0,0 −1, 2
Note. The no-interaction outcome is denoted by ∅.
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5.4. On the Regret of Static Mechanisms Without
Assumption 2

The previous subsection provides intuition that dy-
namics may be beneficial when Assumption 2 fails
due to the possibility of trade across shocks. But be-
cause our discussion was focused on a full informa-
tion setting, it remains to show that dynamics can be
beneficial in games with partial information. Due to
space considerations, all proofs of the following re-
sults are deferred to Online Appendix F.

On the positive side, we show that direct static
mechanisms are still near-optimal when Assumption 2
nearly holds, in the sense that the gap OPT(F,T) −
Eθ~F[OPT(δθ,T)] is small for all F ∈ F .

Theorem 2. Suppose Assumption 1 holds. For any ε ≥ 0,
if a mechanism S ∈ S×1 satisfies (1), then

Regret S×T,T
( ) ≤ Regret T( ) + ε

+ sup
F∈F

OPT F,T( ) − Eθ~F OPT δθ,T( )[ ]{ }
:

On the negative side, we next show a game for which
Assumption 2 does not hold and direct static mecha-
nisms are suboptimal. For this game, we prove that di-
rect static mechanisms suffer linear minimax regret but
that implementing a dynamic mechanism leads to a sub-
linear minimax regret. The performance gap shows that
dynamic or adaptive schemes can effectively take advan-
tage of the history of past outcomes and reports by the
agent when Assumption 2 does not hold.

Consider the game in Table 2. It is not difficult to
show that Assumption 2 fails. Let F � ( f1, f2) be the
agent’s private distribution over Θ where the shock is
θi with probability fi for i � 1, 2. We assume F �
{( f1, f2) : f1 + f2 � 1, fi ≥ 0} so that Assumption 1 holds.
The next result characterizes the optimal performance
achievable.

Proposition 9. For the game in Table 2, we have
OPT(F,T) � T · ū(F) and ū(F) �min{ f1, f2}.

For point-mass distributions, we have ū(δθ1)
� ū(δθ2) � 0. For example, when F � (1=2, 1=2),
we have ū(F) � 1=2 but Eθ~F[ū(δθ)] � f1 · ū(δθ1)+
f2 · ū(δθ2) � 0; that is, OPT(F,T) > Eθ~F[OPT(δθ,T)].

Like the game in Table 1, in this game, the principal
would like to sometimes implement outcomes that
are worse for the agent than not participating. Because
the game does not allow for monetary transfers, the
principal can only do this by making desirable ex-
pected outcomes in future rounds contingent on the
agent's participation—implementing what we have
called trade across shocks. The main difficulty in estab-
lishing the next proposition is in showing that the princi-
pal can implement a form of trade across shocks without
knowing the shock distribution or observing the realized
shocks.

Proposition 10. For the game in Table 2, a separation
exists:

1. For every T, the minimax regret of direct static mecha-
nisms that repeat a single-round direct IC/IR mechanism is
infS∈S×1 supF∈F Regret(S×T,F,T) � T=2.

2. For every T, there exists an incentive compatible
dynamic mechanism A such that supF∈F Regret(A,F,T) �
O((lnT)1=2T2=3).

The first part of the proposition shows that any repe-
tition of a single-round direct IC/IR mechanism neces-
sarily incurs a linear regret. Because of the structure of
the game, single-round direct IC/IR mechanisms are se-
verely limited in generating utilities for the principal.
For the second part, we design a dynamic mechanism
A with two phases. In the first phase, the principal im-
plements some default mechanism that places positive
probabilities on outcomes ω1 and ω2 when the reported
shocks are θ1 and θ2, respectively, and induces the
agent to truthfully report his per-round shocks, as the
present disutility from misreporting overwhelms any
potential future gains. Then in the second phase, the
principal estimates the agent’s distribution F from the
reports in the first phase and implements a better-tuned
mechanism, which is a version of the optimal ex-ante
mechanism that is perturbed to account for the statisti-
cal errors introduced by estimating F with limited sam-
ples. Using standard concentration inequalities, we can
balance the loss of offering suboptimal mechanisms in
the first and second phases. By choosing the number of
rounds in the first phase to grow sublinearly relative to
the time horizon, we can show that the dynamic mecha-
nism incurs a sublinear regret.

Although we do not provide details due to the
space consideration, (1) we can still show a separation
between direct static mechanisms and dynamic mech-
anisms when the utility functions of the principal and
agent are bounded, that is, bounded entries in Table 2;
and (2) we can show the class of sequential screening
mechanisms, which ask the agent to report his distri-
bution and then implement a static mechanism based
on the screened information, performs better than the
class of (naive) direct static mechanisms considered
above but still obtains the minimax regret that is line-
ar in the time horizon (approximately, 0:217812 ·T).

It is worth mentioning that, from Proposition 8,
Assumption 2 holds in the modified version of the

Table 2. A Game (Ω, Θ, u, v) with Outcome Space Ω � { ∅,
ω1, ω2}, Shock Space Θ � { θ1, θ2 }, and Utility Functions u
and v of the Principal and Agent in Matrix Representation

u(·, ·), v(·, ·) ∅ ω1 ω2

θ1 0, 0 1, − 1 0, −∞
θ2 0, 0 1, −∞ 0,1

Note. The no-interaction outcome is denoted by ∅.
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above game that allows for monetary transfers. In that
case, trade across shocks is not needed to incentivize
participation and Theorem 1 shows direct static mech-
anisms are optimal.

6. Extensions and Discussion
Our results can be extended in several directions.
Due to space considerations, we describe these briefly
below and provide details in the technical report
Balseiro et al. (2019).

• Multiplicative guarantees. We prove analogous
results in terms of multiplicative performance guaran-
tees instead of regrets. Similar to the approximation
and competitive ratios in the theoretical computer sci-
ence literature, we consider the multiplicative perfor-
mance guarantee that is the ratio of the principal utility
and the optimal performance achievable, as in
PrincipalUtility(A,F,T)=OPT(F,T), and the principal’s
goal is to maximize the worst-case ratio. Under
Assumptions 1 and 2, we can show that the multiround
multiplicative guarantee is equal to an appropriately
defined single-round multiplicative guarantee and an
optimal mechanism, if it exists, is static in that it repeats
a single-roundmechanism.

• Dual Perspective and Saddle-Point Theorems.
The multiround and single-round minimax regret
problems can be viewed as sequential-move zero-sum
games in which the principal first chooses a mechanism
and then nature selects a worst-case distribution to
maximize the principal’s regret. We show that, under
certain conditions, these problems are respectively
equivalent to ones in which nature chooses first and then
the principal optimizes his performance given nature’s
choice. These results provide a framework for establish-
ing the existence of optimal mechanisms and explicitly
characterizing them and, also, a direct connection be-
tween our robust formulation and amore classical Bayes-
ian formulation in themultiround problem.

• Alternative benchmarks. We show our results
still hold for other alternative multiround benchmarks
that are considered in the learning literature. Instead
of the optimal performance achievable OPT(F,T), we
consider T · ū(F), which is a stronger benchmark by
Proposition E.1 in Online Appendix E, and a weaker
benchmark which naturally corresponds to the perfor-
mance achievable by repeating the best fixed single-
round direct IC/IR mechanism (i.e., the best fixed
“action” in hindsight). The latter has been considered
by Amin et al. (2013) and subsequent works.

• Arbitrary shock processes. Our results also apply
in the general shock process setting where the agent’s
shocks can be serially correlated according to a stochas-
tic process that is known to the agent but not to the
principal. This is a natural generalization of the repeat-
ed i.i.d. setting considered thus far where the per-

round shocks are drawn independently and identically
from an underlying distribution. As the set of shock
processes is more general, the multiround minimax re-
gret problem is more challenging for the principal. Not
surprisingly, the constant shock processes where the
agent’s shock is fixed over the whole time horizon are
the corresponding counterparts of point-mass distribu-
tions, which are worst cases in the repeated i.i.d. setting.

• Principal pessimism.We consider a stronger notion
of regret in which the agent plays a utility-maximizing
strategy that is least favorable for the principal. Under
this alternative tie-breaking possibility, the worst-case
uncertainty that the principal faces is in both the agent’s
distribution and his utility-maximizing strategy. We
can show our general result (Theorem 1) and those in
Section 4 still hold with respect to this more robust notion
ofminimax regret.

• Connections tomaximin utility objective.We dis-
cuss some connections to the maximin utility objective
for revenue maximization in the dynamic selling prob-
lemwith a single good (Section 4.1). Despite differences
in the settings and objectives, our results with respect
to the minimax regret objective and those in Carrasco
et al. (2019) with respect to the maximin utility objec-
tive have similar analyses and solution structures. We
show this is because both papers rely on essentially the
same single-round saddle-point problem involving di-
rect IC/IR mechanisms and show equivalence-type
connections using saddle-point results.

• More stringent participation constraints. Our
model as stated assumes an ex-ante participation con-
straint in the sense that the agent determines whether
to participate or not in Round 0 while knowing his dis-
tribution but not the realization of future shocks. This
participation constraint is standard in the dynamic
screening literature (see, e.g., Courty and Li 2000). Our
results extend to other, more stringent participation
constraints that have been considered in the literature
such as the dynamic individual rationality constraint
(Kakade et al. 2013, Pavan et al. 2014) and the per-
period individual rationality constraint (Krishna et al.
2013, Ashlagi et al. 2016, Balseiro et al. 2018). This is be-
cause the minimax regret can be achieved by repeating
a single-round direct IC/IR mechanism, which natural-
ly satisfies the latter participation constraints.

• Discounting. We assume no discounting in Theo-
rem 1, but when the principal and agent discount fu-
ture payoffs using the same discount factor γ ∈ (0, 1),
the same results would still hold with minimal changes
and the minimax regret would be linear in the effective
time horizon Tγ :� 1+ γ+ : : : + γT−1.

7. Conclusion
In this paper, we proved false-dynamics results for a
finite horizon setting where the principal and agent
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repeatedly play a game. Our results hold whenever the
set of possible distributions for the agent includes all
point masses and when the optimal performance
achievable is extreme-point convex. The latter condi-
tion is satisfied by all games with linear dependence on
monetary transfers or in which the agent utility func-
tion is always nonnegative. In particular, this includes
the dynamic selling problem, the principal-agent mod-
el with hidden costs, and resource allocation without
monetary transfers, and we determined the minimax
regret and characterized an optimal dynamic mecha-
nism that simply repeats a single-round mechanism in
these applications. When either assumption does not
hold, it is possible that a dynamic mechanism can out-
perform static mechanisms and we showed a separa-
tion in terms of performance between dynamic and
static mechanisms for specific games. Furthermore, we
showed our techniques extend in several directions.

For future research, it would be interesting to bet-
ter understand the extreme-point convexity assump-
tion and find a more general class of games where
false-dynamics-type results hold. On the other hand,
it would be also interesting to further explore where
false-dynamics-type results do not hold and identify
the class of games in which there is a separation be-
tween dynamic and static mechanisms, that is, dy-
namics strictly helps.

Other possible research directions include restrict-
ing the space of distributions and considering multi-
ple agents. Point-mass distributions happen to be
the right class of worst-case distributions in our
analysis, and we have shown that false-dynamics-
type results do not necessarily hold when we rule
out point-mass distributions. We considered one
strategic agent who is forward-looking and responds
to the principal’s mechanism. When there are multi-
ple forward-looking agents, equilibrium considera-
tions become important as the outcome may differ
depending on whether the agents know each other’s
distribution or not, which, in turn, may affect the
principal’s optimal dynamic mechanism. A final in-
teresting research direction is to study the design
of robust dynamic mechanisms when the principal
has access to samples from the agent’s distribution
of shocks.

Acknowledgments
The authors thank the area editor Prof. Johari, an anony-
mous associate editor, and three anonymous reviewers for
providing a number of valuable comments that greatly
improved the paper. The authors also thank Dirk Berge-
mann, Ying-Ju Chen, and the participants at the IN-
FORMS Revenue Management & Pricing Conference,
ACM EC Workshop on Learning in Presence of Strategic
Behavior, and Cornell ORIE Young Researchers Workshop
for valuable feedback.

Endnotes
1 Commitment can be sustained, for example, by writing a contract
that is enforced by a court of law, by reputation, or when planning
horizons are short. Lack of commitment can be shown to lead to
worse performance for the principal.
2 It is possible to apply the revelation principle and restrict attention
to direct mechanisms in which the agent reports his distribution
and the realized shocks. Because a direct mechanism asks the agent
to report his private information and nothing more, the mechanism
should only be defined for shocks that have a positive probability
under the reported distribution. This creates some complexities,
which we sidestep by proving a weaker version of the revelation
principle: under some additional assumptions, there exists an opti-
mal direct static mechanism.
3 Note that, in general, (2) is not equivalent to Regret(1) :� infA∈A
Regret(A, 1) because direct static mechanisms have the more
stringent interim participation constraint and they do not allow the
principal to screen the agent in Round 0 based on his distribution. Un-
der our assumptions, however, these two problems are equivalent.
4 To see the connection, note that for any single-round direct IC/IR
mechanism S, there exists a randomized posted pricing strategy
with nearly matching interim allocation and payment rules, that is,
over [0, 1] except a set of measure 0. For example, we can interpret a
suitable extension and modification of the interim allocation rule of
S as the cumulative distribution function from which posted prices
are randomly drawn.
5 Recall Tū(F) and TEθ~F[ū(δθ)] are optimal performances achiev-
able by the principal in the multiround problem with full informa-
tion, respectively, under the ex-ante IR constraint and under the
per-round interim IR constraint.
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A Missing Proofs from Section 3

A.1 Proof of Theorem 1

As explained in Section 3.4, we use Lemmas 2 and 3.

Part 1): We use Lemma 2. Taking the infimum over all single-round direct IC/IR mechanisms S on
the right-hand side of (4), we obtain for any incentive compatible dynamic mechanism A ∈ A,

sup
F∈F

Regret(A,F, T ) ≥ T · inf
S∈S×1

sup
θ∈Θ

Regret(S, δθ, 1) .

Then, taking the infimum over all incentive compatible dynamic mechanisms A on the left-hand side
of the above, we obtain

Regret(T ) = inf
A∈A

sup
F∈F

Regret(A,F, T ) ≥ T · inf
S∈S×1

sup
θ∈Θ

Regret(S, δθ, 1) .

Now, it remains to show that Regret(T ) ≤ T · infS∈S×1 supθ∈Θ Regret(S, δθ, 1). Fix an arbitrary ε > 0.
By the definition of infimum, there exists a single-round direct IC/IR mechanism S satisfying

sup
θ∈Θ

Regret(S, δθ, 1) ≤ inf
S′∈S×1

sup
θ∈Θ

Regret(S′, δθ, 1) +
ε

T
.

Then,

sup
F∈F

Regret(S×T , F, T ) ≤ T · sup
θ∈Θ

Regret(S, δθ, 1) ≤ T · inf
S′∈S×1

sup
θ∈Θ

Regret(S′, δθ, 1) + ε ,

where the first inequality is by Lemma 3 and the second by the choice of S. Since S×T is a particular
incentive compatible dynamic mechanism for T rounds (see the proof of Lemma 3), it follows that

Regret(T ) = inf
A∈A

sup
F∈F

Regret(A,F, T ) ≤ sup
F∈F

Regret(S×T , F, T )

≤ T · inf
S′∈S×1

sup
θ∈Θ

Regret(S′, δθ, 1) + ε .

As ε > 0 was arbitrary and can be arbitrarily small, it follows that

Regret(T ) ≤ T · inf
S′∈S×1

sup
θ∈Θ

Regret(S′, δθ, 1) .
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Part 2): For any ε ≥ 0, assume a single-round direct IC/IR mechanism S ∈ S×1 satisfies

sup
θ∈Θ

Regret(S, δθ, 1) ≤ inf
S′∈S×1

sup
θ∈Θ

Regret(S′, δθ, 1) +
ε

T
.

Then,

sup
F∈F

Regret(S×T , F, T ) ≤ T · sup
θ∈Θ

Regret(S, δθ, 1)

≤ T · inf
S′∈S×1

sup
θ∈Θ

Regret(S′, δθ, 1) + ε = Regret(T ) + ε ,

where the first inequality is by Lemma 3, the second inequality is by the property of S and the last
equality is by Part 1.

Part 3): Equivalently, we show that arg minA∈A supF∈F Regret(A,F, T ) is non-empty if and only if
arg minS∈S×1 supθ∈Θ Regret(S, δθ, 1) is non-empty. The if direction follows directly from Part 2. If
there exists an optimal single-round direct IC/IR mechanism S∗ to the single-round problem, the
optimal solution S∗ satisfies

sup
θ∈Θ

Regret(S∗, δθ, 1) ≤ inf
S∈S×1

sup
θ∈Θ

Regret(S, δθ, 1) .

By Part 2 (with ε = 0),
sup
F∈F

Regret((S∗)×T , F, T ) ≤ Regret(T ) .

It follows that the direct static mechanism that repeats S∗ T times is an optimal incentive compatible
dynamic mechanism in the multi-round problem and, hence, there exists an optimal dynamic mech-
anism in the multi-round problem. Note the incentive compatibility of the direct static mechanism
(S∗)×T follows from Lemma 2.

For the only-if direction, assume there exists an optimal incentive compatible dynamic mechanism
A∗ such that Regret(T ) = supF∈F Regret(A∗, F, T ). By Lemma 2, there exists a single-round direct
IC/IR mechanism S such that

Regret(T ) = sup
F∈F

Regret(A∗, F, T ) ≥ T · sup
θ∈Θ

Regret(S, δθ, 1) .

By Part 1 that Regret(T ) = T · infS′∈S×1 supθ∈Θ Regret(S′, δθ, 1), it follows that

inf
S′∈S×1

sup
θ∈Θ

Regret(S′, δθ, 1) ≥ sup
θ∈Θ

Regret(S, δθ, 1) .

The above implies that S is an optimal single-round mechanism because it achieves the single-round
minimax regret. Hence, there exists an optimal single-round mechanism in the single-round problem.
In particular, the single-round direct IC/IR mechanism constructed from A∗, S(A∗), as in the proof
of Lemma 1 is one such single-round mechanism that satisfies the statement of Lemma 2 and, hence,
is an optimal solution to the single-round problem.
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A.2 Proof of Lemma 1

Note for any single-round direct mechanism S (and the recommended strategy of truthful report-
ing for the agent) and any point-mass distribution δθ, we have Regret(S, δθ, 1) = OPT(δθ, 1) −∫

Ω u(θ, ω)dSθ(ω). To prove the first and second statements, it suffices to show that a single-round di-
rect mechanism S is incentive compatible (i.e., in the set S×1) if and only if its outcome distributions
Sθ satisfy the IC and IR constraints as formulated in (3).

For the only-if direction, we proceed as follows. Assume an arbitrary incentive compatible mech-
anism S ∈ S×1. Recall that S being incentive compatible means AgentUtility(S, σTR, F, 1) ≥
AgentUtility(S, σ̃, F, 1) for any distribution F and any feasible agent strategy σ̃. For the point-
mass distribution δθ for θ ∈ Θ and the agent strategy σ̃ that deterministically reports CONTINUE in
Round 0 and then shock θ′ ∈ Θ, the inequality reduces to∫

Ω
v(θ, ω)dSθ(ω) ≥

∫
Ω
v(θ, ω)dSθ′(ω)

which is the IC constraint of (3), in terms of the outcome distributions of S. Now, for the point-mass
distribution δθ for θ ∈ Θ and the agent strategy σ̃ that deterministically reports QUIT in Round 0
and does not participate, the inequality AgentUtility(S, σTR, F, 1) ≥ AgentUtility(S, σ̃, F, 1) reduces
to ∫

Ω
v(θ, ω)dSθ(ω) ≥ 0

which is the IR constraint of (3). Therefore, the outcome distributions of S satisfy the IC and IR
constraints.

We now show the if direction. Assume an arbitrary single-round direct mechanism S (with decision
rule π1) with its outcome distributions satisfying the IC and IR constraints in (3). Let σTR be the
recommended strategy of truthfully reporting for the agent. We consider the following three cases
depending on how an arbitrary alternative strategy σ̃ reports in Round 0 for each possible distribution
F ∈ ∆(Θ). Fix an arbitrary distribution F ∈ ∆(Θ).

Case 1) σ̃ deterministically reports CONTINUE in Round 0

The IC and IR constraints in (3) imply that for each possible shock θ1 ∈ Θ in Round 1, truthfully
reporting the shock θ1 is weakly better than deterministically reporting some other shock or PASS
for the agent. That is,

Eπ1,σTR [v(θ1, π1(θ1, h1, z1))|θ1 = θ] ≥ Eπ1 [v(θ1, π1(m1, h1, z1))|θ1 = θ,m1 = m̂] ,

for any θ ∈ Θ and m̂ ∈ Θ ∪ {PASS}. Note the left-hand side is equal to
∫

Ω v(θ, ω)dSθ(ω) when
θ1 = θ, and the right-hand side is equal to

∫
Ω v(θ, ω)dSθ′(ω) when θ1 = θ and m̂ = θ′ and is equal

to 0 when m̂ = PASS. Hence, truthfully reporting in Round 1 is weakly better than any reporting
strategy that is potentially randomized:

Eπ1,σTR [v(θ1, π1(θ1, h1, z1))|θ1 = θ] ≥ Eπ1,σ̃[v(θ1, π1(m1, h1, z1))|θ1 = θ] ,

for any θ ∈ Θ, which follows by averaging the above inequality over possible m̂ values under σ̃.
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Since the last inequality holds for each possible value of θ1, we average it over θ1 ∼ F and obtain

AgentUtility(S, σTR, F, 1) = Eπ1,σTR [v(θ1, ω1)] ≥ Eπ1,σ̃[v(θ1, ω1)] = AgentUtility(S, σ̃, F, 1) .

Case 2) σ̃ deterministically reports QUIT in Round 0

The IR constraint in (3) implies that for each possible shock θ1 ∈ Θ in Round 1, truthfully
reporting is weakly better for the agent than reporting PASS which yields the utility of 0. Then,
for all θ ∈ Θ,

Eπ1,σTR [v(θ1, π1(θ1, h1, z1))|θ1 = θ] ≥ 0 ,

where the left-hand side is equal to
∫

Ω v(θ, ω)dSθ(ω). Averaging the above over θ1 ∼ F , we obtain
AgentUtility(S, σTR, F, 1) = Eπ1,σTR [v(θ1, ω1)] ≥ 0.

Since σ̃ reports QUIT in Round 0, the agent does not participate at all and AgentUtility(S, σ̃, F, 1) =
0. Clearly, AgentUtility(S, σTR, F, 1) ≥ AgentUtility(S, σ̃, F, 1).

Case 3) σ̃ probabilistically reports CONTINUE or QUIT in Round 0

Let σ̃ = {σ̃t}0:1 where m0 = σ̃0(h+
0 , y0) can be CONTINUE or QUIT. From the above cases, we

have

AgentUtility(S, σTR, F, 1) ≥ Eπ1,σ̃[v(θ1, ω1)|m0 = CONTINUE] and

AgentUtility(S, σTR, F, 1) ≥ Eπ1,σ̃[v(θ1, ω1)|m0 = QUIT] .

Hence,

AgentUtility(S, σTR, F, 1) ≥ Eπ1,σ̃[v(θ1, ω1)|m0 = CONT] · P(m0 = CONT)

+ Eπ1,σ̃[v(θ1, ω1)|m0 = QUIT] · P(m0 = QUIT)

= AgentUtility(S, σ̃, F, 1) ,

where CONT stands for CONTINUE.

As F was arbitrary, AgentUtility(S, σTR, F, 1) ≥ AgentUtility(S, σ̃, F, 1) in all cases for any distribu-
tion F . The above cases cover all possibilities for the alternative strategy σ̃ and it follows that S is
incentive compatible, i.e., AgentUtility(S, σTR, F, 1) ≥ AgentUtility(S, σ̃, F, 1) for any distribution F
and any feasible agent strategy σ̃.

For the last part of the lemma, we show the original objective of (3) and the alternative objective
lead to the same value. Fix an arbitrary single-round direct mechanism S ∈ ∆(Ω)Θ. We have

sup
θ′∈Θ

{
OPT(δθ′ , 1)−

∫
Ω
u(θ′, ω)dSθ′(ω)

}
= sup

θ′∈Θ

{∫
Θ

OPT(δθ, 1)dδθ′(θ)−
∫

Θ

∫
Ω
u(θ, ω)dSθ(ω)dδθ′(θ)

}
≤ sup

F∈∆(Θ)

{∫
Θ

OPT(δθ, 1)dF (θ)−
∫

Θ

∫
Ω
u(θ, ω)dSθ(ω)dF (θ)

}
,

where the first step is by rewriting the inner expressions and the second step is because point-mass
distributions are a subset of all probability distributions supported on Θ, ∆(Θ). For the other
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direction, we note that

sup
F∈∆(Θ)

{∫
Θ

OPT(δθ, 1)dF (θ)−
∫

Θ

∫
Ω
u(θ, ω)dSθ(ω)dF (θ)

}
= sup

F∈∆(Θ)

∫
Θ

(
OPT(δθ, 1)−

∫
Ω
u(θ, ω)dSθ(ω)

)
dF (θ)

≤ sup
F∈∆(Θ)

sup
θ∈Θ

{
OPT(δθ, 1)−

∫
Ω
u(θ, ω)dSθ(ω)

}
= sup

θ∈Θ

{
OPT(δθ, 1)−

∫
Ω
u(θ, ω)dSθ(ω)

}
.

As S was arbitrary, it follows that the original objective and alternative objective achieve the same
value for S ∈ ∆(Ω)Θ. Therefore, the optimization problem (3) and the version with the alternative
objective are equivalent in terms of the optimal value and optimal solutions.

A.3 Additional Materials for Section 3.4

We prove Lemmas 2 and 3 in Appendices A.3.1 and A.3.2, respectively. We use Proposition 1 which
is proved in Appendix A.3.3.

A.3.1 Proof of Lemma 2

We need to relate the two regret objectives of the multi-round and single-round problems and reduce
the multi-round problem to the single-round problem for direct IC/IR mechanisms. The following
lemma is useful. It follows from a revelation-principle-type argument and shows that if the agent’s
distribution is restricted to point-mass distributions, the principal’s dynamic mechanism effectively
reduces to a single-round direct mechanism with IC/IR properties and we can assume the agent’s
recommended strategy is the truthful reporting strategy σTR. See Appendix A.3.4 for the proof of
the lemma.

Lemma 1. For any incentive compatible dynamic mechanism A with a recommended agent strategy
σ, there exists a single-round direct IC/IR mechanism, denoted S(A), such that for any θ ∈ Θ,

PrincipalUtility(A, σ, δθ, T ) = T · PrincipalUtility(S(A), σTR, δθ, 1) ,

where σTR is the agent’s truthful reporting strategy under which the agent participates (i.e., reports
CONTINUE in Round 0) and truthfully reports his shock.

Using the above lemma, we prove Lemma 2 as follows:

Proof of Lemma 2. Fix an arbitrary incentive compatible dynamic mechanism A ∈ A. Note that

sup
F∈F

Regret(A,F, T ) ≥ sup
θ∈Θ

Regret(A, δθ, T ) ,
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since point-mass distributions are a subset of general distributions F by Assumption 1. We can
equivalently write the last expression as

sup
θ∈Θ

Regret(A, δθ, T ) = sup
θ∈Θ
{OPT(δθ, T )− PrincipalUtility(A, σ, δθ, T )}

= T · sup
θ∈Θ
{OPT(δθ, 1)− PrincipalUtility(S(A), σTR, δθ, 1)}

= T · sup
θ∈Θ

Regret(S(A), δθ, 1) ,

where σ is the recommended agent strategy as part of the mechanism A in the first step, S(A) in the
second step is the single-round direct IC/IR mechanism derived from A as described in the proof of
Lemma 1, and the second step follows from the same lemma and Proposition 1.

Putting the above together, for the single-round direct IC/IR mechanism S(A), we have

sup
F∈F

Regret(A,F, T ) ≥ T · sup
θ∈Θ

Regret(S(A), δθ, 1) .

A.3.2 Proof of Lemma 3

To prove Lemma 3, we need the following lemmas. The first one is about direct static mechanisms
that are simply T repetitions of a single-round direct IC/IR mechanism. The second one is a technical
step that involves a variant of the regret notion with a different benchmark other than OPT(F, T ).
We prove these lemmas in Appendix A.3.4.

Lemma 2. Let S×T denote the direct static mechanism that repeats single-round direct IC/IR mech-
anism S for T rounds. For any single-round direct IC/IR mechanism S ∈ S×1, S×T is incentive
compatible and

PrincipalUtility(S×T , σTR, F, T ) = T · PrincipalUtility(S, σTR, F, 1)

for any agent’s distribution F , where σTR is the agent’s truthful reporting strategy under which the
agent participates (i.e., reports CONTINUE in Round 0) and truthfully reports his shock(s).

Lemma 3. For any single-round direct IC/IR mechanism S ∈ S×1,

sup
F∈F
{Eθ∼F [OPT(δθ, 1)]− PrincipalUtility(S, F, 1)} ≤ sup

θ∈Θ
Regret(S, δθ, 1) .

We now have:

Proof of Lemma 3. Let S ∈ S×1 be any single-round direct IC/IR mechanism and consider the direct
static mechanism S×T which is T repetitions of S. Note S×T is incentive compatible by Lemma 2.
By the definition of Regret notion,

sup
F∈F

Regret(S×T , F, T ) = sup
F∈F

{
OPT(F, T )− PrincipalUtility(S×T , σTR, F, T )

}
,

where σTR is the agent’s truthful reporting strategy (i.e., the agent reports CONTINUE in Round
0 and truthfully reports his shocks in future rounds) that is the recommended strategy for direct
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mechanisms. Note that for any distribution F ∈ F ,

OPT(F, T ) ≤ Eθ∼F [OPT(δθ, T )] = T · Eθ∼F [OPT(δθ, 1)] ,

where the inequality is by Assumption 2 and the equality is by Proposition 1. Then,

sup
F∈F

Regret(S×T , F, T ) ≤ sup
F∈F

{
T · Eθ∼F [OPT(δθ, 1)]− PrincipalUtility(S×T , σTR, F, T )

}
= T · sup

F∈F
{Eθ∼F [OPT(δθ, 1)]− PrincipalUtility(S, σTR, F, 1)} ,

where the last step is by Lemma 2. By Lemma 3, note the optimization problem in the last expression
can be upper bounded as follows:

sup
F∈F
{Eθ∼F [OPT(δθ, 1)]− PrincipalUtility(S, σTR, F, 1)} ≤ sup

θ∈Θ
Regret(S, σTR, δθ, 1) .

It follows that
sup
F∈F

Regret(S×T , F, T ) ≤ T · sup
θ∈Θ

Regret(S, δθ, 1) .

A.3.3 Proofs of Propositions 1 and 2

Proof of Proposition 1. The proof follows straightforwardly from Proposition 3 in Appendix E. For
any θ ∈ Θ,

OPT(δθ, T ) = T · ū(δθ) = T ·OPT(δθ, 1) ,

by the second part of Proposition 3. Alternatively, we can prove the proposition directly using the
same ideas in the proof of Proposition 3. We keep this presentation to avoid repeating proofs.

Proof of Proposition 2. In what follows, let R̂egret := infS∈S×1 supθ∈Θ Regret(S, δθ, 1). Fix an ar-
bitrary incentive compatible dynamic mechanism A. Following the same line of reasoning in the
beginning of the proof of Lemma 2, we have for any θ ∈ Θ,

Regret(A, δθ, T ) = T · Regret(S(A), δθ, 1) ,

where S(A) is the single-round direct IC/IR mechanism derived from A as described in the proof of

Lemma 1. Note supθ∈Θ Regret(S(A), δθ, 1) ≥ R̂egret. By the definition of supremum, for any ε > 0,
there exists a point-mass distribution δθ∗ for some θ∗ ∈ Θ such that

Regret(S(A), δθ∗ , 1) ≥ R̂egret− ε

T
.

Combining with the above observation, we then have

Regret(A, δθ∗ , T ) ≥ T · R̂egret− ε .

Since Assumptions 1 and 2 hold, we have that Regret(T ) = T · R̂egret by Theorem 1 and, hence, that

Regret(A, δθ∗ , T ) ≥ Regret(T )− ε .
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A.3.4 Remaining Proofs from Appendix A.3

Proof of Lemma 1. First, we show a construction of a single-round direct IC/IR mechanism which
will be our choice of S(A) and then prove the claimed statements.

Let {ωθ,t}Tt=1 be a sequence of outcomes realized when the agent plays the recommended strategy σ
against the principal’s mechanism A when his distribution is δθ. When the agent reports QUIT in
Round 0 and does not participate, the sequence is simply the no-interaction outcome in all rounds.
Consider the following single-round direct mechanism S which is a collection of distributions Sθ on
Ω indexed by θ ∈ Θ. For any θ ∈ Θ and measurable set W ⊂ Ω, we define

Sθ(W ) :=
1

T

T∑
t=1

Pπ,σ (ωθ,t ∈W |F = δθ) ,

where the expectation is taken over the randomness of π and σ (here, the shocks are deterministic
and equal to θ). We can interpret Sθ as the time-averaged distribution of outcomes when the agent’s
distribution is the point-mass distribution δθ and the agent plays the recommended strategy σ.

Using the representation of S in terms of outcome distributions (as described in Section 3.3), we can
show that S satisfies both IC and IR constraints as formulated in the optimization problem (3). For
any θ, θ′ ∈ Θ,

Eω∼Sθ′ [v(θ, ω)] =
1

T
E

[
T∑
t=1

v(θ, ωθ′,t)

]

=
1

T
AgentUtility(A, σ′, δθ, T )

≤ 1

T
AgentUtility(A, σ, δθ, T )

=
1

T
E

[
T∑
t=1

v(θ, ωθ,t)

]
= Eω∼Sθ [v(θ, ω)] ,

where σ′ is an alternative strategy under which the agent, in particular, reports according the rec-
ommended strategy σ as if his distribution is δθ′ when his actual distribution is δθ and the inequality
follows from that A is incentive compatible and σ is a utility-maximizing strategy for the agent when,
in particular, his distribution is δθ. Similarly, for any θ ∈ Θ,

Eω∼Sθ [v(θ, ω)] =
1

T
E

[
T∑
t=1

v(θ, ωθ,t)

]

=
1

T
AgentUtility(A, σ, δθ, T )

≥ 0 ,

where the inequality follows because a utility-maximizing agent can guarantee the total utility of at
least 0 by not participating. Since A is incentive compatible, the recommended strategy σ ensures
the agent obtains a non-negative utility. Hence, S constructed above is a single-round direct IC/IR
mechanism.
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By construction, we have for any θ,

PrincipalUtility(A, σ, δθ, T ) = T · 1

T
E

[
T∑
t=1

u(θ, ωθ,t)

]
= T · Eω∼Sθ [u(θ, ω)]

= T · PrincipalUtility(S, σTR, δθ, 1) .

Proof of Lemma 2. Fix an arbitrary single-round direct IC/IR mechanism S ∈ S×1 with decision
rule π̃ and let S×T be the direct static mechanism that repeats S. Abusing notations, we use σTR to
denote the truthful reporting strategy (that reports CONTINUE in Round 0 and truthfully reports
the shocks) to be the associated recommended strategy for the agent for both the single-round and
multi-round direct mechanisms. In particular, we have that

AgentUtility(S, σTR, F, 1) ≥ AgentUtility(S, σ̃, F, 1) ,

for every probability distribution F over Θ and every feasible agent strategy σ̃.

First, we argue that PrincipalUtility(S×T , σTR, F, T ) = T · PrincipalUtility(S, σTR, F, 1) for every
distribution F . Since the same decision rule π̃ is used under S×T by the principal and the same truthful
reporting strategy is used by the agent in each round, the realized distribution of outcomes associated
with each shock under F is identical across rounds and, hence, the principal utility restricted to each
round is identical across rounds. The principal utility restricted to each round is exactly the principal
utility under S (and the agent truthfully reports). Therefore, the principal utility under S×T is T
times the principal utility under S. Similarly, we have that the agent utility restricted to each round
under S×T is exactly the agent utility under S and, hence, that AgentUtility(S×T , σTR, F, T ) =
T ·AgentUtility(S, σTR, F, 1) for every distribution F .

Now, we argue that S×T is incentive compatible. For the sake of contradiction, assume there exists
a distribution F ′ and an agent strategy σ′ = {σ′t}0:T such that AgentUtility(S×T , σTR, F ′, T ) <
AgentUtility(S×T , σ′, F ′, T ). We define per-round expected agent utility Vt and principal utility Ut
when the principal implements S×T and the agent plays σ′ as

Vt = E[v(θt, π̃(σ′t(θt, h
+
t )))] and Ut = E[u(θt, π̃(σ′t(θt, h

+
t )))]

for Rounds t ∈ [T ]. Note the principal’s mechanism has no dependence on histories while the agent’s
strategy may depend on the augmented history h+

t . Since σ′ outperforms σTR, there is a particular
round t in which Vt is strictly greater than the agent utility achieved under the single-round mechanism
S and σTR. We use the following claim:

Claim 1. For any t, there is an agent strategy against S that achieves the expected agent utility and
principal utility equal to Vt and Ut, respectively.

Proof. Fix arbitrary t ∈ [T ]. The agent can implement the t-th round strategy σ′t as a standalone agent
strategy against S by implementing σ′0 in Round 0 and then σ′t in Round 1. To implement σ′t, the agent
internally chooses randomness zt and yt and simulates the history h+

t = (F ′, θ1:t−1,m0:t−1, ω1:t−1) that
is needed for σ′t. This is possible from the knowledge of S and {σ′t′}0:t−1. By construction, when the
agent implements the above strategy against S, the expected agent utility and principal utility equal
Vt and Ut, respectively.
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By the above claim, there exists an alternative agent strategy against the single-round mechanism S
that yields the expected agent utility equal to Vt which is strictly greater than AgentUtility(S, σTR, F ′, 1).
This contradicts that S is incentive compatible with respect to the recommended strategy σTR.

Proof of Lemma 3. Let S ∈ S×1 be an arbitrary single-round direct IC/IR mechanism and σTR be
the recommended truthful reporting strategy for the agent. Using the representation of S in terms
of outcome distributions as described in Section 3.3, we then have

sup
F∈F
{Eθ∼F [OPT(δθ, 1)]− PrincipalUtility(S, σTR, F, 1)}

= sup
F∈F

{∫
Θ

OPT(δθ, 1)dF (θ)−
∫

Θ

∫
Ω
u(θ, ω)dSθ(ω)dF (θ)

}
= sup

F∈F

∫
Θ

(
OPT(δθ, 1)−

∫
Ω
u(θ, ω)dSθ(ω)

)
dF (θ)

= sup
F∈F

∫
Θ

Regret(S, σTR, δθ, 1)dF (θ)

≤ sup
θ∈Θ

Regret(S, σTR, δθ, 1) .

B Additional Materials for Section 4.1

B.1 Proof of Proposition 3

As discussed already, Theorem 1 applies and Proposition 3 follows if we show that the single-round
direct IC/IR mechanism S∗ is an optimal solution to the single-round problem (2) and achieves the
value of 1

e . By Lemma 1, we can equivalently solve the optimization problem (3) with the alter-
native objective supF∈∆(Θ)

{∫
Θ OPT(δθ, 1)dF (θ)−

∫
Θ

∫
Ω u(θ, ω)dSθ(ω)dF (θ)

}
. Using the notation

R̂egret(S, F ) :=
∫

Θ OPT(δθ, 1)dF (θ) −
∫

Θ

∫
Ω u(θ, ω)dSθ(ω)dF (θ), this optimization problem can be

written as
inf

S∈∆(Ω)Θ:
(IC),(IR)

sup
F∈∆(Θ)

R̂egret(S, F ) ,

where S can be any single-round direct IC/IR mechanism. Let R̂egret be the corresponding optimal
value.

We now solve the above optimization problem by proving the following saddle-point result, which is
closely related to a similar result due to Bergemann and Schlag (2008).

Proposition 1. Let S∗ be the randomized posted pricing strategy given in Proposition 3, which is a
single-round direct IC/IR mechanism, and the agent’s distribution F ∗ be given by

F ∗(θ) =


0, if θ ∈ [0, 1

e )

1− 1
eθ , if θ ∈ [1

e , 1)

1, if θ = 1

.
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Then, R̂egret = R̂egret(S∗, F ∗) = 1
e and

R̂egret(S∗, F ) ≤ R̂egret(S∗, F ∗) ≤ R̂egret(S, F ∗) ,

for any single-round direct IC/IR mechanism S ∈ S×1 and distribution F ∈ ∆(Θ).

Proof. When the principal implements a randomized posted pricing strategy, it is best for the agent
to truthfully respond, that is, buy the item if the price is lower than his value, and, therefore, the
randomized posted pricing strategy satisfies the IC and IR constraints. Furthermore, a randomized
posted pricing mechanism has a direct implementation in that the principal can internally draw a
random posted price and determine the allocation and payment given the agent’s report θ.

First, we prove R̂egret(S∗, F ) ≤ R̂egret(S∗, F ∗) for any agent’s distribution F . Note we can represent
any single-round direct IC/IR mechanism S with the corresponding interim rules (x, p) where, by
standard arguments in mechanism design, the allocation rule x is monotonically non-decreasing and
the payment rule p satisfies

p(θ) = p(0) + x(θ) · θ −
∫ θ

0
x(t)dt , ∀θ ∈ [0, 1]

and p(0) ≤ 0. In particular, let (x∗, p∗) be the interim allocation and payment rules of S∗ where

x∗(θ) = 0 for θ ∈ [0, 1
e ) and x∗(θ) = 1 + ln θ for θ ∈ [1

e , 1] and p∗(θ) = x∗(θ) · θ −
∫ θ

0 x
∗(t)dt for all θ.

It suffices to show that F ∗ is a solution to the following optimization problem:

max
F∈∆(Θ)

{∫
Θ
θ − p∗(θ)dF (θ)

}
,

where F can be any distribution over Θ. Given x∗, we can simplify p∗ as p∗(θ) = 0 for θ ∈ [0, 1
e ) and

p∗(θ) = (1 + ln θ)θ −
∫ θ

1
e

1 + ln tdt = θ − 1

e
,

for θ ∈ [1
e , 1]. Then, the integrand in the objective function is, equivalently, θ1{θ < 1

e}+ 1
e1{θ ≥

1
e}

and the optimization problem becomes

max
F∈∆(Θ)

{
Prθ∼F

(
θ <

1

e

)
· Eθ∼F

[
θ
∣∣ θ < 1

e

]
+ Prθ∼F

(
θ ≥ 1

e

)
· 1

e

}
.

It follows that any distribution with its support contained in [1
e , 1] is an optimal solution and F ∗ is

one such distribution. Furthermore, we see that the optimization problem has the value of 1
e and, so,

R̂egret = 1
e .

Next, we show R̂egret(S∗, F ∗) ≤ R̂egret(S, F ∗) for any single-round direct IC/IR mechanism S.
Similar to the above argument, we show that S∗ is a solution to:

min
(x,p)

{∫
Θ
θ − p(θ)dF ∗(θ) s. t. (IC), (IR)

}
,
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where (x, p) are over all possible interim rules satisfying the IC/IR constraints. By standard argu-

ments, the payment rule p satisfies p(θ) = p(0)+x(θ) ·θ−
∫ θ

0 x(t)dt for θ ∈ [0, 1] and p(0) ≤ 0 and the
allocation rule x is monotonically non-decreasing. Then, the above optimization problem becomes

min
non-decreasing x,p(0)≤0

{
−p(0) +

∫ 1

0

(
θ − x(θ) · θ +

∫ θ

0
x(t)dt

)
f∗(θ)dθ

}
,

where f∗ is the probability density function for F ∗ with f∗(θ) = 0 for θ ∈ [0, 1
e ), f∗(θ) = 1

eθ2 for θ ∈
[1
e , 1) and a point-mass of 1

e at θ = 1. By changing the ordering of the integrals,
∫ 1

0

∫ θ
0 x(t)f∗(θ)dtdθ =∫ 1

0

∫ 1
t x(t)f∗(θ)dθdt =

∫ 1
0 (1− F ∗(t))x(t)dt, and the optimization problem is equivalently

min
non-decreasing x,p(0)≤0

{
−p(0) + Eθ∼F ∗ [θ] +

∫ 1

0
(−θ · f∗(θ) + (1− F ∗(θ)))x(θ)dθ

}
.

In the integral, the expression φ(θ) := −θ · f∗(θ) + (1 − F ∗(θ)) can be further simplified as 1 if
θ ∈ [0, 1

e ), 0 if θ ∈ [1
e , 1) and a point-mass of −1

e if θ = 1. Then, the objective function is equal to

−p(0) + Eθ∼F ∗ [θ] +

∫ 1
e

0
1 · x(θ)dθ +

∫ 1

1
e

0 · x(θ)dθ − 1

e
· x(1) .

It follows that an optimal solution has p(0) = 0 and a non-decreasing x(·) such that x(θ) = 0 for
θ ∈ [0, 1

e ), x(θ) ≥ 0 for θ ∈ [1
e , 1) and x(θ) = 1 for θ = 1 (in the almost everywhere sense for θ < 1).

Clearly, S∗ satisfies these conditions and is, therefore, an optimal solution.

C Additional Materials for Section 4.2

C.1 Single-Round Problem

We provide further details on the single-round direct IC/IR mechanisms and a justification for the re-
striction to those with deterministic contracts for the single-round problem. Instead of (2), we equiva-
lently consider the optimization problem (3) with the alternative objective supF∈∆(Θ){

∫
Θ OPT(δθ, 1)dF (θ)−∫

Θ

∫
Ω u(θ, ω)dSθ(ω)dF (θ)}, by Lemma 1. Introducing the notation R̂egret(S, F ) :=

∫
Θ OPT(δθ, 1)dF (θ)−∫

Θ

∫
Ω u(θ, ω)dSθ(ω)dF (θ), this optimization problem can be written as

inf
S∈∆(Ω)Θ:
(IC),(IR)

sup
F∈∆(Θ)

R̂egret(S, F ) ,

where S can be any single-round direct IC/IR mechanism. Let R̂egret be the corresponding optimal
value.

We can think of a single-round direct IC/IR mechanism as a collection of distributions Sθ on R+×R
indexed by θ ∈ [θ, θ̄] such that when the agent reports θ, the outcome is determined by drawing from
Sθ, i.e., (q̂, p̂) ∼ Sθ for production level q̂ and payment p̂. Abusing notations, let q(θ) = E(q̂,p̂)∼Sθ [q̂]
and p(θ) = E(q̂,p̂)∼Sθ [p̂] be the interim allocation and payment rules, respectively. Then, the IC and
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IR constraints can be expressed as follows:

p(θ)− θ · q(θ) ≥ p(θ′)− θ · q(θ′) , ∀θ, θ′ ∈ [θ, θ̄] (IC)

p(θ)− θ · q(θ) ≥ 0 , ∀θ ∈ [θ, θ̄] (IR)

Fix an arbitrary single-round direct IC/IR mechanism. Let V (θ) = p(θ)− θ · q(θ) for θ ∈ [θ, θ̄]. Note
V (θ) is convex and by standard arguments (similar to the auction case, e.g., in Chapter 5 in Krishna
(2009)), q(θ) is non-increasing and V is absolutely continuous and V ′(θ) = −q(θ) where the derivative
exists. As q(θ) is nonnegative, V (θ) is non-increasing. Furthermore, we can write

p(θ) = V (θ̄) + θ · q(θ) +

∫ θ̄

θ
q(x)dx , for θ ∈ [θ, θ̄] .

Using the notation R̂egret and noting OPT(δθ, 1) = R̄(θ), we have

R̂egret(S, F ) = Eθ∼F [R̄(θ)]− Eθ∼F,(q̂,p̂)∼Sθ [R(q̂)− p̂] ,

and
R̂egret = inf

S∈∆(Ω)Θ:
(IC),(IR)

sup
F∈∆(Θ)

R̂egret(S, F ) .

Since the revenue function R(x) is concave, E(q̂,p̂)∼Sθ [R(q̂)] ≤ R(E(q̂,p̂)∼Sθ [q̂]) for any θ. Given any
single-round direct IC/IR mechanism S, we can potentially improve (but not hurt) its performance
by modifying Sθ to always return a deterministic production level q̂ that is the average q(θ):

E(q̂,p̂)∼Sθ [R(q̂)− p̂] ≤ R(E(q̂,p̂)∼Sθ [q̂])− E(q̂,p̂)∼Sθ [p̂] = R(q(θ))− p(θ) .

Note the IC/IR constraints are still satisfied. Without loss in the minimax regret objective, we
can restrict to those single-round IC/IR mechanisms that can be described in terms of a menu of
deterministic contracts (q(θ), p(θ)) for θ ∈ [θ, θ̄]. Using ΩΘ to denote this restricted set of single-round
direct mechanisms, the minimax regret for the single-round problem is equal to:

R̂egret = inf
(q,p)∈ΩΘ:
(IC),(IR)

sup
F∈∆(Θ)

∫
Θ
R̄(θ)− (R(q(θ))− p(θ)) dF (θ) ,

and for S = (q, p) ∈ ΩΘ and F ∈ ∆(Θ),

R̂egret(S, F ) =

∫
Θ
R̄(θ)− (R(q(θ))− p(θ)) dF (θ) .

C.2 Proof of Proposition 4

By Theorem 1, to prove Proposition 4, it suffices that we prove the stated single-round direct IC/IR
mechanism is an optimal solution to the single-round problem. For the single-round problem, we
consider the equivalent optimization problem (3) with the alternative objective given in Lemma 1
and restrict attention to those single-round direct mechanisms that can be described in terms of a
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menu of deterministic contracts, denoted ΩΘ; see details in Appendix C.1. More specifically, we
consider the following optimization problem

inf
(q,p)∈ΩΘ:
(IC),(IR)

sup
F∈∆(Θ)

R̂egret(S, F ) ,

where ΩΘ denotes the restricted class of single-round direct mechanisms and R̂egret(S, F ) =
∫

Θ R̄(θ)−
(R(q(θ))− p(θ)) dF (θ) for S = (q, p) ∈ ΩΘ and F ∈ ∆(Θ). Let R̂egret be the corresponding optimal
value of the optimization problem.

We show the single-round direct IC/IR mechanism given in Proposition 4 is an optimal solution to
the above optimization problem via the following saddle-point result.

Proposition 2. Let S∗ be the single-round direct IC/IR mechanism corresponding to the menu of
deterministic contracts {(q∗(θ), p∗(θ)}θ∈Θ given in Proposition 4 and the agent’s distribution be given
by a point-mass of F ∗(θ), which can be 0, at θ = θ and a density d

dθF
∗(θ) for θ ∈ (θ, κ] where

F ∗(θ) = e
−

∫ κ
θ

1
R′(q∗(x))−xdx ,

for the same κ in the definition of S∗. Then, S∗ and F ∗ are well-defined and the minimax regret is

R̂egret = R̂egret(S∗, F ∗) =
∫ θ̄
θ q
∗(x)dx and is strictly positive, and

R̂egret(S∗, F ) ≤ R̂egret(S∗, F ∗) ≤ R̂egret(S, F ∗) ,

for any single-round direct IC/IR mechanism S ∈ S×1 and distribution F ∈ ∆(Θ).

We first show that single-round direct IC/IR mechanism S∗ and distribution F ∗ in the statement of
Proposition 2 are well-defined with the claimed characterizations in the following lemma and then
prove Proposition 2.

Lemma 4. The single-round direct IC/IR mechanism S∗ and distribution F ∗ in Propositions 4 and 2
are well-defined. Furthermore, q∗ is continuous over the shock space and, in particular, strictly
decreases over [θ, κ].

Proof. We proceed in two steps showing S∗ and then F ∗ are well-defined.

(Single-Round Direct IC/IR Mechanism S∗): It suffices to show that a strictly decreasing solution q∗

exists to the ordinary differential equation

dq

dθ
(θ) =

−q̄(θ)
R′(q(θ))− θ

, for θ ∈ (θ, κ)

lim
θ→θ+

q(θ) = q̄(θ) ,
(C-1)

for some κ to be determined and then complete it for θ = θ and θ > κ accordingly. We follow similar
reasoning steps as in the proof of Lemma 2 in Carrasco et al. (2018). We equivalently solve the
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following differential system, with the roles of q and θ interchanged:

dθ

dq
(q) =

R′(q)− θ(q)
−q̄(θ(q))

, for q ≤ q̄(θ)

θ(q̄(θ)) = θ .

(C-2)

As we show, this system has a solution θ∗ that is strictly decreasing over a suitable interval and we
can invert the relationship between θ and q to obtain a solution q∗ to the original differential system
with a well-defined κ.

Recall a solution to an ordinary differential equation (ODE) is a continuously differentiable function

defined on some interval satisfying the specified relations. Let ψ(q, θ) := R′(q)−θ
−q̄(θ) defined on the

domain D = (0, q̄(θ) + ε]× [θ − ε, θ̄ + ε] for arbitrarily small ε > 0; ε is there to make the domain an
open set. By the assumptions on R, ψ is continuous on the domain. Furthermore, it is continuously
differentiable on any closed set of the domain and, hence, locally Lipschitz with respect to θ. For any
initial value point in D, there exists a unique solution to the differential equation dθ

dq (q) = ψ(q, θ) in
a neighborhood of the initial value point (e.g., Theorem 3.1 in Hale (1969)). In particular, the above
system of differential equation (C-2) has a unique solution θ∗ in a neighborhood of the point (q̄(θ), θ).

Let (q, q̄(θ)] be the left maximal interval of definition of the ordinary differential equation (C-2). We
show θ∗ is strictly decreasing in this interval. Note if a solution θ(·) has θ′(q) = 0, then

d2θ

dq2
(q) = ψ1(q, θ) + ψ2(q, θ) · dθ

dq
= −R

′′(q)

q̄(θ)
> 0,

where ψi denotes the partial derivative with respect to the i-th parameter. Since (θ∗)′(q̄(θ)) = 0, θ∗

is strictly convex at q = q̄(θ) and decreases over [q̄(θ) − ε, q̄(θ)] for sufficiently small ε > 0. Fix an
arbitrary q ∈ (q, q̄(θ)) and assume θ∗ achieves the maximum at some x ∈ [q, q̄(θ)]. Note x cannot
be in the interior because the first-order condition (θ∗)′(x) = 0 is satisfied and it would mean θ∗ is
strictly convex and is increasing to the left or right of x. By the above observation, x cannot be q̄(θ).
Hence, the maximum is achieved at the left-end x = q. As q was arbitrary, the argument extends and
it implies θ∗ is strictly decreasing over (q, q̄(θ)].

Now, we invert θ∗ to obtain q∗ that is a solution to the original differential system (C-1) that we want to
solve. Let θ∗(q) = supq∈(q,q̄(θ)] θ

∗(q) which may be∞. If θ∗(q) < θ̄, then (θ∗)′(q) = limq→q+ ψ(q, θ∗(q))

would be equal to
R′(q)−θ∗(q)
−q̄(θ∗(q)) which is not defined, more specially, R′(q) in the numerator, if q = 0

but defined if q > 0. Since we chose the left maximal interval of definition of the ODE, it must be
that q = 0. Then, we let κ = θ∗(q) and truncate the solution θ∗ so that its range is exactly [θ, κ). We
let q∗ be the inverted curve of the truncated solution on [θ, κ) which strictly decreases and converges
to 0 over the interval and extend q∗(θ) = 0 for θ ∈ [κ, θ̄].

In the other case when θ∗(q) ≥ θ̄, we truncate the solution θ∗ such that its range is exactly [θ, θ̄]
and consider q∗ to be the corresponding inverted solution over the interval [θ, θ̄]. By construction, q∗

satisfies the desired differential system and stays positive over the whole interval. We choose κ = θ̄.

In both cases, since θ∗ is continuous at q = q̄(θ) with θ∗(q̄(θ)) = θ, we have q∗(θ) = q̄(θ) and
limθ→θ+ q∗(θ) = q̄(θ). Also, by our choice of κ, limθ→κ− q

∗(θ) = q∗(κ). That is, q∗ is continuous over

the whole interval [θ, θ̄].
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(Distribution F ∗): Given that we have a solution q∗ that is strictly decreasing over [θ, κ] and contin-
uously differentiable over (θ, κ), the fraction 1

R′(q∗(θ))−θ is well-defined and positive for θ ∈ (θ, κ). We

argue that the integral
∫ κ
θ

1
R′(q∗(x))−xdx exists over the same interval. If κ = θ̄ and q∗ stays positive,

the integrand is well-defined and continuous over the compact set. Hence, the integral exists. If κ < θ̄,
then the integrand goes to 0 as x approaches κ and thus bounded. In this case, again, the integral
exists.

As θ approaches θ, the integral
∫ κ
θ

1
R′(q∗(x))−xdx can potentially grow to∞. But, F ∗(θ) = e

−
∫ κ
θ

1
R′(q∗(x))−xdx

is absolutely continuous over (θ, κ] and the distribution F ∗ can be described with a point-mass of
limθ′→θ+ F ∗(θ′) at θ = θ, which can be 0, and the absolute continuous part with density f∗(θ) =
d
dθF

∗(θ) = F ∗(θ) · 1
R′(q∗(θ))−θ .

Proof of Proposition 2. We restrict, without loss, to those single-round direct mechanisms that can
be described in terms of a menu of deterministic contracts (q(θ), p(θ)) for θ ∈ [θ, θ̄] in our analysis; we
use ΩΘ to denote this class of mechanisms. By well-definedness, we mean both S∗ and F ∗ exist with
the stated characterizations. In particular, it would mean that q∗ is a continuous monotone function
over [θ, θ̄] and is integrable. The well-definedness of S∗ and F ∗ has been proved in Lemma 4.

For the first part of the saddle-point result, we show that F ∗ is an optimal solution to maxF R̂egret(S∗, F )
which is equivalent to:

max
F∈∆(Θ)

{∫
Θ
R̄(θ)− (R(q∗(θ))− p∗(θ)) dF (θ)

}
.

By the definition of p∗, the optimization problem is equivalent to

max
F∈∆(Θ)

{∫
Θ

(
R̄(θ)−R(q∗(θ)) + θ · q∗(θ) +

∫ θ̄

θ
q∗(x)dx

)
dF (θ)

}
.

The integrand is continuous and its derivative with respect to θ is

−q̄(θ)− (R′(q∗(θ))− θ) · (q∗)′(θ) ,

where we used R̄′(θ) = −q̄(θ). Since (q∗)′(θ) = −q̄(θ)
R′(q∗(θ))−θ for θ ∈ (θ, κ), the derivative is equal to

0 over the same interval. For θ ∈ [κ, θ̄], the integrand is equal to R̄(θ) and the derivative is equal
to −q̄(θ), which is negative. Since q∗ is continuous, it follows that the integrand stays constant for
θ ∈ [θ, κ] and then decreases for θ ∈ [κ, θ̄]. Since F ∗ has support equal to exactly [θ, κ], it maximizes
the objective and is an optimal solution, as desired.

Similarly, for the second part, we show that S∗ is an optimal solution to

min
S∈ΩΘ:

(IC),(IR)

{∫
Θ
R̄(θ)− (R(q(θ))− p(θ)) dF ∗(θ)

}
.

By the standard arguments (see Appendix C.1), it suffices to show that S∗ is an optimal solution to
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the following equivalent problem:

min
non-increasing q,V (θ̄)≥0

{∫
Θ

(
R̄(θ)−R(q(θ)) + V (θ̄) + θ · q(θ) +

∫ θ̄

θ
q(x)dx

)
dF ∗(θ)

}
,

where V (θ) = p(θ)− θ · q(θ) for θ ∈ [θ, θ̄].

Note F ∗ has a point-mass of limθ′→θ+ F ∗(θ′) which we, for notational convenience, equate to F ∗(θ)
at θ = θ. But it is otherwise absolutely continuous and has a corresponding density function. We
denote the cumulative function without the point-mass at θ = θ by F ∗− with corresponding density
f∗−(θ) = d

dθF
∗(θ) such that F ∗(θ) = F ∗(θ) + F ∗−(θ) for θ ∈ [θ, θ̄].

Then, we can rewrite the objective function, denoted OBJ, as follows. Note that

OBJ = Eθ∼F ∗ [R̄(θ)] + V (θ̄)− F ∗(θ)

(
R(q(θ))− θ · q(θ)−

∫ θ̄

θ
q(x)dx

)

−
∫ θ̄

θ
f∗−(θ)

(
R(q(θ))− θ · q(θ)−

∫ θ̄

θ
q(x)dx

)
dθ .

The last term is equivalently −
∫ θ̄
θ f
∗
−(θ) (R(q(θ))− θ · q(θ)) dθ +

∫ θ̄
θ F

∗
−(θ)q(θ)dθ where we changed

the order of integrals. Then,

OBJ = Eθ∼F ∗ [R̄(θ)] + V (θ̄)− F ∗(θ) (R(q(θ))− θ · q(θ))

−
∫ θ̄

θ
f∗−(θ)

(
R(q(θ))−

(
θ +

F ∗(θ)

f∗−(θ)

)
· q(θ)

)
dθ .

We now show that S∗ minimizes OBJ pointwise. Since q∗(θ) = q̄(θ), the third term is minimized.

Note ∂
∂θ lnF ∗(θ) =

f∗−(θ)

F ∗(θ) = 1
R′(q∗(θ))−θ for θ ∈ [θ, κ]. Then, R′(q∗(θ)) = θ + F ∗(θ)

f∗−(θ) for θ ∈ [θ, κ] which

is exactly the support of f∗− and where q∗ is nonnegative. It follows that the integrand in the fourth
term is minimized pointwise and, thus, the fourth term is minimized. Finally, note that V (θ) = 0 for
S∗ and that the second term is minimized. Overall, the objective is minimized and S∗ is an optimal
solution. This completes the proof that S∗ and F ∗ form a saddle point.

To compute the minimax regret, we recall from the analysis for the first part of the saddle-point result
that the integrand, equivalently, R̂egret(S∗, θ), is constant for θ ∈ [θ, κ] and decreases for θ > κ. It

follows that the minimax regret is equal to the integrand evaluated at θ = θ which is
∫ θ̄
θ q
∗(x)dx. The

minimax regret is clearly nonnegative because q∗ is nonnegative. We argue it is strictly greater than 0.

For the sake of contradiction, assume that
∫ θ̄
θ q
∗(x)dx = 0. As q∗ is non-increasing and nonnegative,

it would follow that q∗(θ) = 0 for θ > θ. Together with q∗(θ) = q̄(θ) > 0, it would contradict the
continuity of q∗ which is implied by the well-definedness of S∗.
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D Additional Materials for Section 5.1

D.1 Proof of Proposition 5

We characterize an optimal mechanism using the relax and verify approach of Kakade et al. (2013).
Using that shocks are multiplicatively separable, we can write θt = τγt with γt drawn i.i.d. from
G. We consider a relaxed environment in which γt are public and observable by the principal—the
agent’s only private information is the parameter τ . By the revelation principle, we can restrict
attention to direct mechanisms in which the agent reports the parameter τ in Round 0. We denote
by xt(τ, γ1:t) and pt(τ, γ1:t) the allocation and payment, respectively, in Round t when the report is τ
and the γ-component of the shocks are γ1:t = (γ1, . . . , γt). Under the ex-ante participation constraint,
the optimal performance achievable when the agent’s private distribution F (·; τ) is known (i.e., the
parameter τ is known) is OPT(F (·; τ), T ) = TEθ∼F (·;τ)[θ] = TτE[γ] because the principal can simply
charge an entry-fee equal to the agent’s expected value and then allocate the items for free over
the rounds. For the entry fee, the principal can, for example, require the evenly-split fixed constant
payment τE[γ] over the rounds that the agent has to pay upon participating. Therefore, the minimax
regret in the multi-round problem is lower bounded as Regret(T ) ≥ RegretRELAX(T ) where

RegretRELAX(T ) = inf
(x,p)

sup
τ∈[0,1]

{
TτE[γ]− Eγ1:T

[
T∑
t=1

pt(τ, γ1:t)

]}

s.t. V (τ) = Eγ1:T

[
T∑
t=1

τγtxt(τ, γ1:t)− pt(τ, γ1:t)

]
≥ 0 , ∀τ ∈ [0, 1] ,

V (τ) ≥ Eγ1:T

[
T∑
t=1

τγtxt(τ
′, γ1:t)− pt(τ ′, γ1:t)

]
, ∀τ, τ ′ ∈ [0, 1] ,

0 ≤ xt(τ, γ1:t) ≤ 1 , pt(τ, γ1:t) ∈ R .

The first constraint is an individual rationality constraint that guarantees that the ex-ante utility
of the agent when his true parameter is τ , which is denoted by V (τ), is non-negative. The second
constraint is an incentive compatibility constraint imposing that the agent is better off reporting his
true parameter.

We now show that the relaxed problem can be further lower bounded by a single-round problem, i.e.,
RegretRELAX(T ) ≥ T R̂egretRELAX where

R̂egretRELAX = inf
(x̂,p̂)

sup
τ∈[0,1]

{E[γ] (τ − p̂(τ))}

s.t. V̂ (τ) = τ x̂(τ)− p̂(τ) ≥ 0 , ∀τ ∈ [0, 1] ,

V̂ (τ) ≥ τ x̂(τ ′)− p̂(τ ′) , ∀τ, τ ′ ∈ [0, 1] ,

0 ≤ x̂(τ) ≤ 1 , p̂(τ) ∈ R .

We prove the above claim by showing that every feasible mechanism for the multi-round problem
corresponding to RegretRELAX(T ) induces a feasible mechanism for the single-round problem corre-

sponding to R̂egretRELAX that achieves the same objective value (divided by T ). For any multi-round
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mechanism (x, p), consider the single-round mechanism (x̂, p̂) given by

x̂(τ) =
1

TE[γ]
Eγ1:T

[
T∑
t=1

γtxt(τ, γ1:t)

]
and p̂(τ) =

1

TE[γ]
Eγ1:T

[
T∑
t=1

pt(τ, γ1:t)

]

for report τ ∈ [0, 1], which is obtained by averaging the multi-round mechanism over time and the
public γ-components of the shocks. By construction, we have that V (τ) = TE[γ](τ x̂(τ) − p̂(τ)) and
the IR constraint holds for the single-round mechanism (x̂, p̂) because V (τ) ≥ 0 for all τ ∈ [0, 1]. The
IC constraint similarly holds. Additionally, since γt ≥ 0 and xt(·, ·) ∈ [0, 1], we have that 0 ≤ x̂(τ) ≤ 1
for τ ∈ [0, 1]. Similarly, we have that p̂(τ) ∈ R for τ ∈ [0, 1]. For any τ ∈ [0, 1], the inner regret
objective value for the multi-round mechanism can be equivalently written as TE[γ] (τ − p̂(τ)) which
equals the corresponding objective value for the constructed single-round mechanism (when divided
by T ), and the claim follows.

Note the single-round problem corresponding to R̂egretRELAX, when divided by E[γ], is exactly the
single-round problem (3) in the dynamic selling problem for revenue maximization in Section 4.1.
Then, Proposition 1 used in the proof of Proposition 3 immediately implies that the regret of the
single-round problem is R̂egretRELAX = E[γ]/e and (x∗, p∗) as stated in Proposition 3 is an optimal
single-round mechanism. The single-round mechanism (x∗, p∗) induces the following dynamic mech-
anism for the original, multi-round problem: screen the agent by the parameter τ and charge an
entry-fee Tp∗(τ) in Round 0, and then allocate each item with probability x∗(τ) in the subsequent
rounds. Equivalently, we can screen the agent by the parameter τ in Round 0, and then allocate
each item with probability x∗(τ) and charge p∗(τ) in the subsequent rounds, which fits the general
formulation given in Section 2. We now conclude by arguing that this multi-round mechanism is
incentive compatible in the original, unrelaxed environment in which the γ components of the shocks
are private. This is because the mechanism does not ask the agent to report the values γt and the
agent can only influence the mechanism by misreporting his parameter τ , which is never optimal
because the mechanism is incentive compatible with respect to parameter τ .

D.2 Proof of Proposition 6

We first reduce determining the optimal regret RegretS(T ) for direct static mechanisms to a single-
round problem as follows. This reduction works for any arbitrary distribution G supported on R+.
Note that

RegretS(T ) = inf
S∈S×1

sup
τ∈[0,1]

Regret(S×T , F (·; τ), T )

= inf
S∈S×1

sup
τ∈[0,1]

{
TEθ∼F (·;τ)[θ]− PrincipalUtility(S×T , σTR, F (·; τ), T )

}
= T · inf

S∈S×1
sup
τ∈[0,1]

{
Eθ∼F (·;τ)[θ]− PrincipalUtility(S, σTR, F (·; τ), 1)

}
,

where the second step follows because the known-distribution benchmark is OPT(F, T ) = TEθ∼F [θ]
for any distribution F and σTR denotes the recommended truthful reporting strategy for the agent,
and the last step follows from Lemma 2 (in Appendix A.3.2). To see OPT(F, T ) = TEθ∼F [θ] for any
distribution F , note that we argued OPT(F, T ) ≤ TEθ∼F [θ] in Section 4.1, because the principal’s
revenue is at most the agent’s surplus subject to the agent’s participation. In fact, the principal
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can fully extract the agent’s surplus with the knowledge of F via, say, what is commonly known as
the bundling strategy. The principal can, for example, bundle all items and sell the bundle at the
expected value (see, e.g., Bakos and Brynjolfsson 1999).1

We then use the outcome distribution representation described in Section 3.3 for a mechanism S ∈ S×1

and equivalently write the last optimization problem as follows via the same reasoning in the proof
of Lemma 1:

T · inf
S∈∆(Ω)Θ

{
sup
τ∈[0,1]

Eθ∼F (·;τ)[θ]− Eθ∼F (·;τ),ω∼Sθ [u(θ, ω)] s. t. (IC), (IR)

}
,

where the IC/IR constraints are as formulated in (3). Using the interim rules (x, p) to describe
single-round direct mechanisms as in Section 4.1, it follows that

RegretS(T ) = T · inf
(x,p)

{
sup
τ∈[0,1]

Eθ∼F (·;τ) [θ − p(θ)] s. t. (IC), (IR)

}
.

Now, we let G be the exponential distribution with mean 1 and solve for the resulting single-round
problem above with T = 1. Let exp(τ) denote the exponential distribution with mean τ for τ ∈ [0, 1].
In particular, we show RegretS(1) = 1− 1

e . To see this, note that since τ = 1 is a feasible parameter,
we have:

RegretS(1) ≥ inf
(x,p)

{
Eθ∼exp(1) [θ − p(θ)] s. t. (IC), (IR)

}
= 1− 1/e ,

because, from Myerson (1981), an optimal Bayesian mechanism that maximizes the revenue when the
agent’s value distribution is exponential with mean 1 is given by x(θ) = 1{θ ≥ 1} and p(θ) = 1{θ ≥ 1},
i.e., a posted pricing mechanism with the price of 1. Furthermore, since this mechanism is feasible
for the single-round problem, we obtain that

RegretS(1) ≤ sup
τ∈[0,1]

Eθ∼exp(τ) [θ − 1{θ ≥ 1}] = sup
τ∈[0,1]

{
τ − e−

1
τ

}
= 1− 1/e ,

where the last equality follows because τ−e−
1
τ is increasing in τ ∈ [0, 1] and the supremum is achieved

at τ = 1. It follows that RegretS(1) = 1− 1
e . The same argument shows that the deterministic posted

pricing mechanism with the price of 1 is an optimal single-round direct mechanism in the single-round
problem.

Going back to the multi-round problem with T rounds, it follows that RegretS(T ) = (1 − 1/e)T
and an optimal direct static mechanism that achieves this minimax regret is one that repeats the
deterministic posted pricing mechanism with the price of 1.

1In the bundling mechanism, the principal lets the agent decide whether to continue or quit in Round 0 and then
requires the agent to pay a one-time payment of TEθ∼F [θ] in Round 1 and allocates all items in Round 1 and future
rounds. The agent would be indifferent between participating and not participating and when he decides to participate
by continuing in Round 0, he would be bound by the bundling contract. The recommended strategy for the agent is to
participate.
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E Missing Proofs from Section 5.2

For any distribution F , recall that

ū(F ) := sup
S∈S×1

∫
Θ

∫
Ω
u(θ, ω)dSθ(ω)dF (θ)

s.t.

∫
Θ

∫
Ω
v(θ, ω)dSθ(ω)dF (θ) ≥ 0 .

(E-3)

For Eθ∼F [ū(δθ)], we can equivalently write

Eθ∼F [ū(δθ)] = sup
S∈S×1

∫
Θ

∫
Ω
u(θ, ω)dSθ(ω)dF (θ)

s.t.

∫
Ω
v(θ, ω)dSθ(ω) ≥ 0 , ∀θ ∈ Θ .

(E-4)

We will use the following result in the proofs:

Proposition 3. We have the following relations:

1. For any distribution F ∈ ∆(Θ), OPT(F, T ) ≤ T · ū(F ).

2. For any θ ∈ Θ, OPT(δθ, T ) = T · ū(δθ).

3. For any distribution F ∈ ∆(Θ), ū(F ) ≥ Eθ∼F [ū(δθ)].

This is proved in Appendix E.3. The proofs of Propositions 7 and 8 from Section 5.2 are provided in
Appendices E.1 and E.2, respectively.

E.1 Proof of Proposition 7

For any distribution F ∈ F , we have

OPT(F, T ) ≤ T · ū(F ) = Eθ∼F [T · ū(δθ)] = Eθ∼F [OPT(δθ, T )] ,

where the first step is by the first part of Proposition 3, the second by the linearity assumption on
ū(F ), and the third by the second part of Proposition 3.

E.2 Proof of Proposition 8

In what follows, we show ū(F ) ≤ Eθ∼F [ū(δθ)] when the stated conditions hold. By Part 3 of Propo-
sition 3, this suffices. Consequently, it would follow that Assumption 2 holds by Proposition 7.

Part 1): In words, the game is such that the payment is part of the outcome and enters linearly
with coefficients of opposing signs into the utility functions of the principal and agent. Separating
out the payment, the outcome space can be represented as Ω = Ω0 × R where Ω0 is the space of
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non-payment component of the outcomes and an outcome ω̂ is a pair (ω̂0, p̂) where ω̂0 is the non-
payment component and p̂ is the payment. We use superscript 0 to denote the non-payment parts of
the outcome and outcome space. Since the payment enters linearly into the utility functions of the
principal and agent, we can represent u(θ, (ω̂0, p̂)) = u0(θ, ω̂0)+α·p̂ for some function u0 : Θ×Ω0 → R
and scalar α ≥ 0 and, similarly, v(θ, (ω̂0, p̂)) = v0(θ, ω̂0)−β · p̂ for some function v0 : Θ×Ω0 → R and
scalar β > 0. Note we interpret a payment as a monetary transfer from the agent to the principal
and this fixes the signs in front of α and β.

Fix an arbitrary distribution F ∈ F . Let S be an arbitrary feasible solution for the optimization
problem (E-3) defined for ū(F ). We define the payment offset qθ = 1

β

∫
Ω v(θ, ω)dSθ(ω) for all θ ∈ Θ.

Now, consider a single-round direct mechanism S′ where S′θ is the outcome distribution Sθ modified
with the fixed offset qθ such that to realize an outcome ω̂ ∼ S′θ, we draw (ω̂0, p̂) ∼ Sθ and set
ω̂ = (ω̂0, p̂+ qθ).

We show that S′ is a feasible solution to the optimization problem (E-4) defining Eθ∼F [ū(δθ)] and
that S′ obtains the objective value in (E-4) that is at least that obtained by S in (E-3). As S was
arbitrary, it would follow that ū(F ) ≤ Eθ∼F [ū(δθ)] and, as F was arbitrary, the proposition statement
would follow.

For any θ ∈ Θ, ∫
Ω
v(θ, ω)dS′θ(ω) =

∫
Ω0×R

v(θ, (ω0, p+ qθ))dSθ((ω
0, p))

=

∫
Ω0×R

(
v0(θ, ω0)− β(p+ qθ)

)
dSθ((ω

0, p))

=

∫
Ω0×R

(
v(θ, (ω0, p))− βqθ

)
dSθ((ω

0, p))

=

∫
Ω
v(θ, ω)dSθ(ω)− βqθ

= 0 ,

where the last step follows from how the payment offset is defined. Hence, S′ is a feasible solution to
(E-4).

Similarly, for any θ ∈ Θ,∫
Ω
u(θ, ω)dS′θ(ω) =

∫
Ω0×R

u(θ, (ω0, p+ qθ))dSθ((ω
0, p)) =

∫
Ω
u(θ, ω)dSθ(ω) + αqθ .

Integrating the first and last expressions over Θ, we obtain∫
Θ

∫
Ω
u(θ, ω)dS′θ(ω)dF (θ) =

∫
Θ

∫
Ω
u(θ, ω)dSθ(ω)dF (θ) + α

∫
Θ
qθdF (θ)

=

∫
Θ

∫
Ω
u(θ, ω)dSθ(ω)dF (θ) +

α

β

∫
Θ

∫
Ω
v(θ, ω)dSθ(ω)dF (θ)

≥
∫

Θ

∫
Ω
u(θ, ω)dSθ(ω)dF (θ) ,

where the second-to-last step follows from the definition of the payment offset qθ and the last step
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follows since S is a feasible solution to (E-3) and
∫

Θ

∫
Ω v(θ, ω)dSθ(ω)dF (θ) ≥ 0. Therefore, S′

obtains the objective value in (E-4) that is at least that obtained by S in (E-3). As S was arbitrary,
ū(F ) ≤ Eθ∼F [ū(δθ)].

Part 2): By the assumption on the game, we have v(θ, ω) ≥ 0 for all θ ∈ Θ and ω ∈ Ω. Then, for any
single-round direct mechanism S and shock θ ∈ Θ,∫

Ω
v(θ, ω)dSθ(ω) ≥ 0 .

Clearly, for any F ∈ F , any feasible solution to the optimization problem (E-3) is a feasible solution
to the optimization problem (E-4) and obtains the same objective. The proposition follows.

E.3 Proof of Proposition 3

Part 1): Fix an arbitrary distribution F ∈ ∆(Θ). Assume the principal commits to an incentive
compatible dynamic mechanism A and the agent plays the recommended strategy σ. Let {ωt}Tt=1 be
the resulting random sequence of realized outcomes. For each θ ∈ Θ, we define measure µθ(Q) =
1
T

∑T
t=1 Pr(ωt ∈ Q | θt = θ) for any Q ⊆ Ω and let Sθ be the corresponding distribution over Ω such

that ω ∼ Sθ means an outcome ω is realized with probability µθ(ω). Consider a single-round direct
mechanism S = {Sθ}θ∈Θ that given a report θ returns an outcome ω ∼ Sθ. We note that

PrincipalUtility(A, σ, F, T ) = E

[
T∑
t=1

u(θt, ωt)

]

=

T∑
t=1

Eθt [E[u(θt, ωt)|θt]]

=

T∑
t=1

Eθ∼F [E[u(θt, ωt)|θt = θ]]

= T · Eθ∼F

[
1

T

T∑
t=1

Eωt|θt=θ[u(θ, ωt)]

]
= T · Eθ∼F [Eω∼Sθ [u(θ, ω)]] ,

where the second equality follows from the linearity of expectations and the tower rule, the third
from that the idiosyncratic shocks are drawn independently and identically, and the last from the
construction of S. Hence, we have

PrincipalUtility(A, σ, F, T ) = T ·
∫

Θ

∫
Ω
u(θ, ω)dSθ(ω)dF (θ) .

Similarly, we have

AgentUtility(A, σ, F, T ) = T ·
∫

Θ

∫
Ω
v(θ, ω)dSθ(ω)dF (θ) .

Since the recommended strategy σ is a utility-maximizing strategy for the agent and the agent can
achieve the aggregate utility of 0 by not participating, it must be that AgentUtility(A, σ, F, T ) ≥ 0. It
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follows that S is a feasible solution for ū(F ) and achieves the objective of 1
T ·PrincipalUtility(A, σ, F, T ).

As the dynamic mechanism A ∈ A was arbitrary, the first part follows.

Part 2): Since we have the first part, it suffices to show OPT(δθ, T ) ≥ ū(δθ) for any θ ∈ Θ. Fix an
arbitrary θ ∈ Θ and let the agent’s distribution be δθ. Note ū(δθ) is equivalently

ū(δθ) := sup
G∈∆(Ω)

∫
Ω
u(θ, ω)dG(ω)

s.t.

∫
Ω
v(θ, ω)dG(ω) ≥ 0 ,

where G is an outcome distribution over Ω. For an arbitrary ε > 0, let Gε be an outcome distribution
that satisfies the IR constraint in the above optimization problem and∫

Ω
u(θ, ω)dGε(ω) ≥ ū(δθ)− ε .

Consider the corresponding dynamic mechanism Aε that repeatedly determines an outcome according
to Gε in each round. For the recommended strategy, we let the agent participate when his distribution
is δθ and give the better of the choices of participating or not when his distribution is something else.
When the agent’s distribution is δθ, since Gε satisfies the IR constraint, participating is a utility-
maximizing strategy and the agent accepts the outcomes being drawn independently and identically
from Gε. The agent’s only other option is to not participate which leads to the aggregate utility of 0.
When the agent’s distribution is not δθ, the recommended strategy is such that the agent still follows
the strategy. That is, Aε is incentive compatible.

By construction, the aggregate utility of the principal under Aε is at least T · ū(δθ)− ε · T . As ε was
arbitrary, this implies OPT(δθ, T ) ≥ T · ū(δθ). Combined with the first part, OPT(δθ, T ) = T · ū(δθ).

Part 3): Note we always have ū(F ) ≥ Eθ∼F [ū(δθ)] for all F ∈ ∆(Θ) unconditionally. This is because
a feasible solution in the optimization problem in (E-4) is a feasible solution in the optimization
problem (E-3) and obtains the same objective value.

F Additional Materials for Section 5.4

We prove Theorem 2 in the next subsection. We prove Propositions 9 and 10 in Appendices F.2–F.4.
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F.1 Proof of Theorem 2

We first derive a lower bound on the multi-round minimax regret Regret(T ) via the same reasoning
used in the proof of Lemma 2. Note that

Regret(T ) = inf
A∈A

sup
F∈F

Regret(A,F, T )

≥ inf
A∈A

sup
θ∈Θ

Regret(A, δθ, T )

= inf
A∈A

sup
θ∈Θ
{OPT(δθ, T )− PrincipalUtility(A, σ, δθ, T )}

= T · inf
A∈A

sup
θ∈Θ
{OPT(δθ, 1)− PrincipalUtility(S(A), σTR, δθ, 1)}

= T · inf
A∈A

sup
θ∈Θ

Regret(S(A), δθ, 1)

≥ T · inf
S′∈S×1

sup
θ∈Θ

Regret(S′, δθ, 1) , (F-5)

where the second step follows since point-mass distributions are a subset of F in the inner maximiza-
tion expression by Assumption 1; the third step is by the regret definition where σ is the corresponding
recommended strategy under A; the fourth step is by Proposition 1 and Lemma 1 where S(A) is the
single-round direct IC/IR mechanism derived from A as described in the proof of Lemma 1; the
second-to-last step is by the regret definition; and the last step follows because the single-round
direct IC/IR mechanisms in S×1 are a superset of those mechanisms S(A) derived from incentive
compatible dynamic mechanisms, i.e., {S(A) | A ∈ A}.

Now, define ∆ = supF∈F {OPT(F, T )− Eθ∼F [OPT(δθ, T )]}. Let ε ≥ 0 be arbitrary and consider a
single-round direct IC/IR mechanism S ∈ S×1 satisfying

sup
θ∈Θ

Regret(S, δθ, 1) ≤ inf
S′∈S×1

sup
θ∈Θ

Regret(S′, δθ, 1) +
ε

T
. (F-6)

Then,

sup
F∈F

Regret(S×T , F, T )

= sup
F∈F

{
OPT(F, T )− PrincipalUtility(S×T , σTR, F, T )

}
= sup

F∈F
{OPT(F, T )− T · PrincipalUtility(S, σTR, F, 1)}

≤ sup
F∈F
{Eθ∼F [OPT(δθ, T )]− T · PrincipalUtility(S, σTR, F, 1)}+ ∆

= T · sup
F∈F
{Eθ∼F [OPT(δθ, 1)]− PrincipalUtility(S, σTR, F, 1)}+ ∆

≤ T · sup
θ∈Θ

Regret(S, δθ, 1) + ∆ , (F-7)

where the first step is by the definition of Regret notion and σTR is the truthful reporting strategy
recommended for direct mechanisms; the second step is by Lemma 2; the third step is because the
supremum operator is sublinear; the second-to-last step is by Proposition 1; and the last step follows
from Lemma 3.
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Algorithm 1. Mechanism A∗(F, T )

1. Round 0: The report space is M = {CONTINUE,QUIT}. If the report is QUIT, the outcome is ∅ for all
rounds. If the report is CONTINUE, we continue as follows.

2. Rounds 1–T: The report space is M = {θ1, θ2}. If the report is θ1, the outcome is ω1 with probability
q and ∅ with probability 1 − q. If the report is θ2, the outcome is ω2 with probability 1. Note q ={

1 , if f1 <
1
2

1−f1
f1

, if f1 ≥ 1
2

.

By the above bounds, (F-5) and (F-7), and the property (F-6) of the single-round direct IC/IR
mechanism S, it follows that

sup
F∈F

Regret(S×T , F, T ) ≤ T · sup
θ∈Θ

Regret(S, δθ, 1) + ∆

≤ T · inf
S′∈S×1

sup
θ∈Θ

Regret(S′, δθ, 1) + ∆ + ε

≤ Regret(T ) + ∆ + ε .

F.2 Proof of Proposition 9

We first show that the optimal performance achievable is OPT(F, T ) = T · ū(F ) and then charac-
terize the single-round full information benchmark ū(F ). Recall F = (f1, f2) is the agent’s private
distribution over Θ where the shock is θi with probability fi for i = 1, 2 with f1 + f2 = 1.

Part 1 (Optimal performance). By Proposition 3, note OPT(F, T ) ≤ T · ū(F ) for any game. For
the game in Table 1b, we show OPT(F, T ) ≥ T · ū(F ) and it would follow that OPT(F, T ) = T · ū(F ).

Consider A∗(F, T ) in Algorithm 1. We show reporting CONTINUE in Round 0 and then reporting
truthfully in Rounds 1–T is optimal (i.e., utility-maximizing) for the agent. Given the agent partici-
pates in a round (i.e., Rounds 1–T ), truthful reporting is optimal on the per-round basis. If the shock
is θ1, reporting θ1 yields −q and reporting θ2 yields −∞. If the shock is θ2, reporting θ1 yields −∞
(or 0 if q = 0) and reporting θ2 yields 1. Hence, truthful reporting is optimal in each round. If the
agent reports CONTINUE in Round 0 and participates in all the remaining rounds, the overall utility
is T · (−q ·f1 +f2). The overall utility is T · (−f1 +f2) if f1 <

1
2 and 0 if f1 ≥ 1

2 , which is at least 0 for
any distribution F . If the agent reports QUIT in Round 0 and does not participate in the remaining
rounds, the utility is 0. Hence, reporting CONTINUE followed by truthful reporting is optimal over
the entire horizon.

We use σTR to denote the agent’s utility-maximizing strategy of reporting CONTINUE in Round
0 and then reporting truthfully in Rounds 1–T . For the mechanism A∗(F, T ), we let σTR be the
recommended strategy for the agent. As we argued above, A∗(F, T ) with the recommended strategy
σTR is incentive compatible. Given that the agent plays σTR, the principal’s utility in each round (i.e.,
Rounds 1–T ) is q · f1 = ū(F ) and

PrincipalUtility(A∗(F, T ), σTR, F, T ) = T · ū(F ) .
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Then, we have

OPT(F, T ) = sup
A∈A

PrincipalUtility(A, σ, F, T )

≥ PrincipalUtility(A∗(F, T ), σTR, F, T )

= T · ū(F ) ,

where σ is the corresponding recommended strategy for the incentive compatible mechanism A in the
first step.

Part 2 (Single-round full information benchmark). Note for distribution F , the single-round full
information benchmark is

ū(F ) = max
x∈[0,1]

f1 · x

s.t. − f1 · x+ f2 · 1 ≥ 0 .

To see this, let S be a single-round direct mechanism in the optimization problem defining ū(F ) (in
Section 5.2) such that each Sθi is a distribution over Ω with probabilities given by Sθi(∅), Sθi(ω1), and
Sθi(ω

2), and let x = Sθ1(ω1) (y = Sθ2(ω1)) be the probability that outcome ω1 is selected when the
shock is θ1 (θ2). On the one hand, the mechanism maximizes Eθ∼F,ω∼Sθ [u(θ, ω)] = f1 ·x+ f2 · y if Sθ1

and Sθ2 place as much probability mass as possible on outcome ω1. We assume y = 0 without loss;
if f2 > 0, only y = 0 is feasible because the agent utility will be −∞ and the ex-ante IR constraint
will be violated if y > 0, and if f2 = 0, y can be any value and we can set y = 0 without affecting
the principal utility. On the other hand, setting x too large might violate the ex-ante IR constraint
because outcome ω1 gives the utility of −1 to the agent when the shock is θ1. Setting Sθ2(ω2) = 1
allows for higher values of x at no cost to the principal.

Now, we determine ū(F ). Since f1 + f2 = 1, we see that the ex-ante IR constraint only binds when
f1 ≥ 1

2 . Therefore, the optimal solution is x = 1 when f1 <
1
2 and x = 1−f1

f1
≤ 1 when f1 ≥ 1

2 , or,

more succinctly, x = min
{

1, 1−f1

f1

}
. This implies

ū(F ) = min {f1, 1− f1} =

{
f1 , if f1 <

1
2 ,

1− f1 , if f1 ≥ 1
2 .

F.3 First Part of Proposition 10

We prove the first part in this section and the second part in Appendix F.4.

By Lemma 2, for any arbitrary single-round direct IC/IR mechanism S ∈ S×1 and distribution F ∈ F ,

Regret(S×T , F, T ) = OPT(F, T )− PrincipalUtility(S×T , F, T )

= OPT(F, T )− T · PrincipalUtility(S, F, 1) .

Since OPT(F, T ) = T · ū(F ) by Proposition 9,

Regret(S×T , F, T ) = T · (ū(F )− PrincipalUtility(S, F, 1)) .
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Algorithm 2. Dynamic mechanism A parametrized in terms of T1, T2, δ, and q0.

1. Round 0: The report space is M = {CONTINUE,QUIT}. If the report is QUIT, the outcome is ∅ for all
rounds. If the report is CONTINUE, we continue.

2. Phase 1 (T1 rounds): The report space is M = {θ1, θ2}. If the report is θ1, the outcome is ω1 with
probability q0 and ∅ with probability 1− q0. If the report is θ2, the outcome is ω2 with probability 1.

3. Round T1 + 1: The report space is M = {CONTINUE,QUIT}. If the report is QUIT, the outcome is ∅
for the current and all remaining rounds. If the report is CONTINUE, the outcome is ∅ for the current
round and we continue.

4. Phase 2 (T2 rounds):

� From Phase 1, compute the fraction f̂1 of reports of θ1. Let f̃1 = f̂1+δ and q̃ =

{
1 , if f̃1 <

1
2

1−f̃1
f̃1

, if f̃1 ≥ 1
2

.

� The report space is M = {θ1, θ2}. If the report is θ1, the outcome is ω1 with probability q̃ and ∅
with probability 1− q̃. If the report is θ2, the outcome is ω2 with probability 1.

It suffices to show that

inf
S∈S×1

sup
F∈F
{ū(F )− PrincipalUtility(S, F, 1)} =

1

2
. (F-8)

Fix an arbitrary single-round direct IC/IR mechanism S ∈ S×1. Using the outcome distribution
representation, let each Sθi be a distribution over Ω with probabilities α0 = Sθ1(∅), α1 = Sθ1(ω1),
and α2 = Sθ1(ω2) and probabilities β0 = Sθ2(∅), β1 = Sθ2(ω1), and β2 = Sθ2(ω2). Since S satisfies
the (IR) constraint for shock θ1, we have 0 · α0 − 1 · α1 −∞ · α2 ≥ 0 and it follows that α1 = α2 = 0.
Similarly, the (IR) constraint for shock θ2 implies we have 0 · β0 −∞ · β1 + 1 · β2 ≥ 0 and it follows
that β1 = 0. Note PrincipalUtility(S, F, 1) = Eθ∼F,ω∼Sθ [u(θ, ω)] = f1α1 + f2β1 for any F = (f1, f2).
From the above observations, PrincipalUtility(S, F, 1) = 0 for all F . Then, we have

sup
F∈F
{ū(F )− PrincipalUtility(S, F, 1)} = sup

F∈F
ū(F ) = sup

F∈F
min{f1, 1− f1} =

1

2
,

where the second step follows by Proposition 9.

As S ∈ S×1 was arbitrary and S×1 is not empty (for example, we can take α0 = 1 and β1 = 1),

inf
S∈S×1

sup
F∈F
{ū(F )− PrincipalUtility(S, F, 1)} =

1

2
,

which is (F-8).

F.4 Second Part of Proposition 10

Consider A in Algorithm 2 which is parametrized in terms of T1, T2, δ and q0. We choose T1 = T 2/3,

T2 = T − T1 − 1, δ =
√

lnT1
4T1

and q0 = 1√
T1

. For ease of presentation, we mostly use T1, T2, δ and

q0 as parameters and use their values when necessary. We prove the result in three steps. First,
we show that truthful reporting is a utility-maximizing strategy for the agent when his distribution
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F = (f1, f2) satisfies f1 ∈ [0, 1
1+q0

]. Second, we lower bound the principal’s utility when the agent
reports truthfully. Finally, we analyze the regret of the dynamic mechanism A.

Step 1. Assume the agent’s distribution F = (f1, f2) satisfies f1 ∈ [0, 1
1+q0

]. Let σTR denote the
strategy that reports CONTINUE in Round 0, reports truthfully during Phase 1, reports CONTINUE
if −q̃ ·f1 +1 ·f2 ≥ 0 in Round T1 +1, and then reports truthfully during Phase 2 if the game continues
to Phase 2. We note that the agent utility is at least 0 under σTR. In Phase 1, truthful reporting leads
to the utility of T1 ·(−q0 ·f1 +1 ·f2) ≥ 0, since f1 ≤ 1

1+q0
implies −q0 ·f1 +1 ·(1−f1) = 1−(1+q0) ·f1 ≥

1− (1 + q0) · 1
1+q0

= 0. If the game continues to Phase 2, it must be that −q̃ · f1 + 1 · f2 ≥ 0 and σTR

leads to the utility of T2 · (−q̃ · f1 + 1 · f2) ≥ 0 in Phase 2. If the game does not continue, then it leads
to the utility of 0 in Phase 2. In expectation, σTR leads to the utility of at least 0 in Phase 2. Hence,
the overall utility is at least 0.

In fact, σTR is a utility-maximizing strategy for the agent. To see this, we first note truthful reporting
is optimal on the per-round basis in each round in Phase 1 and in Phase 2 (for any value of q̃). That
is, given the agent participates in a round, truthful reporting is a utility-maximizing strategy for the
agent in that round. In each round in Phase 1, if the shock is θ1, reporting θ1 yields −q0 and reporting
θ2 yields −∞. If the shock is θ2, reporting θ2 yields 1 and reporting θ1 yields −∞. In each round in
Phase 2, for any value of q̃, truthful reporting is optimal for the agent. If the shock is θ1, reporting
θ1 yields −q̃ and reporting θ2 yields −∞. If the shock is θ2, reporting θ2 yields 1 and reporting θ1

yields −∞ (or 0 if q̃ = 0).

Then, we note the only way for the agent to influence the principal’s mechanism A is through reports
in Phase 1 which determine the probability q̃ in Phase 2. Intuitively, the agent may consider some
non-truthful reporting strategy in Phase 1 and continue to Phase 2 with q̃ determined favorably to
benefit himself. Non-truthful reporting can only lead to lower per-round utilities during Phase 1 and
each misreport of the shock costs −∞. The agent needs to continue to Phase 2 in order to gain from
such non-truthful reporting, but the cost overwhelms the potential gain from Phase 2. It follows that
it is optimal for the agent to truthfully report during Phase 1 and given this observation, reporting
CONTINUE in Round T1+1 if −q̃ ·f1+1·f2 ≥ 0 can only benefit the agent because truthfully reporting
is optimal on the per-round basis in Phase 2 and the utility from Phase 2 is T2 · (−q̃ · f1 + 1 · f2) given
the game continues to Phase 2. Note the agent cannot influence the principal’s mechanism during
Phase 2. Hence, it is not possible to realize a greater utility overall than that achieved under σTR.

Step 2. Assume the agent’s distribution F = (f1, f2) satisfies f1 ∈ [0, 1
1+q0

]. Let UTR
1 and UTR

2 be
the principal utility from Phases 1 and 2, respectively, when the principal’s mechanism is A and the
agent’s utility-maximizing strategy is σTR, such that

PrincipalUtility(A, σTR, F, T ) = UTR
1 + UTR

2 .

Note
UTR

1 = T1 · q0 · f1 ≥ 0 . (F-9)

We now consider UTR
2 . Let E be the event that the game continues to Phase 2 under σTR, or equiva-

lently, −q̃ ·f1 +1 ·f2 ≥ 0 and 1E be the indicator that equals to 1 if the event occurs, and 0 otherwise;
so, 1E = 1{−q̃ · f1 + 1 · f2 ≥ 0}. We have UTR

2 = T2 ·E[q̃ · f1 · 1E ]. Note that 1
1+q0

≥ 1
2 because q0 ≤ 1.

We consider the following cases depending on whether f1 is above or below 1
2 .
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If f1 ≤ 1/2, then the event E always occurs because f2 = 1− f1 ≥ f1 and q̃ ∈ [0, 1]. Therefore,

UTR
2 = f1 · T2 · E

[
min

{
1,

1− f̃1

f̃1

}]
, (F-10)

where f̃1 is always strictly positive because f̃1 = f̂1 + δ ≥ δ > 0.

If f1 > 1/2, whenever the event E occurs we have f̃1 ≥ 1/2 and, consequently, q̃ = 1−f̃1

f̃1
. To see this,

note that if f̃1 < 1/2, then q̃ = 1, which implies that −q̃ · f1 + 1 · f2 = −f1 + f2 < 0 and event E
does not occur. Then, −q̃ · f1 + 1 · f2 ≥ 0 is equivalent to 1−f1

f1
≥ q̃ = 1−f̃1

f̃1
. Since the transformation

x 7→ 1−x
x is decreasing, the event E can be equivalently written as E = {f̃1 ≥ f1}. This implies that

UTR
2 = f1 · T2 · E

[
1{f̃1 ≥ f1} ·

1− f̃1

f̃1

]

= T2 ·
(

(1− f1) · Pr(f̃1 ≥ f1)− E
[
max

{
1− f1

f̃1

, 0

}])
, (F-11)

where we used that f1(1−f̃1)

f̃1
= (1− f1)−

(
1− f1

f̃1

)
and 1{f̃1 ≥ f1} ·

(
1− f1

f̃1

)
= max

{
1− f1

f̃1
, 0
}

.

The following result will be used in bounding the principal’s utility. The proof is provided in Ap-
pendix F.5.

Lemma 5. The following hold:

1. If f1 ≤ 1/2, then E
[
min

{
1, 1−f̃1

f̃1

}]
≥ 1− 4δ − 2√

T1
.

2. If f1 > 1/2, then E
[
max

{
1− f1

f̃1
, 0
}]
≤ 2δ + 1√

T1
.

3. Pr(f̃1 ≥ f1) ≥ 1− e−2δ2T1.

Step 3. We next bound the regret of the dynamic mechanism A. For the recommended strategy
σ under A, we let σ be the truthful reporting strategy σTR defined above for F = (f1, f2) with
f1 ∈ [0, 1

1+q0
] and σ be any arbitrary utility-maximizing strategy for the agent corresponding to F

for F with f1 ∈ ( 1
1+q0

, 1]. Note A with the recommended strategy σ is incentive compatible by the
argument in Step 1 and the construction of choosing utility-maximizing strategies. Note

Regret(A,F, T ) = OPT(F, T )− PrincipalUtility(A, σ, F, T )

= T · ū(F )− PrincipalUtility(A, σ, F, T ) ,

by Proposition 9. We upper bound the regret in three separate cases depending on the agent’s
distribution F = (f1, f2). Note 1

1+q0
≥ 1

2 for T1 ≥ 1.
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If f1 ∈ [0, 1
2 ], then ū(F ) = f1. From (F-9) and (F-10), we have

PrincipalUtility(A, σ, F, T ) = PrincipalUtility(A, σTR, F, T )

≥ f1 · T2 · E

[
min

{
1,

1− f̃1

f̃1

}]
.

Then,

1

T
Regret(A,F, T ) ≤ f1

(
1− T2

T
· E

[
min

(
1,

1− f̃1

f̃1

)])

≤ f1

(
1−

(
1− T1 + 1

T

)
·
(

1− 4δ − 2√
T1

))
= f1

(
1−

(
1− T1 + 1

T
− 4δ − 2√

T1
+
T1 + 1

T
·
(

4δ +
2√
T1

)))
≤ f1

(
T1 + 1

T
+ 4δ +

2√
T1

)
≤ 2δ +

T1

T
+

1√
T1
, (F-12)

where the second inequality follows from T2 = T − T1 − 1 and Part 1 of Lemma 5; the second-to-last
inequality follows from dropping the negative term in the resulting expression in the parentheses; and
the last inequality follows from f1 ≤ 1

2 and T1 ≥ 1 which implies T1 + 1 ≤ 2T1.

If f1 ∈ (1
2 ,

1
1+q0

], then ū(F ) = 1− f1. From (F-9) and (F-11), we have

PrincipalUtility(A, σ, F, T ) = PrincipalUtility(A, σTR, F, T )

≥ T2 ·
(

(1− f1) · Pr(f̃1 ≥ f1)− E
[
max

{
1− f1

f̃1

, 0

}])
.

Consequently, we obtain

1

T
Regret(A,F, T ) ≤ (1− f1)

(
1− T2

T
· Pr(f̃1 ≥ f1)

)
+
T2

T
E
[
max

(
1− f1

f̃1

, 0

)]
≤ (1− f1)

(
1−

(
1− T1 + 1

T

)
·
(

1− e−2δ2T1

))
+
T2

T
·
(

2δ +
1√
T1

)
= (1− f1)

(
1−

(
1− T1 + 1

T
− e−2δ2T1 +

T1 + 1

T
· e−2δ2T1

))
+
T2

T
·
(

2δ +
1√
T1

)
≤ (1− f1)

(
T1 + 1

T
+ e−2δ2T1

)
+
T2

T
·
(

2δ +
1√
T1

)
≤ 1

2
e−2δ2T1 + 2δ +

T1

T
+

1√
T1
, (F-13)

where the second inequality follows from T2 = T −T1− 1 and Parts 2 and 3 of Lemma 5; the second-
to-last inequality follows from dropping the product term T1+1

T ·e−2δ2T1 ; and the last inequality follows
because 1− f1 ≤ 1

2 , T2 ≤ T , and T1 ≥ 1 which implies T1 + 1 ≤ 2T1.

If f1 ∈ ( 1
1+q0

, 1], then ū(F ) = 1 − f1. Note that the principal’s utility is always at least 0 regard-
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less of the agent’s utility-maximizing strategy, i.e., PrincipalUtility(A, σ, F, T ) ≥ 0. Using the last
observation, we obtain

1

T
Regret(A,F, T ) ≤ 1− f1 ≤ 1− 1

1 + q0
=

q0

1 + q0
≤ q0 , (F-14)

where the last inequality follows because q0 ≥ 0.

Combining the upper bounds on the regret in above three cases, (F-12)–(F-14), and using that
q0 = 1√

T1
, we obtain

1

T
sup
F∈F

Regret(A,F, T ) ≤ 2δ +
1

2
e−2δ2T1 +

T1

T
+

1√
T1

≤ (lnT )1/2

T 1/3
+

1

2T 1/3
+

1

T 1/3
+

1

T 1/3

=
(lnT )1/2

T 1/3
+

5

2T 1/3
.

where the second inequality follows from our choices for δ and T1.

F.5 Missing Proofs from Appendix F.4

Proof of Lemma 5. We prove each part at a time. For Part 1, note that the function x 7→ 1
x is convex

and a first-order expansion around 1
2 yields the lower bound 1

f̃1
≥ 2− 4

(
f̃1 − 1

2

)
. Therefore,

min

{
1,

1− f̃1

f̃1

}
≥ min

{
1, 1− 4

(
f̃1 −

1

2

)}
= 1− 4 max

{
f̃1 −

1

2
, 0

}

Because f̃1 = f̂1 + δ, δ ≥ 0, and f1 ≤ 1
2 , we have that

max

{
f̃1 −

1

2
, 0

}
≤ δ + max

{
f̂1 − f1, 0

}
≤ δ + |f̂1 − f1| ,

where the last inequality follows because max{x, 0} ≤ |x| for all x ∈ R. Note that T1 · f̂1 is binomially
distributed with T1 trials and the success probability of f1. Jensen’s inequality and that E[f̂1] = f1

imply that

E
[
|f̂1 − f1|

]
≤
√

Var(f̂1) =

√
f1(1− f1)

T1
≤ 1

2
√
T1
, (F-15)
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where the equality follows from the variance formula for a binomially distributed random variable
and the last inequality follows because f1(1− f1) ≤ 1

4 for f1 ∈ [0, 1]. Putting everything together,

E

[
min

{
1,

1− f̃1

f̃1

}]
≥ 1− 4E

[
max

{
f̃1 −

1

2
, 0

}]
≥ 1− 4δ − 4E

[
|f̂1 − f1|

]
≥ 1− 4δ − 2√

T1
.

For Part 2, we use, again, that the function x 7→ 1
x is convex to obtain that a first-order expansion

around f1 yields the lower bound 1
f̃1
≥ 1

f1
− 1

f2
1

(f̃1 − f1). Therefore,

max

{
1− f1

f̃1

, 0

}
≤ 1

f1
max

{
f̃1 − f1, 0

}
≤ 2δ + 2 max

{
f̂1 − f1, 0

}
≤ 2δ + 2|f̂1 − f1| ,

where the first inequality follows from the above lower bound; the second inequality follows from
f1 > 1

2 , f̃1 = f̂1 + δ, and δ ≥ 0; and the last is because max{x, 0} ≤ |x| for all x ∈ R. Taking
expectations and using (F-15), we obtain

E
[
max

{
1− f1

f̃1

, 0

}]
≤ 2δ + 2E

[
|f̂1 − f1|

]
≤ 2δ +

1√
T1
.

For Part 3, we use that f̃1 = f̂1 + δ to obtain

Pr(f̃1 ≥ f1) = Pr(f̂1 ≥ f1 − δ) = 1− Pr(f̂1 < f1 − δ) ≥ 1− e−2δ2T1 ,

where the last inequality follows from Hoeffding’s inequality because T1 · f̂1 is binomially distributed
with T1 trials and success probability f1.
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