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Abstract. This note gives a short, self-contained proof of a sharp connection between
Gittins indices and Bayesian upper confidence bound algorithms. I consider a Gaussian
multiarmed bandit problemwith discount factor γ. The Gittins index of an arm is shown to
equal the γ-quantile of the posterior distribution of the arm’s mean plus an error term that
vanishes as γ → 1. In this sense, for sufficiently patient agents, a Gittins index measures
the highest plausible mean-reward of an arm in a manner equivalent to an upper confi-
dence bound.

Keywords: Gittins index • upper confidence bound • multiarmed bandits

1. Introduction and Related Work
There are two separate segments of the multiarmed
bandit literature. One formulates a Bayesian multi-
armed bandit problem as a Markov decision process
and uses tools from dynamic programming to com-
pute or approximate the optimal policy. This litera-
ture builds on a beautiful result that shows an optimal
policy selects in each period the arm with the highest
Gittins index (Gittins 1974, Gittins and Jones 1979). A
second segment of the literature focuses on simple
heuristic algorithms—which are often easy to adapt
to settings in which exact dynamic programming is
computationally intractable—and studies their per-
formance through simulation and theoretical bounds
on their regret (Rusmevichientong and Tsitsiklis 2010,
Kaufmann et al. 2012, Srinivas et al. 2012, Cappé et al.
2013). This literature descends from a seminal paper
by Lai and Robbins (1985) that shows the asymptotic
growth rate of expected regret in a frequentist model
is minimized by selecting in each period the armwith
greatest upper confidence bound.

A sharp relationship between upper confidence
bounds and the Gittins index of a patient agent
(whose discount factor is close to 1) helps to unify
these two segments of the literature. This provides
enormous conceptual clarity, allowing the upper con-
fidence bounds of Lai and Robbins (1985) to be seen
roughly as a generalization of and asymptotic ap-
proximation to the Gittins index. Unfortunately, such
links seem to be known only to a few expert re-
searchers. The goal of this short note is twofold. First,

for Gaussian multiarmed bandit problems, it states
an asymptotic equivalence between the Gittins index
and a Bayesian upper confidence bound in a trans-
parent form absent from the current literature. Sec-
ond, the note gives short and elementary (if some-
what ugly) proofs that hopefully make this material
accessible to a large audience of researchers.
Asymptotic links between Gittins indices and up-

per confidence bounds were first recognized by Chang
and Lai (1987). That paper presents a sophisticated
asymptotic expansion of the solution of diffusion
approximations to the optimal stopping problems
defining aGittins index.Unfortunately, the analysis is
highly complex and is inaccessible to most multi-
armed bandit researchers. Perhaps as a result, this
pioneering work appears not to be widely known or
cited.1 Hopefully, the transparent form of Theorem 1
along with its short proof will help to remedy this.
Like Chang and Lai (1987), most other closely re-

lated papers focus on developing approximations to
the Gittins index with the goal of simplifying com-
putation (Yao 2006, Chick and Gans 2009, Gutin and
Farias 2016). This note was highly influenced by my
reading of Gutin and Farias (2016). The upper bound
on the Gittins index developed in Section 3.3 comes
from analyzing their algorithm. Also related is work
by Burnetas and Katehakis (2003), Kaufmann et al.
(2012), and Lattimore (2016), who study the regret
of Gittins index-like policies for finite-horizon un-
discounted multiarmed bandit problems. See also
Niño-Mora (2011) for a derivation of a finite-horizon
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approximation of the Gittins index and related com-
putational issues. This short note is distinguished
from these related works in that (1) I study the Gittins
index as classically defined rather than the heuristic
of Niño-Mora (2011), and (2) this note is designed to
develop conceptual insight through a sharp link be-
tween Gittins indices and Bayesian upper confidence
bounds, rather than to develop accurate computational
approximations or give a frequentist regret analysis.

2. Formulation and Main Result
Although the Gittins index is eventually used in
multiarmed bandit problems, it is calculated by con-
sidering a modified one-armed bandit problem. Con-
sider a single arm with uncertain quality θ. When
played at time t, the arm generates a reward Rt with
Rt|θ ∼ N(θ, σ2W). The posterior distribution of θ given
observed rewards R0, . . .Rt−1 is Gaussian. We write
θ|R0 . . .Rt−1 ∼ N(μt, σ2t ), where the posterior parame-
ters evolve according to

μt � σ−2t−1μt−1 + σ−2W Rt−1
σ−2t−1 + σ−2W

and

σ2t �
(

1
σ2t−1

+ 1
σ2W

)−1
�
(
1
σ20

+ 1
tσ2W

)−1
. (1)

To define the Gittins index, we follow the interpre-
tation of Weber (1992). Imagine that the right to play
this arm is restricted and for each play the decision
maker must pay a tax λ. Alternatively, in any period
the agent may choose to retire and earn a reward of 0
thereafter. This can be cast as a Markov decision
process (MDP) where the state at time t is (μt, σ2t ),
which serves as a sufficient statistic for the agent’s
posterior belief. The expected reward when playing
the arm at state (μt, σ2t ) is μt. The agent’s actions are
simple: after the first period, given the current state of
her beliefs, the agent can continue or can retire. The
value function for this MDP can be written as

Vλ
γ μ, σ2
( ) � sup

τ≥0
E
∑τ
t�0

γt θ − λ( ) |μ0 � μ, σ20 � σ2
[ ]

� sup
τ≥0

E
∑τ
t�0

γt μt − λ
( ) |μ0 � μ, σ20 � σ2

[ ]
, (2)

where the supremum is over stopping times τ ≥ 0
with respect to (R0,R1,R2, . . .). The equality is due to
the tower property of conditional expectation. (See
Section A.3 in the appendix.) The Gittins index is the
largest tax such that participating in this game is
advantageous to the agent, written as

λγ μ, σ2
( )

:� sup λ ∈ R

⃒⃒⃒
⃒ Vλ

γ μ, σ2
( ) ≥ 0

{ }
. (3)

This is interpreted sometimes as either a fair or pre-
vailing tax.
To develop some intuition, note that for any tax

λ > μ, the agent could feasibly explore for some large
number of periods and then choose to continue
sampling only if posterior mean strictly exceeds the
tax λ. For a very patient agent, the benefit of re-
peatedly playing an arm that generates rewards
above the tax would dwarf the expected cost of
initial exploration. As a result, the prevailing tax for
the arm must be high enough that this event occurs
very infrequently. The following theorem makes
this intuition precise, showing that up to an error
term that vanishes as γ → 1, the Gittins index is
exactly equal to the γ quantile of the N(μ, σ2) prior
distribution of θ. For sufficiently patient agents, a
Gittins index measures the highest plausible mean-
reward of an arm in amanner equivalent to a Bayesian
upper confidence bound.

Theorem 1. Fix any prior mean μ and prior variance
σ2. Then,

λγ μ, σ2
( ) � μ + Φ−1 γ

( )
σ + o 1( ) as γ → 1, (4)

whereΦ(·) denotes the cumulative distribution function of
the standard normal distribution.

Remark 1. Whereas the Gittins index is derived by
considering a one-armed bandit problem, both Gittins
indices and upper confidence bounds are usually ap-
plied in bandit problems with k > 1 arms. In that
context, the Gittins index theorem shows an optimal
policy plays at time t the arm argmaxi≤k λγ(μt,i, σ2t,i)
whose posterior parameters (μt,i, σt,i) are associated
with the maximal Gittins index. A Bayesian upper con-
fidence bound algorithm plays the arm argmaxi≤k μt,i +
σt,iΦ−1(qt), where the posterior quantile qt is often treat-
ed as a tunable parameter and theory suggests values
like qt � 1 − 1/T when there is a known time horizon
of T. The quantile in (4) is then analogous to using
the natural time horizon of T � 1/(1 − γ) for a dis-
counted problem.

Remark 2. For readers more familiar with the upper
confidence bounds of Auer et al. (2002) than the
Bayesian form presented here, it is worth noting that
these expressions are almost identical if an improper
prior is used or an arm has been sampled a moderate
number of times. More about these connections can be
found in Kaufmann et al. (2012).

3. Analysis
3.1. Technical Preliminaries
3.1.1. Strict Concavity of the Square Root. The next
lemma is used several times in the analysis. The idea is
that because g(x) � ̅̅

x
√

is strictly concave and g′(x) → 0
as x → ∞,

̅̅̅̅̅̅̅
x + y

√ ≈ ̅̅
x

√
if x is much larger than y.
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Lemma 1. Let f : R+ → R+ be any function satisfying
| f (x)| � o( ̅̅x√ ) as x → ∞. Then,̅̅̅̅̅̅̅̅̅̅

x + f x( )√ � ̅̅
x

√ + o 1( ) as x → ∞.

Proof. By Taylor’s theorem, there is some x̃ ∈ [x, x +
f (x)] such that̅̅̅̅̅̅̅̅̅̅

x + f x( )√ − ̅̅
x

√ � f x( )
2
̅̅
x

√ + 1
2

−f x( )
x̃3/2

( )
.

For f (x) � o( ̅̅x√ ), both terms on the right-hand side
vanish as x → ∞. □

3.1.2. Gaussian Tail Behavior. Let φ(z) � 1̅̅̅
2π

√ e−z2/2 de-
note the PDF of the standard normal distribution.
Because the PDF decays exponentially as z increases,
for large values of z, tail integrals like 1 −Φ(z) �∫
z′>z φ(z′)dz′ also decay exponentially as e−z

2/2 as z → ∞.
Inverting this relation suggests an asymptotic ap-
proximation ofΦ−1(γ) ≈ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2 log(1/(1 − γ))√
to the quan-

tiles of the normal distribution. The next lemma,
proved in Section A.1 in the appendix, makes
this precise.

Lemma 2. As γ → ∞,

Φ−1 γ
( ) �

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 log

1
1 − γ

( )√
+ o 1( ).

The same type of saddle-point approximation shows
the integral E[(Z − z)+] � ∫z′>z z′φ(z′)dz′ decays like
e−z2/2 as z → ∞. For our analysis, it is convenient to
have explicit upper and lower bounds, such as those
in the following lemma. The upper bound here is a
standard Gaussian maximal inequality and the lower
bound applies Lemma 3 in Qin et al. (2017).

Lemma 3. For X ∼ N(0, σ2) and λ ≥ μ + 2σ,

σ4

λ3 φ
λ

σ

( )
≤ E X − λ( )+[ ] ≤ σφ

λ

σ

( )
.

3.2. Reduction to Indices for Standard
Normal Distributions

With some abuse of notation, for the moment let us
explicitly capture the dependence of the Gittins index
on the noise variance, setting λγ(μ, σ2, σ̃2) to be the
Gittins index for a bandit process with prior mean μ,
prior variance σ2, and noise variance σ̃2. A simple
standardization argument shows Gittins et al. (2011)

λγ

(
μ, σ2, σ̃2

)
� μ + σλγ

(
0, 1,

σ̃2

σ2

)
.

Therefore, it suffices to study the Gittins index for an
arm with standard normal prior and some arbitrary
noise variance we denote by σ2W . Combining this with

Lemma 2, our goal in subsequent subsections is to
show λγ(0,1) �

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2log(1/(1−γ))√ + o(1) as γ → 1, where

we treat σ2W > 0 as an arbitrary positive constant
interpreted as the noise-to-signal ratio.

3.3. Upper Bound on the Gittins Index
This subsection derives an upper bound on theGittins
index via an information relaxation Brown et al.
(2010). We consider a decision maker who observes
noiseless signals of the true arm mean θ when sam-
pling the arm. The prevailing tax for this decision
maker exceeds the prevailing tax for one who must
base the decisions on noisy reward signals. As γ → 1,
this upper bound matches both a lower bound given
in Lemma 5 and the posterior quantile in Lemma 2.

Lemma 4. As γ → ∞,

λγ 0, 1( ) ≤
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 log

1
1 − γ

( )√
+ o 1( ) as γ → 1.

Proof. To simplify notation, write λγ � λγ (0, 1) and
note that we often use E[θ] � 0 to simplify expressions.
Consider a decision maker who faces a one-armed
bandit problem with no observation noise. For this
decision maker, playing the arm once is sufficient to
perfectly reveal the true armmean θ. An optimal policy
would then play the arm in every period if θ ≥ λ, and
immediately retire otherwise. Of course, a Bayesian
decision maker is better off basing the retirement de-
cision on perfect knowledge of θ than on noisy signals
(see e.g., DeGroot 1962). This can be verified directly in
this case: the decision maker with access to noiseless
observations earns

− λ + γ

1 − γ

( )
E θ − λ( )+[ ]

� E θ − λ[ ] + E
∑∞
t�1

γt θ − λ( )+

≥ sup
τ≥0

E
∑∞
t�0

γt θ − λ( )1 τ ≥ t( ) � Vλ
γ 0, 1( ). (5)

Therefore, the fair tax for the decision maker who
observes noiseless signals of θ exceeds the fair tax λγ

for one who must base a stopping decision on im-
perfect signals. (See also Gutin and Farias 2016 for a
detailed proof.) We have the following:

λγ :� sup λ ∈ R

⃒⃒⃒
Vλ

γ 0, 1( ) ≥ 0
{ }

≤ sup λ ∈ R

⃒⃒⃒
⃒⃒ γ

1 − γ
E θ − λ( )+[ ] ≥ λ

{ }

Lem.3≤ sup λ ∈ R

⃒⃒⃒
⃒⃒ γ

1 − γ
φ −λ( ) ≥ λ

{ }

� sup λ ∈ R

⃒⃒⃒
⃒⃒ log γ

1 − γ

( )
≥ log

λ

φ −λ( )
( ){ }

:� λγ.
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Plugging in for the normal probability density func-
tion φ(·) and simplifying, we find the upper bound λγ

on the Gittins index is defined implicitly by

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 log λγ

( ) + λ
2
γ

√
�
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 log

1
1 − γ

( )
+ 2 log γ

̅̅̅̅
2π

√( )√
. (6)

As γ → 1, the right-hand side tends to infinity and by
Lemma 1,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 log

1
1 − γ

( )
+ 2 log γ

̅̅̅̅
2π

√( )√

�
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 log

1
1 − γ

( )√
+ o 1( ). (7)

This implies thatλγ → ∞ as γ → 1. Applying Lemma 1
again shows

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 log λγ

( ) + λ
2
γ

√
� λγ + o 1( ) as γ → 1. (8)

Combining Equation (6) with (7) and (8) establishes
the claim. □

3.4. Lower Bound on the Gittins Index
We construct a lower bound on the Gittins index by
analyzing the fair tax for an agent who employs a
suboptimal heuristic policy. This agent explores for a
predetermined number of periods L. Based on the
resulting signals, the agent retires if μL < λ and oth-
erwise commits to playing the arm indefinitely. The
main idea is that large Lwill almost perfectly reveal θ,
but as γ → 1, the cost of this initial exploration is small
relative to the potential value from discovering the
arm has very high quality and hence has a negligible
impact on the fair tax for the game. The proof will
choose L as a slowly growing function of γ, so that the
lower bound constructed here matches the upper
bound in Lemma 4 as γ → 1. Specifically, a choice of
Lγ � �σ2W log(1/(1 − γ))2 suffices for the proof. Note
that this result matches the posterior quantile in
Lemma 2, and, together with Lemma 4, completes the
proof of Theorem 1.

Lemma 5. As γ → ∞,

λγ 0, 1( ) ≥
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 log

1
1 − γ

( )√
+ o 1( ) as γ → 1.

Proof. Consider a decision maker who faces a tax λ.
Suppose the agent follows a policy of exploring for L ∈ N

periods, and then either retiring if μL < λ or playing
the arm for all future periods otherwise. The value of

this heuristic policy is a lower bound on the optimal
policy, so for all fixed L ∈ N,

Vλ
γ 0, 1( ) ≥ −∑L−1

t�0
γtλ + γL

1 − γ
E
[
μL − λ
( )+]

≥ −Lλ + γL

1 − γ
E
[
μL − λ
( )+].

Define *L−1 � (R0, . . .RL−1) to be the history of re-
wards prior to period L. The posteriormean is random
due to its dependence on *L−1 and has distribution
μL ∼ N(μ0, 1 − σ2L). Here, normality follows from the
fact that μL is a linear combination of Gaussian obser-
vations R0, . . .RL−1. We have E[μL] �E[E[θ|*L−1]] �μ0
by the tower property of conditional expectation, and
the variance formula follows from the law of to-
tal variance:

1 � Var θ( ) � Var E θ|*L−1[ ]( ) + E Var θ|*L−1( )[ ]
� Var μL

( ) + σ2L.

This implies that for any L ∈ N,

λγ ≥ sup λ ∈ R

⃒⃒⃒
⃒⃒ γL

1 − γ
E μL − λ
( )+[ ] ≥ Lλ

{ }

Lem.3

≥ sup λ ∈ R

⃒⃒⃒
⃒⃒ γL

1 − γ

1 − σ2L
( )2

λ3 φ
λ̅̅̅̅̅̅̅̅̅

1 − σ2L
√
( )

≥ Lλ

{ }

� sup λ ∈ R

⃒⃒⃒
⃒⃒ log γL

1 − γ

( )
+ log

1 − σ2L
( )2

λ3

( ){

≥ log Lλ( ) − logφ
λ̅̅̅̅̅̅̅̅̅

1 − σ2L
√
( )}

.

Now, choose Lγ � �σ2 log( 1
1−γ)2, which tends slowly to

infinity as γ → 1, and set λγ to be the lower bound
corresponding to the choice of L � Lγ. Plugging in for
the normal PDF and simplifying, we find λγ is defined
implicitly by̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4 log λγ

( )
+ λ2

γ

2 1 − σ2Lγ

( )
√√√√

�
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
log

1
1 − γ

( )
+ h γ
( )√

, (9)

where h(γ) :� − log(Lγ) + Lγ log(γ) + 2 log(1 − σ2Lγ) +
log( ̅̅̅̅2π√ ). We want to focus on the dominant terms on
each side of Equation (9), which are λ2

γ/2(1 − σ2Lγ) and
log( 1

1−γ). The next result shows the h(γ) term has an
asymptotically negligible influence.

Lemma 6. As γ → ∞, h(γ) � o( ̅̅̅̅̅̅̅̅̅̅̅̅log(1/γ)√ ) as γ → 1.

Togetherwith Lemma 1, this shows
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
log(1/γ) +h(γ)√ �̅̅̅̅̅̅̅̅̅̅̅̅

log(1/γ)√ + o(1) as γ → 1. Hence, the solution λγ to
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Equation (9)must also tend to∞ as γ → 1. Then, again
by Lemma 1,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4 log λγ

( )
+ λ2

γ

2 1 − σ2Lγ

( )
√√√√

� λγ̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 1 − σ2Lγ

( )√ + o 1( ). (10)

Combining Equations (9) and (10) gives

λγ �
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 1 − σ2Lγ

( )
log

1
1 − γ

( )√
+ o 1( ). (11)

The only remaining subtlety is the term (1 − σ2Lγ),
which appears here since after Lγ measurements,
the agent still has some remaining uncertainty
about the value of θ. From Equation (1) for posterior
variance, σ2Lγ ≤ σ2W/Lγ. Plugging in for Lγ � �σ2W log(1/
(1 − γ))2 gives σ2Lγ log(1/(1 − γ)) ≤ 1. Plugging this
into (11) gives

λγ ≥
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 log

1
1 − γ

( )
− 2

√
+ o 1( )

�
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 log

1
1 − γ

( )√
+ o 1( ). □

4. Limitations and Open Problems
Although this note shows an equivalence between a
Gittins index and a Bayesian upper confidence bound,
it should be stressed that this equivalence is as-
ymptotic as the effective time horizon of the prob-
lem grows. In particular, the Gittins index carefully
captures the value of exploration given the time
horizon of the problem and the variance of reward
noise. Upper confidence bound algorithms do not
and can engage in wasteful exploration if there is
significant observation noise relative to the prob-
lem’s time horizon.

One natural open direction is to extend Theorem 1
and its proof to single parameter exponential family
distributions. Another question iswhether extensions
of the analysis can yield appropriate uniform or
functional limit theorems analogous to Theorem 1.
This is important to providing frequentist regret analy-
sis ofGittins indexalgorithmsorBayesian regret analysis
of upper confidence bound approximations. See Chang
and Lai (1987) and Lattimore (2016).
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Appendix: Omitted Technical Details
A.1. Proof of Lemma 2

Proof. We use the following standard bounds on the normal
CDF Gordon (1941): for all z ≥ 0,

z
1 + z2
( )

φ z( ) ≤ 1 − Φ z( ) ≤ 1
z

( )
φ z( ).

We can use this to upper bound Φ−1(γ) as follows:

Φ−1 γ
( ) � inf z ∈ R | Φ z( ) ≥ 1 − γ

{ }
≤ inf z ∈ R | 1

z

( )
φ z( ) ≥ 1 − γ

{ }

� inf z ∈ R | log φ z( )
z

( )
≥ log 1 − γ

( ){ }
:� zγ.

Plugging in for the normal PDF φ and simplifying, we find
that zγ is defined implicitly by

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
z2γ + 2 log zγ

̅̅̅̅
2π

√( )√
�
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 log

1
1 − γ

( )√
. (A.1)

As γ → 1, the right-hand side of (A.1) tends to∞, so it must
be that zγ → ∞. But since log(zγ

̅̅̅̅
2π

√ ) � o( ̅̅̅zγ√ ) as γ → 1,

applying Lemma 1 gives
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
z2γ + 2 log(zγ

̅̅̅̅
2π

√ )
√

� zγ + o(1).
We conclude

zγ �
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 log

1
1 − γ

( )√
+ o 1( ) as γ → 1.

The proof of the lower bound follows the same steps and
is omitted. □

A.2. Proof of Lemma 2
We show h(γ) � o( ̅̅̅̅̅̅̅̅̅̅̅̅log(1/γ)√ ) as γ → 1. We evaluate each term
in the expression h(γ) :�− log(Lγ) +Lγ log(γ) +2log(1−σ2Lγ ) +
log( ̅̅̅̅2π√ ). Since log(γ) � −(1 − γ) + o(1 − γ) as γ → 1, we
have Lγ log(γ) → 0. In addition, 2 log(1 − σ2Lγ ) → 0 since
by (1), σ2Lγ ≤ σ2W/Lγ → 0 as γ → 1. Finally, log(Lγ) �
2 log(σ) + 2 log log( 1

1−γ) � o(
̅̅̅̅̅̅̅̅̅̅̅
log( 1

1−γ)
√

).

A.3. Further Justification for Equation 2
Equation (2) relies on Doob’s optional sampling theorem.
Here we note the technical conditions ensuring this applies.
Let *t denote the sigma algebra generated by R0, . . . ,Rt−1
and let τ be any stopping timewith respect to {*t : t ∈ 0, 1, . . .}.
Define the martingale M � {Mn : n � 0, 1, . . .} by

Mn �∑n
t�0

γt θ − E θ | *t−1[ ]( ).

For each fixed n, E[Mn] � 0. Equation (2) states that E[Mτ]�0.
(To compare, recall the definition μt � E[θ | *t−1]). This fol-
lows by Doob’s optional sampling theorem since M is a
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uniformly integrable martingale. To show M is uniformly
integrable, it suffices to show it is bounded in L2. We have

sup
n

E M2
n

[ ] � sup
n

∑n
t�0

γtE θ − E θ | *t−1[ ]( )2[ ]

�∑∞
t�0

γtE Var θ | *t−1( )[ ]

≤∑∞
t�0

γtVar θ( ) < ∞,

where the inequalityE[Var(θ |*t−1)] ≤Var(θ) is standard and
follows fromJensen’s inequality for conditional expectations.

Endnote
1According toGoogle Scholar, Chang and Lai (1987)was cited only once
in 2018, whereas Lai and Robbins (1985) was cited well over 200 times.
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