
B9120-001 Dynamic Programming Fall 2023

Prof. Daniel Russo

Homework Assignment 8: Due Friday November 17

Approximate Fixed Point Operators.

Let J ⊂ Rn and let T : J → J be a contraction operator with modulus α in some norm ‖ ·‖. That

is, ‖TJ − TJ ′‖ ≤ α‖J − J ′‖ for all J, J ′ ∈ J . Let J∗ denote its unique fixed point. Let T̂ : J → J
represent an approximation to T . Define the induced norm

‖T̂ − T‖ = sup
J∈J
‖T̂ J − TJ‖.

Part (a) Suppose Ĵ = T̂ Ĵ is a fixed point of T̂ . Show

‖Ĵ − J∗‖ ≤ ‖T̂ − T‖
1− α

Part (b) No longer assume T̂ has a fixed point. Consider the iteration Ĵk+1 = T̂ Ĵk for k =

0, 1, 2, · · · . Show

lim sup
k→∞

‖Ĵk − J∗‖ ≤
‖T̂ − T‖

1− α

Remark: For concreteness, one can have in mind for this problem that J = {J ∈ Rn : ‖J‖∞ ≤
M
1−α} denotes a bounded subset of cost-to-go functions, T is the Bellman optimality operator and T̂

is an approximation to T that is consistent with the apriori bounds on J∗. For example, T̂ J(s) =

minu ĝ(s, a) + α
∑

x′ P̂ (x′|x, u)J(s′) could be a Bellman operator for an MDP whose transition

probabilities were estimated from data.

In addition, this result could be used to study approximate value iteration. Lemma 2 from lecture

notes 9A follows from the results above.

Asynchronous value iteration

Consider an infinite horizon discounted problem as in Lecture 4.

Consider the iteration

Jk+1(x)←

TJk(x) if x = xk

Jk(x) if x 6= xk



for some sequence of states (xi : i = 0, 1, 2, · · · ). Suppose the state space is finite and each state is

updated infinitely often. Show that ‖Jk − J∗‖∞ → 0.

Hint: We know that

J∗ − ‖J0 − J∗‖∞e � J0 � J∗ − ‖J0 − J∗‖∞e,

where e denotes a vector of all ones. Show that if a state c has been updated at least once by time

k, then

J∗(x)− α‖J∗ − J0‖∞ ≤ Jk(x) ≤ J∗(x) + α‖J0 − J∗‖∞.

Remark: The index k is used for analysis only. On a computer this method could be implemented

while storing only a single value function. There are a few ways to motivate a method like this.

a) The real-time DP algorithm we looked at in class is a special case of this iteration.

b) A variant of value iteration called Gauss-Seidel value iteration is more common in practice

than the batch version we saw in class. It is a special case of iteration above, with cyclic order

x1 = 1, x2 = 2,,..., xn = n and then xn+1 = 1, xn+2 = 2 and so on. This method has the

benefits of (a) allowing one to update a single value function “in place” rather than store two

copies and (b) often requiring fewer loops through the state space in practice. Intuitively, the

latter property is due to using an updated value at states 1 & 2 when calculating the value of

state 3.

c) (Very roughly. . .) Imagine a parallelized implementation of value iteration were X = X1 ∪
· · · ∪ Xm is divided into m parts, with most (but not all) transitions from states in Xi going

to other states in Xi. Node i computes TJk(x) for states x ∈ Xi and then communicates the

results. A batch implementation of value iteration requires all nodes are idle while waiting for

the slowest node to finish its computation. With appropriate asynchronous variants of value

iteration, no processor sits idle. The version given in this problem above matches an extreme

case where Xi is a singleton and update value estimates are communicated as soon as they

are available. The sequence of states is determined by the timing of the processors.


