Homework Assignment 9: Due Friday December 8

Read Bertsekas Vol II, Section 2.4. and/or the course notes to refresh your understanding of policy iteration.

This problem explores a precise connection between policy iteration and the conditional gradient algorithm (a.k.a Frank Wolfe) applied to the policy gradient objective.

<u>MDP setup</u>: Let $\mathcal{X} = \{1, \dots, n\}$ and $U = \{u \in \mathbb{R}^k : \mathbf{1}^\top u = 1, u \succeq 0\}$ be the set of probability distributions over k base actions. Due to the linearity of expectations, expected costs and transition probabilities are linear in the stochastic action vector, with

$$g(x,u) = \sum_{i=1}^{k} g(x,e_i)u_i \qquad p(x'|x,u) = \sum_{i=1}^{k} p(x'|x,e_i)u_i$$

where e_i is the *i*-th standard basis vector. The set of stochastic stationary policies $\Pi = \{\pi \in \mathbb{R}^{n \times k} : \pi_x \in U \ \forall x\}$ is the set of matrices whose rows are probability distributions. Define

$$\ell(\pi) = w^{\top} J_{\pi} = \sum_{x=1}^{n} w(x) J_{\pi}(x) \qquad \pi \in \Pi$$

for given state-relevance weights w where w(x) > 0 and $\sum_{x=1}^{n} w(x) = 1$.

Next, define the advantage function

$$A_{\pi}(x,u) = \left(g(x,u) + \sum_{x' \in \mathcal{X}} p(x'|x,u) J_{\pi}(x')\right) - J_{\pi}(x),$$

which is the difference in long-term cost between a) applying u in state x and following π thereafter and b) applying π throughout.

Policy iteration: In this notation, policy iteration produces a sequence of iterates $\{\pi_k\}_{k\in\mathbb{N}}$ where

$$\pi_{k+1}(x) \in \operatorname*{arg\,min}_{u \in U} A_{\pi_k}(x, u) \; \forall x \in \mathcal{X}.$$

<u>Conditional gradient algorithm</u>: Consider the conditional gradient (CG) algorithm applied to $\min_{\pi \in \Pi} \ell(\pi)$. Beginning with some initial iterate π_0 , CG produces a sequence of iterates $\{\pi_k\}_{k \in \mathbb{N}}$ where

$$\pi_{k+1} = (1 - \gamma_k)\pi_k + \gamma_k y_k \tag{1}$$

$$y_k \in \underset{\pi \in \Pi}{\operatorname{arg\,min}} \left\langle \nabla \ell(\pi_k) \,, \, \pi - \pi_k \right\rangle \tag{2}$$

where $\gamma_k \in (0, 1)$. We approximate ℓ by linearizion around π_k , minimize that approximation globally (here solving an LP), and then take a small step in that direction (reflecting that the linearization is not globally accurate).

In class, we showed following first order Taylor expansion of the policy gradient objective:

$$\ell(\pi^+) = \ell(\pi) + \sum_{x=1}^n d_\pi(x) \underbrace{\left(g(x, \pi_x^+) + \sum_{x' \in \mathcal{X}} p(x'|x, \pi^+(x))J_\pi(x') - J_\pi(x)\right)}_{=(T_{\pi^+}J_{\pi} - J_{\pi})(x)} + O(\|\pi^+ - \pi\|^2),$$

where $d_{\pi}(x) = \mathbb{E}\left[\sum_{k=0}^{\tau-1} 1(x_k = x) \mid x_0 \sim w\right]$ is the occupancy measure under x. In different notation, one could rewrite this as

$$\ell(\pi^+) = \ell(\pi) + \sum_{x=1}^n d_\pi(x) A_\pi(x, \pi_x^+) + O(\|\pi^+ - \pi\|^2).$$
(3)

You may assume (3) holds and use it in the subsequent problems.

If you can stuck on a subproblem, you may solve the remaining subproblems assuming its claim. **Part (a)** Recognize that $A_{\pi}(x, u)$ is linear (technically, "affine") in u.

Part (b) Calculate $\frac{\partial}{\partial \pi_{x,u}} \ell(\pi)$.

Part (c) Show that y_k in (2) is a policy iteration update to π_k .

Part (d) Assume the Bellman operator T is a contraction in the supremum norm $\|\cdot\|_{\infty}$ with modulus γ (as in the discounted case). Consider a fixed stepsize $\gamma_k = \gamma \in (0, 1)$. Show that $\|J_{\pi_k} - J^*\|_{\infty} \leq (1 - \gamma(1 - \alpha))^k \|J_{\pi_0} - J^*\|_{\infty}$. Provide the same convergence result for $\ell(\cdot)$. *Hint:* what do you know about policy iteration's convergence rate and the proof of that?

Part (e) What stepsize choice does your analysis suggest?

You don't need to write anything, but think about how to reconcile (e) with the usual stepsizes in smooth optimization.