
B9120-001 Dynamic Programming Fall 2023

Prof. Daniel Russo

Homework Assignment 9: Due Friday December 8

Read Bertsekas Vol II, Section 2.4. and/or the course notes to refresh your understanding of policy

iteration.

This problem explores a precise connection between policy iteration and the conditional gradient

algorithm (a.k.a Frank Wolfe) applied to the policy gradient objective.

MDP setup: Let X = {1, · · · , n} and U = {u ∈ Rk : 1>u = 1 , u � 0} be the set of probability

distributions over k base actions. Due to the linearity of expectations, expected costs and transition

probabilities are linear in the stochastic action vector, with

g(x, u) =
k∑
i=1

g(x, ei)ui p(x′|x, u) =
k∑
i=1

p(x′|x, ei)ui

where ei is the i-th standard basis vector. The set of stochastic stationary policies Π = {π ∈ Rn×k :

πx ∈ U ∀x} is the set of matrices whose rows are probability distributions. Define

`(π) = w>Jπ =

n∑
x=1

w(x)Jπ(x) π ∈ Π

for given state-relevance weights w where w(x) > 0 and
∑n

x=1w(x) = 1.

Next, define the advantage function

Aπ(x, u) =

(
g(x, u) +

∑
x′∈X

p(x′|x, u)Jπ(x′)

)
− Jπ(x),

which is the difference in long-term cost between a) applying u in state x and following π thereafter

and b) applying π throughout.

Policy iteration: In this notation, policy iteration produces a sequence of iterates {πk}k∈N where

πk+1(x) ∈ arg min
u∈U

Aπk(x, u) ∀x ∈ X .

Conditional gradient algorithm: Consider the conditional gradient (CG) algorithm applied to minπ∈Π `(π).

Beginning with some initial iterate π0, CG produces a sequence of iterates {πk}k∈N where

πk+1 = (1− γk)πk + γkyk (1)

yk ∈ arg min
π∈Π

〈∇`(πk) , π − πk〉 (2)



where γk ∈ (0, 1). We approximate ` by linearizion around πk, minimize that approximation

globally (here solving an LP), and then take a small step in that direction (reflecting that the

linearization is not globally accurate).

In class, we showed following first order Taylor expansion of the policy gradient objective:

`(π+) = `(π) +
n∑
x=1

dπ(x)

(
g(x, π+

x ) +
∑
x′∈X

p(x′|x, π+(x))Jπ(x′)− Jπ(x)

)
︸ ︷︷ ︸

=(Tπ+Jπ−Jπ)(x)

+O(‖π+ − π‖2),

where dπ(x) = E[
∑τ−1

k=0 1(xk = x) | x0 ∼ w] is the occupancy measure under x. In different

notation, one could rewrite this as

`(π+) = `(π) +
n∑
x=1

dπ(x)Aπ(x, π+
x ) +O(‖π+ − π‖2). (3)

You may assume (3) holds and use it in the subsequent problems.

If you can stuck on a subproblem, you may solve the remaining subproblems assuming its claim.

Part (a) Recognize that Aπ(x, u) is linear (technically, “affine”) in u.

Part (b) Calculate ∂
∂πx,u

`(π).

Part (c) Show that yk in (2) is a policy iteration update to πk.

Part (d) Assume the Bellman operator T is a contraction in the supremum norm ‖ · ‖∞ with

modulus γ (as in the discounted case). Consider a fixed stepsize γk = γ ∈ (0, 1). Show that

‖Jπk − J∗‖∞ ≤ (1− γ(1− α))k ‖Jπ0 − J∗‖∞. Provide the same convergence result for `(·). Hint:

what do you know about policy iteration’s convergence rate and the proof of that?

Part (e) What stepsize choice does your analysis suggest?

You don’t need to write anything, but think about how to reconcile (e) with the usual stepsizes in

smooth optimization.


