
Course Notes On Dynamic Optimization (Fall 2023)
Lecture 10: Policy iteration methods

Instructor: Daniel Russo

Email: djr2174@gsb.columbia.edu

Graduate Instructor: David Cheikhi
Email: d.cheikhi@columbia.edu

These notes are partly based of scribed notes from a previous edition of the class. I have
done some follow up light editing, but there may be typos or errors.

1 Problem setup

Throughout these notes we continue to study indefinite horizon problems under the assumption
that all policies eventually reach the terminal state.

We continue to assume that all policies are assured to reach the terminal state and

Eπ[τ | x0 = x] 6 M

for any x and any (possibly non-stationary) policy π.

1.1 Policy evaluation and matrix notation

Recall that
Jµ(x) = g(x, µ(x)) + ∑

x′∈X
p(x′|x, µ(x))Jµ(x′) for all x ∈ X .

This can be written in matrix/vector notation as

Jµ = gµ + Pµ Jµ. (1)

We refer to the task of forming Jµ for a given µ as policy evaluation.

1.2 State occupancy notation

We will often work with the matrix

(I − Pµ)
−1 =

∞

∑
n=0

Pn
µ .

1

It’s a nice, convenient expression, but it can mask the intuition about what is going on. So let’s
parse what this expression means. Recall that the n step transition matrix has elements

(Pk
µ)x,x′ = Pµ(xk = x′|x0 = x),

which encode the probability of transition from x to x′ over k steps. As a result

lim
N→∞

(
N

∑
n=0

Pn
µ

)
x,x′

= lim
N→∞

E

[
N

∑
n=0

1(xn = x′) | x0 = x

]
= E

[
N

∑
n=0

1(xn = x′) | x0 = x

]

= E

[
N∧(τ−1)

∑
n=0

1(xn = x′) | x0 = x

]

= E

[
τ−1

∑
n=0

1(Xn = x′) | x0 = x

]
6 M

where the penultimate equality can be justified using the monotone convergence theorem. This
reveals two things: (1) (I − Pµ)−1 exists due to our assumption that all states transition to the
terminal state eventually and (2) (I − Pµ)−1 is a matrix that encodes the expected number of visits
to any state x′ from any initial state x.

2 Policy iteration

Algorithm 1 Policy iteration

Require: initial policy µ0
1: for Episode n = 0, 1, 2, . . . do
2: Form Jµn ∈ RX by solving the linear system (1) . Policy evaluation
3: for x ∈ X do
4: µn+1(x)← arg minu∈U(x) g(x, u) + ∑x′∈X p(x′|x, u)Jπn(x′). . Policy improvement
5: end for
6: if µn+1 = µn then
7: break
8: end if
9: end for

10: return µn

Written abstractly, each iteration of PI performs these steps:

1. Form one-step lookahead policy: µn+1 ∈ G(Jµn),

2. Evaluate the new policy’s performance over an infinite horizon: Jµn+1 = (I − Pµn)
−1gµn .

In the first step, we optimize as if µn+1 is to be used for just one period. In the second step, we
change our mind and decide to deploy µn in all periods, evaluating its performance over an infinite
horizon. The magic that makes this work is monotonicity: applying µn+1 in all periods is even
better than applying it for just one period and then returning to µn.

2

2.1 Convergence of policy iteration

I believe this result dates back to about 1950. Back then, it was very exciting to prove that an
algorithm terminated (with a certificate) in a finite number of iterations. Today, it is more fashionable
to ask “what is the worst-case running time to get an ε–optimal policy?” One can prove that kind
of result as well.

Proposition 1 (Classical guarantee for policy iteration). Suppose X and U are finite. Then, policy
iteration terminates after finite number of iterations and returns the optimal policy.

Beyond the result itself, the (in)equalities in the proof are important in their own right. It’s
worth making sure you can reprove this result.

Proof. Since X and U are finite, the set of possible (Deterministic, Markov) policies is finite.
Since

Tµn+1 Jµn = TJµn � Tµn Jµn = Jµn .

The first equality used that µn+1 is greedy with respect to Jµn . The inequality used the fact that
TJ � Tµ J for all µ, by definition of T. The final equality used that Jµn is a fixed point of Tµn ..

We’ve concluded that Tµn+1 Jµn � Jµn . Applying Tµn+1 to each side and appealing to the mono-
tonicity of the Bellman operator yields

Jµn � Tµn+1 Jµn � T2
µn+1

Jµn � . . . � Tk
µn+1

Jµn � . . . � Jµn+1 .

We have two cases

1. Jµn+1 = Jµn , in which case TJµn = Jµn and we know that Jµn is optimal. Policy iteration
terminates and returns an optimal policy.

2. Jµn+1 � Jµn and for at least one x, Jµn+1(x) ≺ Jµn(x). In this case, we’ve moved from µn to a
different and superior policy.

Since the set of policies is finite, case (2) can only happen a finite number of times.

3 How policy iteration ideas are used (Mostly discussed in person)

We’ve presented policy iteration as nn algorithm for exactly computing the optimal policy for a
small MDPs. With that view, the main question is whether it’s faster than value iteration.

I (Dan) am not especially interested in rapidly solving MDPs with 1000 states. Nevertheless, I
find policy iteration to be extremely important. Here are three ways it’s important:

1. Given a base policy, you can implement a policy iteration update in real time by always
performing lookahead from your current state to select an action and then rolling out the
base policy. This technique was central to alpha-go. (There, “Monte-Carlo-Tree Search” is a
heuristic way to do selective lookaheads that are longer.)

2. You consult for some organization that wants to optimize a long-term performance metric.
(E.g. Ron Howard, inventor of policy iteration, worked on catalogue mailing polices for Sears
in the 1950s.) That organization has lots of data on an incumbent policy µ, allowing you to

3

estimate Jµ in a reasonable way. If you have enough data to reasonable estimate the impact
of one-step deviations for µ, you can perform a policy iteration update to find an improved
policy.

3. Policy gradient methods, covered in the next class, apply (stochastic) gradient descent to
minimize total expected long-run costs over a parameterized policy class. These align very
well with modern nueral networks and compute infrastructure; armed with a differentiable
simulator you can use GPUs and pytorch/tensorflor/jax to directly optimize what you
care about. The theory we’ll review in the next class clarifies that these methods, and their
convergence properties, are intimately linked with policy iteration.

Notice that (2) and (3) seem to implicitly assume that one policy iteration update is enough to
have a big impact.

4 Gap in the thoery

Practical experience suggests that policy iteration may often terminate after very few iterations (e.g.
7) and that a couple of iterations have a big impact. In fact, both motivations (1) and (2) only make
sense if a single policy improvement step is already quite impactful.

The rest of these notes tries to offer some insight into the convergence rate of PI. I’ll first review
some textbook results and then offer some of my own efforts to make sense of when PI is slow and
when it is guaranteed to be very very fast.

5 Convergence rate: “textbook results”

5.1 PI is at least as fast as value iteration

Lemma 1. Under PI, for any n
Jπn � Tn Jµ0 .

Proof. We begin with the base case. As in our earlier analysis, we have

Jµ0 � Tµ1 Jµ0 � T2
µ1

Jµ0 � . . . � Tk
µ1

Jµ0 � . . . � Jµ1 .

By the definition of µ1, we have Tµ1 Jµ0 = TJµ0 , so TJµ0 � Jµ1 .
Assume now that Tk Jµ0 � Jµk . An identical argument shows TJµk � Jµk+1 . By monotonicity,

TJµk � Tk+1 Jµ0 , so we have Tk+1 Jµ0 � Jµk+1 , completing the induction step.

5.2 PI is Newton’s method

The next result identifies a surprising alternative interpretation of policy iteration: it is exactly
Newton’s method (for root finding) applied to solving the equation J − TJ = 0.

This is our first suggestion that PI potentially must faster than VI. Since it, Jµn converges
quadratically to J∗ once it is in the neighborhood of J∗. Practical experience suggests (e.g. fitting
nonlinear regression models) suggests that Newton’s method often requires very few iterations to
converge — far fewer than worst-case theory (at least the part I know) predicts. Like with PI, the
issue is that each iteration requires solving a big linear system.

4

Proposition 2. Define B(J) = J − TJ, then under PI, if G(Jµn) is a singleton, then

Jµn+1 = Jµn − [∇B(Jµn)]
−1B(Jµn).

This is Newton’s method applied to solving B(J) = 0. Newton’s method converges quadrati-
cally. That is, for Jµn sufficiently close to J∗, we should have

‖Jµn+1 − J∗‖ 6 C‖Jµn − J∗‖2.

Toward proving this result, we recall a result from an earlier class. Given our interpretation of
(I − Pµ)−1, this lemma is means

J(x)− Jµ(x) = Eµ

[
τ−1

∑
k=0

(J − Tµ J)(xk) | x0 = x

]
.

The expected gap between J and Jµ is the expected total Bellman error across states visited under µ.

Lemma 2 (Variational form of Bellman’s equation). For any J ∈ RX and policy µ,

J − Jµ = (I − Pµ)
−1(J − Tµ J).

Proof.

J − Jµ = (J − Tµ J) + (Tµ J − Jµ)

= (J − Tµ J) + (Tµ J − Tµ Jµ)

= (J − Tµ J) + Pµ(J − Jµ)

Subracting Pµ(J − Jµ) from both sides yields the result.

Now we prove that policy iteration is Newton’s method. Viewed a bit more broadly, we show
that a Newton update to J is the cost-to-go function Jµ for µ derived by one-step lookahead on J.

Proof of proposition. Fix J (you can think of this as Jµn) and suppose there is a unique greedy policy
G(J) = {µ}. (you can think of this as µn+1).

For some sufficiently small ε

‖J′ − J‖ 6 ε =⇒ G(J′) = {µ}
=⇒ B(J′) = J′ − Tµ J′ = (I − Pµ)J′ − gµ.

We find
∇B(J) =

(
I − αPµ

)
A Newton step to J produces Jµ:

J − [∇B(J)]−1B(J) = J −
(

I − αPµ

)−1 (J − Tµ J
)

= J −
(

J − Jµ

)
= Jµ

5

6 When is PI slow? When is it fast? A tale of distribution shift.

I do not fully understand when PI is slow and when it is fast. I suspect no one does. Despite
this, I can share some partial understanding. Some of the problems where PI is slow resemble
problems where exploration is very challenging. In problems with “low distribution shift”, it is
possible to prove that even a single iteration of PI makes enormous progress.

6.1 A case when it’s slow: river swim revisited

Recall this problem used to illustrate the challenges of exploration.
We consider the following MDP describing the decision process of one person swimming across

the river from land (state 1) to the island (state n) in Figure 1.

Figure 1: State-action Space of River Swim Problem

Here X = {1, 2, . . . , n} and U(x) = {L, R}, ∀x ∈ X . The cost function is given by:

g(s, L) = 0,

g(s, R) =

{
ε, if s 6 n− 1

−1, if s = n

And the transition is deterministic, i.e. p(s− 1|s, L) = 1, s > 2; p(s + 1|s, R) = 1, s 6 n− 1. And
p(1|1, L) = p(n|n, R) = 1.

Consider a discount variation of the problem, where the discount factor is α is close to 1. As
long as ε is small relative to 1− α, then the optimal policy is µ∗(x) = R, ∀x. The optimal policy
swims from the mainland to the island and then stays there perpetually.

The next

Lemma 3 (informal). If µ0 is a policy that moves left from all states, then µ1 = G(Jµ0) is a policy that
moves left from all states except state n. The policy µ2 ∈ G(Jµ1) is a policy that moves left from all states
except states n and n− 2, and so on.

A policy that outperforms µ0 when employed from the leftmost state (x = 1) is attained only after n
policy iteration updates.

proof idea. When you perform a policy iteration update to µ1, you calculate the lookahead optimal
action

arg min
u∈U(x)

g(x, u) + ∑
x′∈X

p(x′|x, u)Jµ1(x′).

You’re asking “if I could deviate from µ1 for one time period, what should I do?” Well the policy µ1

always moves left. Given that you’ll always swim directly back to the mainland, and swimming
sucks, there is no reason to ever start swimming to the island. The only exception is once you’re
already on the island. Then, you might as well stay there for one period.

6

6.2 A case when PI is fast: low distribution shift

This section argues the following: A policy iteration update to some policy makes enormous progress if
that policy visits states with frequency similar to an optimal policy.

Let w be some initial distribution over states, viewed as a row vector. Define the discounted
state occupancy measure

dµ = w
(

I − Pµ

)−1

An alternative way of expressing the same thing is

dµ(x) = Eµ

[
τ−1

∑
n=0

1(xk = x)

]
x0 ∼ w.

We’ll say distribution shift is low if dµ∗(x)/dµ(x) is never too large, for any x. The next result
shows that dµ∗(x)/dµ(x) 6 2 implies a single policy iteration update to µ removes 50% of the
policy’s optimality gap. This guarantee is completely vacuous in river swim, where dµ(x) = 0 for
some states that the optimal policy visits.

Proposition 3.
Ex0∼w[Jµn+1(x0)− Jµ∗(x0)]︸ ︷︷ ︸

Avg optimality gap at n+1

6 βn Ex0∼w[Jµn(x0)− Jµ∗(x0)]︸ ︷︷ ︸
Avg optimality gap at n

.

where βn is the distribution shift coefficient

βn = max
x∈X

dµ∗(x)− dµn(x)
dµ∗(x)

On first reading, you should understand µ∗ to be the optimal policy, so Jµ∗ = J∗. But that fact is
never used in the proof. So in general, we’d say that a single policy iteration update to µn closes
much of the optimality gap with any policy whose occupancy measure is relatively close to that of
µn.

The next lemma gives more a precise quantification of policy improvement.

Lemma 4. Jµn − Jµn+1 = (I − Pµn+1)
−1 (Jµn − TJµn

)
Proof. Apply the variational Bellman eq w/ J ≡ Jµn and µ ≡ µn+1:

Jµn − Jµn+1 = (I − Pµn+1)
−1 (Jµn − Tµn+1 Jµn

)
= (I − Pµn+1)

−1 (Jµn − TJµn

)

Heuristically at least, this is suggestive of much faster convergence than value iteration, since
(I − Pµn)

−1(x) is very big.
The next lemma complements that with a (similar looking) bound on the optimal gap of a

policy.

Lemma 5. Jµn − Jµ∗ � (I − Pµ∗)−1 (Jµn − TJµn

)

7

Proof.

Jµn − Jµ∗ = (I − Pµ∗)
−1 (Jµn − Tµ∗ Jµn

)
� (I − Pµ∗)

−1 (Jµn − TJµn

)
.

We now complete the proof by relating those two expressions.

Proof. Observe that

βn = 1− 1
cn

where cn = max
x

dµ∗(x)
dµn+1(x)

.

Now, the definition of cn gives cndµn+1 � dµ∗ , or

cnw(I − Pµn+1)
−1 � w(I − Pµ∗)

−1.

Recall that w is a row vector. We have,

Ex0∼w[Jµn+1(x0)− J∗(x0)] = w
(

Jµn+1 − J∗
)

= w
[

Jµn − J∗ − (I − Pµn+1)
−1 (Jµn − TJµn

)]
� w

[
Jµn − J∗

]
− c−1

n w
[
(I − Pµ∗)

−1 (Jµn − TJµn

)]
�
(

1− c−1
n

)
w
(

Jµn − Jµ∗
)

=
(

1− c−1
n

)
Ex0∼w[Jµn(x0)− J∗(x0)]

= βnEx0∼w[Jµn(x0)− J∗(x0)].

6.3 On the blessings of uncontrollable systems

Something curious emerges from this:

Problems in which the decision maker has limited influence on state are, in a sense, easier.

This statement depends on how you think about performance. If you want to attain low costs, then
you’ll hope to have perfect control of states. If you want to have low sub-optimality gap, then
this may be easier when your limited influence on states handicaps both your controller and the
optimal one. (At least, we have a guarantee that policy iteration is very very fast.)

My rough intuition is that many problems that involve repeated interactions with users/customers
etc are problems with limited control. Users tend to do what they want, and small changes to the
system don’t make users 50X as likely to behave one way or another. An effect size of 1% in an
A/B test might be considered large.

8

	Problem setup
	Policy evaluation and matrix notation
	State occupancy notation

	Policy iteration
	Convergence of policy iteration

	How policy iteration ideas are used (Mostly discussed in person)
	Gap in the thoery
	Convergence rate: ``textbook results''
	PI is at least as fast as value iteration
	PI is Newton's method

	When is PI slow? When is it fast? A tale of distribution shift.
	A case when it's slow: river swim revisited
	A case when PI is fast: low distribution shift
	On the blessings of uncontrollable systems

