
Course Notes On Dynamic Optimization (Fall 2023)
Lecture 11: Policy gradient methods

Instructor: Daniel Russo

Email: djr2174@gsb.columbia.edu

Graduate Instructor: David Cheikhi
Email: d.cheikhi@columbia.edu

These notes are partly based of scribed notes from a previous edition of the class. I have
done some follow up light editing, but there may be typos or errors.

Disambiguation: I use the term policy gradient methods very broadly, encompassing any
(stochastic) first-order method applied to minimize total expect costs. Others view policy gradient
methods as, essentially, referring to variants of the so-called REINFORCE algorithm, which uses a
specific way to estiamte gradients.

1 Problem setup

Throughout these notes we continue to study indefinite horizon problems under the assumption
that all policies eventually reach the terminal state. We continue to assume that all policies are
assured to reach the terminal state and supπ,x Eπ[τ | x0 = x] 6 ∞.

For simplicity, we assume the set of feasible controls U(x) is the same at all states x and denote
this by U. To facilitate taking gradients, we assume U ⊂ Rk is a convex set. This is satisfies
automatically in some problems, like linear quadratic control. In others, we need to allow for
randomized actions.

Example 1 (Stochastic actions). Suppose there are m deterministic actions. For i ∈ [m], denote by
g(x, i) the immediate expected cost when action i is selected in state x and by p(x′|x, i) the probability of
transitioning to state x′. For a probability vector u ∈ {p ∈ Rm : p > 0, ∑m

i=1 pi = 1}, define

g(x, u) =
m

∑
i=1

uig(x, i) and p(x′|x, u) =
m

∑
i=1

ui p(x′|x, i).

This converts a problem with a finite action space to one with a continuous action space.

1.1 Parameterized polices.

Consider a parameterized class of policies ΠΘ = {πθ : θ ∈ Θ} where Θ ⊂ Rn is a convex set. For
each θ ∈ Θ, πθ : X → U is a policy.
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Example 2. In linear quadratic control, the state x is an m dimensional vector. It is known that a linear
policy of the form

πθ(x) = θx θ ∈ Rm×m x ∈ Rm,

is optimal for some θ. This is natural policy class to search over.

Example 3 (Directly-parameterized state-aggregated policies). Let the control space be probability
vectors over k base actions, as in Example 1. Let φ : X → X denote a state-aggregation rule, which
associates each state x with one of n representer states φ(x) ∈ {x̄1, . . . , x̄n}. A state aggregated policy
is a rule which assigns a the same action distribution to any two states with a common representer, i.e.
φ(x) = φ(x′) =⇒ πθ(x) = πθ′(x).

Let θ = (θj,i)j∈[n] , i∈[k] ∈ Rn×k
+ encode the action probabilities as

φ(x) = x̄j =⇒ πθ(x) = (θj,1, . . . , θj,k)

where θj,1 + . . . + θj,k = 1. The set of feasible θ, denoted Θ, is the set of n×m matrices whose entries are
non-negative and whose rows add to 1.

Example 4 (Softmax-parameterized state-aggregated policies). Repeat the following example, but now
for φ(x) = x̄j, let the policy be parameterized as

πθ(x) = softmax(θj) =
1
Z

(
eθj,1 , . . . eθj,k

)
Z =

k

∑
i=1

eθj,i .

In words, the action probabilities at state x in cluster j is the softmax function applies to state the jth row of θ.

Example 5 (Neural network). fθ : X → RM is some neural network and πθ(x) = softmax( fθ(x))
tacks on a softmax operation to ensure the output is probability vector (over the k base actions.)

1.2 Global loss function.

Define the scalar loss function
`(π) = Ex∼w [Jπ(x)] .

and overload notation to write `(θ) = `(πθ .
If X is countable, and w(x) > 0 for each x ∈ X , then π∗ ∈ arg minπ `(π) if and only if Jπ∗ = J∗.

Why? First suppose Jπ∗ = J∗. Then `(π∗) = ∑x Jπ∗(x)w(x) = ∑x J∗(x)w(x) 6 ∑x Jπ(x)w(x) 6
Jπ(x)w(x). On the other hand, equality holds throughout if and only if Jπ(x) = J∗(x) for each x.

While this is true, if w(x) is very small,

1.3 Policy gradient.

The most basic policy gradient methods is a stochastic gradient iteration of the form

θk+1 = θk − αk (∇`(θk) + noise)

where α is a stepsize.
This is just one example, and there are lots of stochastic first order methods. They vary in terms

of stepsizes, how they deal with constraints, how they gradients are estimated, etc.
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2 Policy gradient with a differentiable simulation

For simplicity, I will focus on a discounted problem, where τ ∼ Geom(1− α) is independent of all
else. For a given τ driving noises w = (w0, . . . , wτ−1), and initial state x0 write

`(θ; [x0, τ, w]) =
τ−1

∑
k=0

g(xk, πθ(xk)) where xk+1 = f (xk, uk, wk).

When states are continuous and f , g and πθ(x) are appropriately smooth `(θ; [x0, τ, w]) is differen-
tiable and ∇`(θ) = E[∇`(θ; [x0, τ, w])], where the expectation is over the ‘scenario’ [x0, τ, w].

Algorithm 1 Policy gradient with a differentiable simulator

Require: initial parameter θ0, sepsize γ
1: for Episode n = 0, 1, 2, . . . do
2: Sample episode length τ ∼ Geom(1− α)
3: Sample driving noises w = (w0, . . . , wτ−1)
4: Sample initial stae x0 ∼ w
5: Reset loss: ` = 0
6: for k = 0, . . . , τ − 1 do . Forward pass
7: Set uk = πθ(xk)
8: `← `+ g(xk, uk)
9: Set xx+1 = f (xk, uk, wk)

10: end for
11: Calculate ∇θ` by backpropogation . Backward pass
12: Update θ ← θ − γ∇θ` . Gradient step
13: end for
14: return µn

3 Issues with policy gradient convergence

• OUR FOCUS!: The function π 7→ `(π) is nonconvex, with potentially bad local minima in
ΠΘ.

• The policy parameterization θ 7→ πθ means that θ 7→ `(πθ) can look very flat. For instance,
modify the example above so that πθ moves right with probability θ100. The gradient of
πθ(x) with respect to θ can be exceptionally small, leading to exceptionally slow convergence
for naive gradient algorithms. In degenerate cases, where the policy becomes ‘infinitely’
insensitive to parameter changes, the method not to converge at all.

• How you generate stochastic gradients impacts their variance (and sometimes their bias),
impacging convergence rates.

4 Policy gradient: failure of global convergence due to nonconvexity

Consider a discounted formulation of the problem in Figure 1a. For large discount factor, the
optimal policy plays the action R in either state. This is contained in a simple policy class {πθ : θ ∈
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[0, 1]} where

• In either state, the probability of moving right under πθ is θ.

You can think of this as a state-aggregated policy class. But aggregation does not result inhibit
optimality, since the optimal policy is contained in this restricted class.

Figure 1b shows that despite the optimal policy being contained in the class, local policy search
may get stuck in a bad local minimum at θ = 0.

(a) A bad example for policy gradient (b) Normalized loss (1− α)`(θ).

5 Policy gradient is the same a local optimization of a single-period
objective

The policy gradient theorem: To determine the benefit of employing a slightly
different policy over an infinite horizon, it is enough to consider the benefit of
employing that policy for a single period, before reverting to the status quo.

5.1 Recap of policy iteration

Beginning with some status-quo policy π, the policy iteration update looks to solve for π+ ∈
arg minπ′ Tπ′ Jπ. This is meant in an element, by element way, as in π+(x) ∈ g(x, π(x))+∑x′∈X Jπ+(x′).
We could analogously write

π+ ∈ arg min
π′

L(π′ | π, d) := 〈Tπ′ Jπ , d〉

where d(x) > 0 is a strictly positive weighting function.

5.2 Policy gradient formula

The main result relates local optimization on the infinite horizon cost `(·) to local optimization
which to the one-step lookahead cost considered in policy iteration.

arg min
θ+ :‖θ−θ+‖6ε

`(θ+) ≈ arg min
θ+ :‖θ−θ+‖6ε

〈Tπθ+
Jπθ

, dπθ
〉

This follows from the following derivation of the policy gradient formula.
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Proposition 1. Set πγ = π + γ(π+ − π).

`(πγ) = `(π) +

〈
Tπγ Jπ − Jπ︸ ︷︷ ︸

one step imprevement

, dπ

〉
+ O(γ2)

Proof. Apply the variation Bellman equation below with π+ = πγ and J = Jπ. THis gives

Jπγ − Jπ = (I − Pπγ)−1(Tπγ Jπ − Jπ).

Multiplying the left hand side by the row vector w gives

`(πγ)− `(π) = 〈Tπγ Jπ − Jπ , dπ〉+ 〈Tπγ Jπ − Jπ , dπγ − dπ〉
= 〈Tπγ Jπ − Jπ , dπ〉+ 〈Tπγ Jπ − Tπ Jπ , dπγ − dπ〉︸ ︷︷ ︸

O(γ2)

.

Lemma 1 (Variational form of Bellman’s equation). For any J ∈ RX and stationary policy π̃,

Jπ+ − J = (I − Pπ+)−1(Tπ+ J − J).

5.3 Frank-wolfe policy gradient is soft policy iteration

Consider a problem in which U denotes probability distributions over k base actions as in Example
1. Suppose there are n states indexed as X = {1, . . . , n}. Let the policy class consist of all stochastic
policies as: Π = {π ∈ Rn×k

+ : ∑k
i=1 πj,i = 1 ∀ j ∈ [n]}. If n is small enough, we can drop θ from the

notation and just apply an optimization algorithm over these policies.
There are many first-order optimization algorithm. But the so-called conditional gradient or

Frank-Wolfe algorithm has the most transparent connection to policy iteration. Given a policy π,
and stepsize γ ∈ (0, 1), it produces a new policy π+ as

π+ = (1− γ)π + γy+

where
y+ arg min

y∈Π
`(π) + 〈∇`(π) , y〉︸ ︷︷ ︸

Linearized approximation to `(·)

.

It optimized a linearized approximation to `(·) globally, and then takes just a small step in the
direction of that optimizer.

Equivalence to soft policy iteration: You will show on your homework that y+

is the policy iteration update to π, so π+ is an average of π and its policy iteration
update.
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5.4 Implications of the connection between policy gradient and policy iteration

We have seen both positive and negative evidence regarding policy gradient convergence. On the
positive side, we saw an example in which policy gradient gets stuck in bad local minimum even
though the policy class contains an optimal policy.

On the positive side, we sad that conditional-gradient (a.k.a Frank-wolfe) policy gradient is
equivalent to soft-policy iteration when applied to the set of directly parameterized stochastic
policies. Therefore, it converges to the global optimal policy, just as policy iteration does. It
converges at a linear (even a superlinear) rate, just as policy iteration would. This isn’t the behavior
you would have expected from from gradient descent on a non-convex loss.

A number of policy classes lie in between these. They are (nearly) closed under policy iteration,
in the sense that they (nearly) contain the policy iteration update of any policy in the class. Linear
policies in linear quadratic control are a good example of a closed policy class. A paper by Jalaj
Bhandari and myself titled Global optimality guarantees for policy gradient methods formalizes that the
policy gradient objective has no bad local minima when the policy class is closed (among other
conditions).
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