
Course Notes On Dynamic Optimization (Fall 2023)
Lecture 1A: intro to DP

Instructor: Daniel Russo

Email: djr2174@gsb.columbia.edu

Graduate Instructor: David Cheikhi
Email: d.cheikhi@columbia.edu

September 9, 2023

These notes are based of scribed notes from a previous edition of the class. I have done
some follow up light editing, but there may be typos or errors.

This course course is about decision-making across time and under uncertainty. Two core
challenges distinguish this form other areas of optimization

1. Inter-temporal tradeoffs: the decision-maker may wish to forego immediate benefit now in
order to position themselves to accrue greater rewards in the future.

2. The role of information: As time passes, new information is revealed to the decision-maker,
and this may impact future decisions. The DM cannot commit to a specific sequence of actions
upfront. Instead they select a policy: a contingent plan for how future actions will be selected
depending on what new information is revealed in the interim.

As a rule of thumb, before deciding whether to approach a problem using the tools covered in this
course, you should ask yourself whether (1) and (2) are essential ingredents.

The main intellectual aspect that distinguishes this topic from other areas of optimization is the
role of information. When making a decision, the decision-maker must account for the fact that
their actions now have an impact on ability to take succesful actions in the future and that

1 Initial Examples

Shortest Path Problem The first example considering a simple problem with deterministic dy-
namics . Let’s consider the following tree. The question is how would we solve the shortest path
problem going from root s to a leaf in {C, D, E, F}.

1

s

A

B

C

D

E

F

2

1

8

6

10

8

Figure 1: Shortest path problem example: optimal intermediate paths are drawn in red.

To do so, a natural approach would be to first find the shortest path from every intermediate node
to leaves and continuing by backward iteration. In figure ??, going from A to a leaf can be done
optimally with a cost of 6 while going from B to the leaf is done optimally with a cost of 8.

Finally, we get the optimal solution path by assessing whether it is better for us to incur a cost of
2, then 6 (by walking through A), or 1 then 8 (through B). The solution is clearly, by going through
A and we obtain, that way, the optimal path from s to leaves.

This example can seem straightforward but it already uses a key principle that we will develop
through out this lesson : the shortest path should follow the shortest route on every subgraph. This general
principle is referred to as Bellman’s principle of optimality.

Inventory Control with backlogged demand In the previous example, the problem was com-
pletely deterministic. Dynamic Programming usually enables us coping with uncertainty. Let’s
consider the problem of inventory where the demand is stochastic. We denote

• N : length of the selling horizon,

• xk : inventory on hand at period k,

• uk > 0 : order of inventory at period k,

• wk > 0 : demand for the product at period k (assumed to be independent and identically
distributed from a known distribution).

The state evolution is given by,

xk+1 = xk + uk − wk for k = 0, 1 . . . , N − 1. (1)

Our objective is to minimize the following cost function,

E
[N−1

∑
k=1

(hx+k︸︷︷︸
holding cost

+

backlogging cost︷︸︸︷
bx−k + cuk︸︷︷︸

ordering cost

)−
salvage value︷ ︸︸ ︷

R(xN)
]
, (2)

where the expectation is taken over wk’s.
An important question at this point is : what are we minimizing over? We distinguish between

two types of problems:

2

• Open-loop control: decisions u0, . . . , uN−1 are fixed a priori and cannot be modified during
the selling season.

• Closed-loop control: decisions are made sequentially and at the last possible moment. For
instance in our problem, we choose uk at epoch k. In this framework, our decisions can rely
on historical data. Formally, we minimize over policies µk that decides what to do after
observing xk. Our general policy π = (µ0, µ1, . . . , µN−1) enable us to generate the action uk at
epoch k according to the relation uk = µk(xk).

This class is almost exclusively focused on closed-loop control. The performance gap between
the optimal closed-loop policy and the the optimal opten-loop one of often called the value of
information. Most examples in this course are ones where the value of information is large.

2 Finite Horizon Optimal Control: general problem formulation

In this section we formulate a general framework modeling a class of dynamic stochastic problems.
We study a controlled dynamic system of the form:

xk+1 = fk(xk, uk, wk) for k = 0, 1, . . . , N − 1. (3)

where,

• xk ∈ Sk represents the "state" of the system,

• uk ∈ U(xk) is the "control" or the "action,

• wk is a random disturbance. The family (wk)06k6N−1 is assumed to be independent.

The goal is to solve the optimization problem

min
π

Eπ
[N−1

∑
k=0

gk(xk, uk, wk) + gN(xN)
]
. (4)

The minimization in problem (4) is over policies π = (µ0, . . . , µn) where µ(xk) ∈ U(xk)
1.

Remark (The uncontrolled case). Suppose there is no control decision, i.e. that U(x) is a singleton
for each x. Then we can drop u from our notation and simply study the stochastic recursion

xk+1 = fk(xk, wk).

Because the wk’s are independent, this defines a Markov process. If fk = f for each k, and law of wk
does not depend on the time period k, it is time-homogenous Markov process. In fact Any Markov
process could be written in this form. It is mostly a stylistic choice whether one models the system
by specifying transition probabilities or by specifying a system function f and distribution of the
disturbances.

A similar comment applies to the controlled case.

Remark. Shou
1Such a policy is called a deterministic Markov Policy. That sufficiency of that such policies is a basic result in DP.

3

3 The Dynamic Programming Algorithm and cost-to-go functions

For any policy π = (µ0, . . . , µN−1), denote by, πk = (µk, . . . , µN−1) the "tail policy". For each epoch
k we can now define the optimal remaining "tail cost" under policy π as follow. For every x ∈ Sk,

Jπk

k (x) := Eπ
[N−1

∑
i=k

gi(xi, ui, wi) + gN(xN)
∣∣∣xk = x

]
. (5)

The optimal cost-to-go is then defined for every period k and every x ∈ Sk as

J∗k (x) = inf
πk

Jπk

k (x). (6)

Based on these notions we can now define and analyze the Dynamic Programming Algorithm.
Assuming all state and action spaces are finite (to keep things simple), we initialize the following
quantities,

JN(x) = gN(x) ∀x ∈ SN , (7)

and we define by backward induction for k ranging from N − 1 to 0,

Jk(x) = min
u∈U(x)

E[gk(x, u, wk) + Jk+1(fk(x, u, wk))] ∀x ∈ Sk. (8)

Remark. Here it seems to define a multi-objective problem depending on x and k. But we will find a
policy π that is optimal simultaneously for every subproblem.

We now argue why the DP algorithm gives us an optimal policy. To avoid dealing with
technicalities, we make the following assumption.

Assumption 1. (Overly restrictive regularity condition) The state space and action space are finite. For
any k, s, and u, the random variable gk(x, u, wk) is integrable.

Proposition 1. Under the Assumption 1,

Jk = J∗k , ∀k, (9)

and by considering µ∗k (x) that achieves the minimum in the right hand side term of (8). We can define an
optimal policy π∗ = (µ∗0 , . . . , µ∗N−1). satisfying for each period k,

Jπ∗k
k (x) = J∗k (x) ∀x ∈ Sk. (10)

Before proving the Proposition 1, we need to first introduce the following lemma. The lemma
is instructive in its own right and reveals a connection between the DP recursion and the law of
iterated expectations.

Lemma 1. Dynamic Programming Recursion for Policy Evaluation: for any policy π = (µ0, ..., µN−1),

Jπk

k (x) = E[gk(x, µk(x), wk) + Jπk+1

k+1 (fk(x, µk(x), wk))] (11)

.

4

Proof. Define ci = gi(xi, µi(xi), wi) for i = k, k + 1, · · · , N − 1 and cN = gN(xN). By the definition
of cost-to-go function under the “tail policy” πk,

Jπk

k (x) = E[ck + · · ·+ cN |xk = x].

By the tower property of conditional expectation,

E[ck + · · ·+ cN |xk = x] = E[E[ck + ck+1 + · · ·+ cN |xk+1, xk]|xk = x]

= E[ck + E[ck+1 + · · ·+ cN |xk+1, xk]|xk = x]

= E[ck + Jπk+1

k+1 (xk+1)|xk = x]

= E[gk(x, µk(x), wk) + Jπk+1

k+1 (fk(x, µk(x), wk))]

where the second last equality uses the definition of Jπk+1

k+1 (xk+1) and the last equality uses the
definition of ck and the state evolution equation (3).

Proof of Proposition 1. Since we don’t perform any action at the last period N, for any policy π =

(µ0, · · · , µN), we define JµN

N (x) = JN(x) = gN(x), ∀x ∈ SN . For k = N-1,

JπN−1

N−1 (x) = E[gN−1(x, µN−1(x), wN−1) + JπN

N (fN−1(x, µN−1(x), wN−1))] (by (11))

= E[gN−1(x, µN−1(x), wN−1) + JN(fN−1(x, µN−1(x), wN−1))] (by JµN

N (x) = JN(x))

> min
u∈UN−1(x)

E[gN−1(x, u, wN−1) + JN(fN−1(x, u, wN−1))]

= JN−1(x) (by (8)).

Observe that we will have JπN−1

N−1 (x) = JN−1(x) when µN−1(x) = µ∗N−1(x). Next we will use
induction to prove the rest of the Proposition 1. Suppose that Jπk

k (x) > Jk(x). Following the same
argument, we can show that

Jπk−1

k−1 (x) = E[gk−1(x, µk−1(x), wk−1) + Jπk

k (fk−1(x, µk−1(x), wk−1))]

> E[gk−1(x, µk−1(x), wk−1) + Jk(fk−1(x, µk−1(x), wk−1))]

> min
u∈Uk−1(x)

E[gk−1(x, u, wk−1) + Jk(fk−1(x, u, wk−1))]

= Jk−1(x).

Moreover, Jπk−1

k−1 (x) = Jk−1(x) if µi(x) = µ∗i (x), ∀i = k− 1, · · · , N − 1. Hence we proved that for
any policy π, Jπk

k (x) > Jk(x), ∀k = 0, · · · , N, and the equality holds if π = (µ∗0 , · · · , µ∗N−1).

4 Did we just solve dynamic optimization? On the curse of dimension-
ality

Curse of dimensionality. There are three main requirements to implementing the DP algorithm

1. The ability to average over draws of the wk: A way to think about is the practice is, could
you develop an (empirical) simulator that would allow you to start the system at some

5

arbitrary state, and simulate outcomes under a specified policy?

2. the ability to optimize over u. Implementing the DP algorithm requires solving one-period
optimization problems (. . . with an objective function that, through the cost-to-go function,
faithfully reflects the long-term implications of a decision.) This is never an issue if the set of
possible actions is small, but can be a barrier otherwise.

3. The ability to iterate over all possible states of the world. This restriction turns out to be
especially limiting. Even the state variable seems to be a succinct description of the state of
the system, the number of possible settings of the state variable is often scales exponentially
in relevant problem parameters.

• Imagine a robotic sensor collects 50 measurements which we model as the state of the
system. Assume value of each measurement xk,i has a continuous value between [0,1].
We discretize xk,i such that xk,i ∈ {0.1, 0.2, · · · , 1}. Then the total number of states is 1050.
Each Jk is a 1050 dimension vector, which is too large to store, much less compute.

6

	Initial Examples
	Finite Horizon Optimal Control: general problem formulation
	The Dynamic Programming Algorithm and cost-to-go functions
	Did we just solve dynamic optimization? On the curse of dimensionality

