
Course Notes On Dynamic Optimization (Fall 2023)
Lecture 1B: Optimal Stopping

Instructor: Daniel Russo

Email: djr2174@gsb.columbia.edu

Graduate Instructor: David Cheikhi
Email: d.cheikhi@columbia.edu

September, 2023

These notes are based of scribed notes from a previous edition of the class. I have done
some follow up light editing, but there may be typos or errors.

The optimal stopping problem is one of the core problems in the decision sciences. In all variants
of the problem a decision-maker faces uncertainty about the future — whether a financial asset will
in value, whether a parking spot will be available– and faces a tension between stopping now or
taking a risk by continuing (to hold the asset, or drive closer to a destination without parking.)

We look at an example in which a decision-maker (DM) has an asset and a fixed selling horizon.
In each period they receive an offer for the asset and may choose to sell or wait to collect more
offers. We consider two variants. In one, the DM must either accept an offer or permanently forego
it. In another, the DM can collect many offers, then return to accept the highest one made so far.

Learning objectives.

1. Understand how to express a decision-problem as a special case of the general problem
described in class.

2. Get a feel for how problem-specific structures can lead to special solutions. In both versions
of our problem the optimal policy is a threshold policy; in the case where offers are retained the
policy is also myopic.

1 Asset selling with irrevocable decisions

Consider the following problem:

• A person has an asset they must sell within a liquidation deadline of N periods. In each period,
they receive single offer, modeled as a non-negative random variable drawn independently
from a distribution. We assume the offers are also identically distributed, though many results
do not depend on this choice.
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• They may accept the offer and invest the money at fixed rate of interest r > 0, or reject it and
wait to receive another offer.

• Their goal is to maximize the expected final revenue from the sale and the accrued interest.

Casting this as a special case of our general problem. We use xk’s to denote the states, ∀k =

0, . . . , N − 1. The state should have the information of whether the asset has sold as well as the
current offer. We incorporate these information in the following way: ∀k = 0, · · · , N − 1

xk+1 =

{
sold if Uk = Accept or xk = sold

wk o.w.

Set x0 = 0 as a dummy variable. Hence the state space Sk ⊂ R ∪ {sold}, ∀k = 0, . . . , N − 1. The
action space, ∀k = 0, · · · , N − 1,

Uk(xk) =

{
Reject if xk = sold

{Accept, Reject} o.w. ,
.

Accounting for compounding interest, the revenue for each period is defined as, ∀k = 1, . . . , N − 1,

gk(xk, uk, wk) =

{
0 if Uk 6= Accept

(1 + r)N−kxk if Uk = Accept

with terminal revenue

gN(xN) =

{
0 if xN = sold

xN o.w.

encoding that an unsold asset is automatically sold in period N, regardless of what offer is made.

Remark. There are at least two tricky aspects of this formulation. One is that the stopping problem
seems to have an indefinite horizon — one which could last N periods but might terminate earlier
if the asset is sold. We cast it as a special case of our formulation by introducing a special absorbing
state ( sold). This modeling trick is common in DP.

A second ‘trick’ has to with indexing. We index offers starting from 0, as w0, w1, . . . , wN−1. In
period k, the state xk reflects the offer wk−1. To fit our formalism, the disturbance wk must influence
the next state xk+1.

DP Algorithm: J∗N(x) = gN(x) for x 6= sold. For k = N − 1, N − 2, . . . , 0,

J∗k (x) =

{
max{(1 + r)N−kx, E[J∗k+1(wk)]} if x 6= sold

0 if x = sold

It is cleaner to introduce the normalized functions Vk(x) ≡ Jk(x)/(1 + r)N−k. Rather than up-
weight earnings in early periods, these “discount” earnings far away into the future. Under these
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normalized value functions, the recursion becomes

V∗k (x) =

{
max{x, E[V∗k+1(wk)]/(1 + r)} if x 6= sold

0 if x = sold.

Optimal Policy: The optimal policy is a threshold policy. For xk 6= sold,

µ∗k (xk) =

{
Accept if xk > αk

Reject if xk 6 αk
,

where αk = E[V∗k (wk)]/(1 + r).
By following the logic of the DP algorithm, it is possible to show, αk’s obey their own recursion.

Since we must accept the last offer, αN = −∞. For k = N − 1, · · · , 0, αk =
1

1+r E[max{wk, αk+1}].

Preview of infinite horizon DP. When N is large the DM should never wait until the end of the
selling horizon, since they would forego the benefit of exponentially compounding interest. If the
selling deadline is far away, it is cleaner to take N → ∞. In this case, one cas show that optimal
threshold does not depend on the current period (since the selling deadline is always “infinitely far
way”); that optimal threshold is the the solution to the fixed-point equation α = 1

1+r E[max{w1, α}].

2 Asset selling with offers retained

We modify the previous setting such that, upon stopping, the DM can accept the highest offer made
so far. The result in this section relies strongly on the offers being i.i.d.

To accommodate this setting, we define the state such that ∀k = 0, · · · , N − 1

xk+1 =

{
sold if Uk = Accept or xk = sold

max{xk, wk} o.w.

Action space and functions gk’s stay the same.
Below we show the optimal policy is myopic: the DM should compare 1) stopping immediately

and 2) continue for one more period and accepting the next offer. This one-step-lookahead heuristic
is optimal even in problems with a long selling horizon.

Proposition 1. An optimal policy for asset selling with offers retained is π∗ = (µ∗, µ∗, · · · , µ∗), where for
x 6= sold,

µ∗(x) =

{
Accept if x > 1

1+r E[max{x, wk}]
Reject o.w.

.

Note this shows that lookahead one step is optimal when the offers can be retained.

proof sketch. Define the set of optimal stopping region,

S∗k = {x|x > E[V∗k+1(max{x, wk})]/(1 + r)}
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Since V∗N(x) = x for x 6= sold, the optimal stopping region is

S∗N−1 = {x|x > Ew[max{x, w}]/(1 + r)︸ ︷︷ ︸
:=ᾱ

We call this the one-step lookahead stopping region.
Using the DP algorithm, it is easy to show that V∗1 � V∗2 � V∗3 and so on. That is, the decision

maker weakly prefers be in period k with offer xk = x than to be in some period k′ > k with the
same offer (xk′ = x), because k′ is associated with a shorter remaining selling horizon and hence
less ability to collect future offers. This implies that

S∗0 ⊂ S∗2 · · · ⊂ S∗N−1.

We proceed by backward induction. Suppose that S∗k+1 = S∗N−1 = {x|x > ᾱ} (with the base of
induction being k + 1 = N − 1). First, suppose xk 6 ᾱ. Since S∗k ⊂ S∗N−1, we know µ∗k (xk) = Reject.

Now suppose xk > ᾱ. The decision-maker must choose whether to stop and earn xk or continue
and earn (1− r)−1E[Vn+1(xn+1) | xn]. The key to the argument is to observe that xn+1 > xn > ᾱ

almost surely, and we so we know µ∗n+1(xn+1) = Accept; Since we know the decision-maker will
accept in the next period, regardless of the next offer, we know V∗n+1(xn+1) = xn+1 = V∗N−1(xn); the
DM can plan as if they will stop in the next period.
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