Course Notes On Dynamic Optimization (Fall 2023) Lecture 2A: Inventory Control

Instructor: Daniel Russo
Email: djr2174@gsb.columbia.edu
Graduate Instructor: David Cheikhi
Email: d.cheikhi@columbia.edu

September, 2023

These notes are based of scribed notes from a previous edition of the class. I have done some follow up light editing, but there may be typos or errors.

Consider the following problem. A firm starts with zero inventory of a single product ($x_{0}=0$) and decides upon ordering replenishment $u_{k} \geqslant 0$ after observing stochastic demand $w_{k} \geqslant 0$ in the current time period $k=0,1,2, \ldots, N-1$. The evolution of the inventory follows the recursive relation

$$
x_{k+1}=x_{k}+u_{k}-w_{k}, \quad k=0,1, \ldots, N-1,
$$

and unfulfilled orders are allowed to be backlogged $\left(x_{k}<0\right)$ until replenishment products fulfill them. The firm's objective is to minimize the expected overall cost

$$
\mathbb{E}\left[\sum_{k=0}^{N-1} g_{k}\left(x_{k}, u_{k}, w_{k}\right)+g_{N}\left(x_{N}\right)\right],
$$

where expectation is computed with regards to the independent and identically distributed (iid) random demands $w_{k}{ }^{\prime}$ s. Per-stage cost functions take the form

$$
\begin{aligned}
g_{k}\left(x_{k}, u_{k}, w_{k}\right) & =c u_{k}+r\left(x_{k}+u_{k}-w_{k}\right), \quad k=0,1, \ldots, N-1 \\
g_{N}\left(x_{N}\right) & =0
\end{aligned}
$$

where $r(x)=p x^{-}+h x^{+}=p \max \{0,-x\}+h \max \{0, x\}$ consists of possible backlogging costs and holding costs.
Assumption 1. We assume that $p>c$ so as to exclude the trivial decision to constantly backlog unfulfilled orders and not place any replenishment orders.

The main result in this section establishes the optimality of a very special class of policies called "base stock policies." The firm maintain a base-stock level - a kind of of ideal inventory position and orders however much inventory is needed to replenish depleted inventory upto the base-stock level.

Proposition 1. (Base-stock policies are optimal) An optimal policy $\pi^{*}=\left(\mu_{0}^{*}, \ldots, \mu_{N-1}^{*}\right)$ exists where

$$
\mu_{k}^{*}\left(x_{k}\right)=\left(S_{k}-x_{k}\right)^{+}= \begin{cases}S_{k}-x_{k}, & x_{k} \leqslant S_{k} \\ 0, & \text { otherwise }\end{cases}
$$

for some scalars $S_{0}, S_{1}, \ldots, S_{N-1}$.
Remark. In the finite horizon model, the base stock levels vary depending on the number of periods remaining in the selling horizon. It is possible to prove that when the selling horizon N is very large, $S_{0} \approx S_{1} \approx S_{2}$, etc. If inventory is replenished daily, then inventory planner's optimal decision does not depend (meaningfully) on whether there is a year remaining in the selling horizon or 100 years. This leads to a great conceptual simplification as the optimal policy is described by a single base-stock level.

1 Proof of the proposition

In order to prove the claim we work on target inventory positions instead: $y_{k}:=x_{k}+u_{k}$ for each k. Restating Proposition 1 in terms of $y^{\prime} s$ rather than u^{\prime} s, the goal is to show that inventory position $y_{k}=\max \left\{S_{k}, x_{k}\right\}$ is optimal.

Define the function

$$
Q_{k}^{*}(x, y)=\mathbb{E}\left[c(y-x)+r\left(y-w_{k}\right)+J_{k+1}^{*}\left(y-w_{k}\right)\right]=\underbrace{\mathbb{E}\left[c y+r\left(y-w_{k}\right)+J_{k+1}^{*}\left(y-w_{k}\right)\right]}_{G_{k}(y)}-c x,
$$

for all possible inventory positions x and all feasible $y \geqslant x$. Then, the DP algorithm yields for each k that

$$
\begin{equation*}
J_{k}^{*}(x)=\min _{y \geqslant x} Q_{k}(x, y)=\min _{y \geqslant x} G_{k}(y)-c x \tag{1}
\end{equation*}
$$

The constraint that $y \geqslant x_{k}$ is due to the fact that we cannot order negative inventory. It is immediate that there is an optimal policy is of the form

$$
\mu_{k}^{*}\left(x_{k}\right)=\left[\arg \min _{y \geqslant x_{k}} G_{k}(y)\right]-x_{k}
$$

The next lemma establishes properties about G_{k} that imply that a minimizer exists (Convex coercive functions attain their infimum). The convexity of G_{k} has a more striking implication. Choose the base-stock level S_{k} to be global minimizer

$$
S_{k} \in \arg \min _{y \in \mathbb{R}} G_{k}(y) .
$$

Then, by convexity,

$$
\max \left\{S_{k}, x_{k}\right\} \in \arg \min _{y \geqslant x_{k}} G_{k}(y) .
$$

If the current inventory position is below the base-stock level S_{k}, it is optimal to move to inventory position S_{k}. If inventory is already above S_{k}, they should stay order nothing.

Definition 1. A function $G: \Re \rightarrow \Re$ is coercive if $G(x) \xrightarrow{x \rightarrow \pm \infty}+\infty$.

Lemma 1. For each $k \in\{0, \ldots, N-1\}, J_{k}^{*}$ and G_{k} are convex functions. Moreover, G_{k} is coercive.
Proof. - G_{k} is convex.
Notice that $J_{N}^{*}(\cdot)=0$ is convex and $r(\cdot)$ is convex, so $G_{N-1}(\cdot)$ is convex because it is a weighted sum (expectation as integral) of the above along with a linear term $c y$. Note the fact that given any F convex, the function $g(x)=\min _{y \geqslant x} F(y)$ is also convex. (Draw picture ${ }^{1}$) Hence, J_{N-1}^{*} is convex. The proof is then concluded by backward induction.

- G_{k} is coercive.

Since the cost J_{k+1}^{*} is always nonnegative, we know that

$$
\begin{aligned}
G_{k}(y) & \geqslant \mathbb{E}\left[c y+r\left(y-w_{k}\right)\right] \\
& =\mathbb{E}\left[c\left(y^{+}-y^{-}\right)+p\left(y-w_{k}\right)^{-}+h\left(y-w_{k}\right)^{+}\right] \\
& \geqslant \mathbb{E}\left[-c y^{-}+p y^{-}+h\left(y-w_{k}\right)^{+}\right] \quad\left(y^{+} \geqslant 0 \text { and } w_{k} \geqslant 0\right) \\
& =(p-c) \underbrace{y^{-}}_{\text {coercive }}+h \mathbb{E}[\underbrace{\left(y-w_{k}\right)^{+}}_{\text {coercive }}]
\end{aligned}
$$

is coercive because $p>c$ and $h>0$.

1.1 Background: Operations Conserving Convexity

See also Boyd and Vandenberghe, Convex Optimization.

- Nonnegative weighted sums
- If $f_{1}, \ldots, f_{m}: \mathcal{D} \rightarrow \Re$ are convex and $w_{!}, \ldots, w_{m} \geqslant 0$, then $w_{1} f_{1}+\cdots+w_{m} f_{m}$ is convex.
- Given $f: \mathcal{X} \times \mathcal{Y} \rightarrow \Re$,

$$
g(x)=\int f(x, y) w(y) \mathrm{d} y
$$

is convex if $w(y) \geqslant 0$ and the mapping $x \mapsto f(x, y)$ is convex for all $y \in \mathcal{Y}$.

- Composition with an affine map
- $g(x)=f(A x+b)$ is convex if f is convex.
- Pointwise supremum
$-g(x)=\sup _{y \in \mathcal{Y}} f(x, y)$ is convex if the mapping $x \mapsto f(x, y)$ is convex for all $y \in \mathcal{Y}$.

2 Extension to fixed ordering costs

There are many possible extensions to the inventory control problem formulated above. One important one introduces a fixed ordering cost $K>0$. In this case, the per-stage cost would be

$$
g_{k}(x, u, w)=\left\{\begin{array}{ll}
r(x+u-w), & u=0 \\
K+c u+r(x+u-w), & u>0
\end{array} .\right.
$$

[^0]- If G_{k} were convex in this case, a similar argument can show the optimal policy is the so-called multiperiod (s, S) policy:

$$
\mu_{k}^{*}\left(x_{k}\right)= \begin{cases}0, & x_{k} \geqslant s_{k} \\ s_{k}-x_{k}, & x_{k}<s_{k}\end{cases}
$$

where $S_{k}=\arg \min G_{k}(y)$ and $s_{k}=\arg \min \left\{y \mid G_{k}(y)=K+G_{k}\left(S_{k}\right)\right\}<S_{k}$ for each k.

- Unfortunately, G_{k} may not be convex. However, it is "close enough" to convex and the multiperiod (s, S) policy remains optimal. Scarf first developed a notion of K-convexity and completed the proof by showing that G_{k} is K-convex, i.e., G_{k} satisfies the following property:

$$
K+G_{k}(z+y) \geqslant G_{k}(y)+z\left(\frac{G_{k}(y)-G_{k}(y-b)}{b}\right), \quad \text { for all } z \geqslant 0, b>0, y
$$

To get some intuition for this, imagine taking $b \rightarrow 0$. Then, this a relaxation of the defining fact of convex functions: a K-convex function falls below its tangent by no more than K.

[^0]: ${ }^{1}$ One formal way to prove this is a follows. Define $\tilde{F}(x, y)=F(y)$ if $y \geqslant x$ and $\tilde{F}(x, y)=\infty$ otherwise. Then $g(x)=\min _{y} \tilde{F}(x, y)$ is convex using the properties listed in Subsec 1.1.

