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Consider the following problem. A firm starts with zero inventory of a single product (x0 = 0)
and decides upon ordering replenishment uk > 0 after observing stochastic demand wk > 0 in
the current time period k = 0, 1, 2, . . . , N − 1. The evolution of the inventory follows the recursive
relation

xk+1 = xk + uk − wk, k = 0, 1, . . . , N − 1,

and unfulfilled orders are allowed to be backlogged (xk < 0) until replenishment products fulfill
them. The firm’s objective is to minimize the expected overall cost

E

[
N−1

∑
k=0

gk(xk, uk, wk) + gN(xN)

]
,

where expectation is computed with regards to the independent and identically distributed (iid)
random demands wk’s. Per-stage cost functions take the form

gk(xk, uk, wk) = cuk + r(xk + uk − wk), k = 0, 1, . . . , N − 1

gN(xN) = 0,

where r(x) = px− + hx+ = p max{0,−x}+ h max{0, x} consists of possible backlogging costs and
holding costs.

Assumption 1. We assume that p > c so as to exclude the trivial decision to constantly backlog unfulfilled
orders and not place any replenishment orders.

The main result in this section establishes the optimality of a very special class of policies called
“base stock policies.” The firm maintain a base-stock level – a kind of of ideal inventory position –
and orders however much inventory is needed to replenish depleted inventory upto the base-stock
level.
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Proposition 1. (Base-stock policies are optimal) An optimal policy π∗ = (µ∗0 , . . . , µ∗N−1) exists where

µ∗k (xk) = (Sk − xk)
+ =

{
Sk − xk, xk 6 Sk

0, otherwise,

for some scalars S0, S1, . . . , SN−1.

Remark. In the finite horizon model, the base stock levels vary depending on the number of periods
remaining in the selling horizon. It is possible to prove that when the selling horizon N is very
large, S0 ≈ S1 ≈ S2, etc. If inventory is replenished daily, then inventory planner’s optimal decision
does not depend (meaningfully) on whether there is a year remaining in the selling horizon or 100
years. This leads to a great conceptual simplification as the optimal policy is described by a single
base-stock level.

1 Proof of the proposition

In order to prove the claim we work on target inventory positions instead: yk := xk + uk for each k.
Restating Proposition 1 in terms of y’s rather than u’s, the goal is to show that inventory position
yk = max{Sk, xk} is optimal.

Define the function

Q∗k (x, y) = E
[
c(y− x) + r(y− wk) + J∗k+1(y− wk)

]
= E

[
cy + r(y− wk) + J∗k+1(y− wk)

]︸ ︷︷ ︸
Gk(y)

−cx,

for all possible inventory positions x and all feasible y > x. Then, the DP algorithm yields for each
k that

J∗k (x) = min
y>x

Qk(x, y) = min
y>x

Gk(y)− cx (1)

The constraint that y > xk is due to the fact that we cannot order negative inventory. It is immediate
that there is an optimal policy is of the form

µ∗k (xk) =

[
arg min

y>xk
Gk(y)

]
− xk,

The next lemma establishes properties about Gk that imply that a minimizer exists (Convex coercive
functions attain their infimum). The convexity of Gk has a more striking implication. Choose the
base-stock level Sk to be global minimizer

Sk ∈ arg min
y∈R

Gk(y).

Then, by convexity,
max{Sk, xk} ∈ arg min

y>xk
Gk(y).

If the current inventory position is below the base-stock level Sk, it is optimal to move to inventory
position Sk. If inventory is already above Sk, they should stay order nothing.

Definition 1. A function G : < → < is coercive if G(x) x→±∞−−−−→ +∞.
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Lemma 1. For each k ∈ {0, . . . , N − 1} , J∗k and Gk are convex functions. Moreover, Gk is coercive.

Proof. • Gk is convex.

Notice that J∗N(·) = 0 is convex and r(·) is convex, so GN−1(·) is convex because it is a
weighted sum (expectation as integral) of the above along with a linear term cy. Note the
fact that given any F convex, the function g(x) = miny>x F(y) is also convex. (Draw picture1)
Hence, J∗N−1 is convex. The proof is then concluded by backward induction.

• Gk is coercive.

Since the cost J∗k+1 is always nonnegative, we know that

Gk(y) > E[cy + r(y− wk)]

= E[c(y+ − y−) + p(y− wk)
− + h(y− wk)

+]

> E[−cy− + py− + h(y− wk)
+] (y+ > 0 and wk > 0)

= (p− c) y−︸︷︷︸
coercive

+hE[(y− wk)
+︸ ︷︷ ︸

coercive

]

is coercive because p > c and h > 0.

1.1 Background: Operations Conserving Convexity

See also Boyd and Vandenberghe, Convex Optimization.

• Nonnegative weighted sums

– If f1, . . . , fm : D → < are convex and w!, . . . , wm > 0, then w1 f1 + · · ·+ wm fm is convex.
– Given f : X ×Y → <,

g(x) =
∫

f (x, y)w(y)dy

is convex if w(y) > 0 and the mapping x 7→ f (x, y) is convex for all y ∈ Y .

• Composition with an affine map

– g(x) = f (Ax + b) is convex if f is convex.

• Pointwise supremum

– g(x) = supy∈Y f (x, y) is convex if the mapping x 7→ f (x, y) is convex for all y ∈ Y .

2 Extension to fixed ordering costs

There are many possible extensions to the inventory control problem formulated above. One
important one introduces a fixed ordering cost K > 0. In this case, the per-stage cost would be

gk(x, u, w) =

{
r(x + u− w), u = 0

K + cu + r(x + u− w), u > 0
.

1One formal way to prove this is a follows. Define F̃(x, y) = F(y) if y > x and F̃(x, y) = ∞ otherwise. Then
g(x) = miny F̃(x, y) is convex using the properties listed in Subsec 1.1.
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• If Gk were convex in this case, a similar argument can show the optimal policy is the so-called
multiperiod (s, S) policy:

µ∗k (xk) =

{
0, xk > sk

Sk − xk, xk < sk
,

where Sk = arg min Gk(y) and sk = arg min{y |Gk(y) = K + Gk(Sk)} < Sk for each k.

• Unfortunately, Gk may not be convex. However, it is “close enough” to convex and the
multiperiod (s, S) policy remains optimal. Scarf first developed a notion of K-convexity and
completed the proof by showing that Gk is K-convex, i.e., Gk satisfies the following property:

K + Gk(z + y) > Gk(y) + z
(

Gk(y)− Gk(y− b)
b

)
, for all z > 0, b > 0, y.

To get some intuition for this, imagine taking b→ 0. Then, this a relaxation of the defining
fact of convex functions: a K-convex function falls below its tangent by no more than K.
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