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Here, we consider the special case of linear system when the cost is quadratic. We have,

xk+1 = Axk + Buk + wk k = 0, 1, . . . , N − 1

g(xk, uk) = x>k Qxk + u>Ru k = 0, 1, . . . , N − 1

Where xk ∈ Rn, uk ∈ Rm, Q ∈ Sn×n, Q � 0, R ∈ Sm×m, R � 0, E(wk) = 0 k = 0, 1, . . . , N − 1 and
wk’s have finite second moments. We assume wk to be iid random vectors (In fact, we only need
independence. Identical distributions are assumed to simplify notation. Similarly, A, B, R, Q can all
depend on k).

Main results: Nearly all dynamic programming problems are intractable when the state space con-
sists of continuous vectors of moderate dimensions. The very special structures in linear quadratic
control allow us to avoid the curse of dimensionality. We summarize the results below:

1. The optimal cost-to-go function is quadratic:

J∗i (x) = x>Kix + ci

where Ki � 0 is a symmetric positive definite matrix. The K′is can be computed by recursive
linear algebra as Ki = A>(Ki+1 − Ki+1B(B>Ki+1B + R)−1B>Ki+1)A + Q.

2. The optimal policy π∗ =
(
µ∗0 , . . . , µ∗N−1

)
takes the form µ∗i (x) = Lix, where Li = −(R +

B>KiB)−1B>Ki A.
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3. The optimal policy has no dependence on the distribution of the disturbances. The optimal
policy is the same as it would be in a system with no noise at all, a property known as certainty
equivalence.

1 A glimpse of how LQR is used

Consider the cart-pole problem depicted in this figure. The goal is to keep a pendulum balanced
upright by moving the cart horizontally.

Let z be the horizontal position of the cart (depicted by x in the figure), θ be the angle of the
pendulum and take x = [z, θ, ż, θ̇]> to be the state variable. The variable u is the energy exerted
along the horizontal access. It is possible to derive a nonlinear differential equation

x′(τ) = f (x(τ), u(τ)) τ ∈ [0, ∞)

that describes the laws of motion.
To tackle this problem we linearize the dynamics around unstable equilibrium at θ = 0 (i.e.

vertical cart pole). More generally, let us posit that there is an equilibrium point (x∗, u∗) such that
f (x∗, u∗) = 0. Picking the Jacobian matrices A = ∂

∂x f (x∗, u∗) and B = ∂
∂u f (x∗, u∗), we approximate

the nonlinear dynamics near the equilibrium point through the linear dynamics

x′(τ) = Ã(x(τ)− x∗) + B(u(τ)− u∗).

To fit the discrete time formultaion in these notes, we define the variables

(x0, u0) = (x(0)− x∗, u(0)− u∗), (x1, u1) = (x(ε)− x∗, u(ε)− u(0)) . . .

which, upto o(ε2) error, obey the discrete time linear system

xk+1 =
[
I + Ã

]︸ ︷︷ ︸
:=A

xk + Buk.
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2 Derivation of the main results.

The derivation involves lots of algebra and is tedious. Refer to the textbook for a complete
derivation.

Our aim is to prove that the given policy is optimal by the principle of mathematical induction.
We prove this in 3 steps.
Step 1: h(x, u) is convex quadratic in (x, u).
Why? This is because

• g is convex quadratic

• J∗N(x) is convex quadratic

• (x, u, w)→ f (x, u, w) is an affine function, and composition of a convex quadratic function
with an affine function is convex quadratic as well.

To see this more explicitly, note that the function x → J∗N(x) is a convex function. (x, u, w) →
f (x, u, w) is an affine function. Thus, ∀w (x, u)→ J∗N( f (x, u, w)) is a convex function, and taking
expectation of this w.r.t w preserves convexity. Since, g(x, u) is also convex, h(x, u) is just a sum of
two convex functions, and hence is convex in turn.

To see that it is also quadratic, we write its full expansion. We have,

h(x, u) = u>Ru + x>Qx + E
(
(Ax + Bu + w)> KN (Ax + Bu + w)

)
+ cN

= u>(R + B>KN B)u + x>(Q + A>KN A)x + 2x>A>KN Bu + E
(

w>Qw
)
+ cN

which, clearly, is quadratic in (x, u).
Step 2: The minimizer x 7→ arg minu∈Rm h(x, u) is a linear function of state.
To see this, we apply the first order conditions for minimality. At the point of minimality, the first
derivative ∇uh(x, u) should vanish. We have,

∇uh(x, u) = 2
(

R + B>KN B
)

u + 2B>KN Ax

∇uh(x, u) = 0 =⇒ u = −(R + B>KN B)−1B>KN Ax

∴ µ∗N−1(x) = L∗N−1x where L∗N−1 = −(R + B>KN B)−1B>KN A

Note here, that indeed, L∗N−1 doesn’t depend on the distribution of wk’s.
Step 3: Induction step
We first note that J∗N−1(x) = minu h(x, u) = h(x, L∗N−1x) is a composition of a convex quadratic h
with a linear function x → (x, L∗N−1x), thus J∗N−1(x) is also convex quadratic. We can write

J∗N−1(x) = min
u

h(x, u) = h(x, L∗N−1x) = x>KN−1x + cN−1

Where KN−1 = L∗N−1
>(R + B>KN B)L∗N−1 + Q + A>KN A + 2A>KN BL∗N−1

= A>KN B(R + B>KN B)−1B>KN A− 2A>KN B(R + B>KN B)−1B>KN A + Q + A>KN A

= A>(KN − KN B(B>KN B + R)−1B>KN)A + Q

cN−1 = cN + E
(

w>Qw
)
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The above recurrence relation is called the Riccati equation. We note here, that KN−1 is symmetric
whenever KN , Q and R are symmetric. It can also be verified that KN−1 is positive semidefinite
whenever KN−1, R and Q are positive semidefinite. These are all the ingredients required to take
the induction further and prove that µ∗N−2(x) is also linear in x with the same arguments as above.
Thus, with the principle of mathematical induction, we have managed to prove that the optimal
policy π∗ = (µ∗0 , . . . , µ∗N−1) takes the form µ∗k (x) = Lkx as required.
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