
Course Notes On Dynamic Optimization (Fall 2023)
Lecture 3: Imperfect State Information

Instructor: Daniel Russo

Email: djr2174@gsb.columbia.edu

Graduate Instructor: David Cheikhi
Email: d.cheikhi@columbia.edu

These notes are based of scribed notes from a previous edition of the class. I have done
some follow up light editing, but there may be typos or errors.

Topics:

• Problems with imperfect state observations.

• Examples: linear quadratic Gaussian (LQG) systems, bandit problems, recommender systems.

• Reduction to perfect state information problems: beliefs as state and a connection to RNNs.

• LQG and the separation principle

1 Problems with imperfect state information

Consider a dynamic system that evolves according to zk+1 = fZ(zk, uk, wk) where the disturbances
{wk} are independent. Now instead of seeing the latent state zk, what is observed in time k is
yk = Ok(zk, uk−1, ξk) where {ξk} are independent. Effectively,

yk|zk, uk−1, · · · , z0, u0 ∼ qzk ,uk−1(·)

The objective is to solve

inf
π

Eπ
{wK},{εk}

[
N−1

∑
k=0

gk(zk, uk, wk) + gN(zN)

]

over policies π = (µ0, ..., µN−1). Whereas in previous classes we concluded that it was sufficient
for µk to map the state of the system to a control, here the latent state is unobservable so it is (at
least initially) unclear how we would implement such a policy. Instead we take µk to be a map
Hk := (y0, u0, · · · , yk−1, uk−1, yk) 7→ µk(Hk) ∈ U. In other words, µk maps from the information
available to the controller at time k, i.e. Hk, to some action in the control set U. [A generalization
allows the set of feasible controls to be Uk(Hk). We’ll skip that extra generality.]

1

2 Examples

The next example has had a profound impact on control systems in use throughout the world.

Example 1 (Linear Quadratic Gaussian (LQG)). As in last class, we consider a control problem with
linear dynamics zk+1 = Azk + Buk + wk k = 0, ..., N − 1. But now the controller does not have access to
the current latent state zk. Instead it receives at the beginning of each period k an observation of the form
yk = Czk + ξk where {wk}, {ξk} are independent sequences and are independent of z0. The objective is to
minimize the total cost:

inf
π

Eπ

[
N−1

∑
k=1

(zT
k Qzk + uT

k Ruk + zT
NQzN)

]

Next we describe an example where —unlike the LQG example—there are no ‘dynamics’ to
latent state. The problem dynamics are solely about the changing information available to the
decision-maker and not about some underlying physical system evolving.

Example 2 (Multi-armed bandit problems). There are m advertisements indexed by i ∈ {1, . . . , m}. The
latent state of the system is a vector Zk ∈ [0, 1]m where Zk,i denotes the click through rate of the ad in the
population. The control decision uk ∈ {1, . . . , m} indicates a choice of ad to display when the next user visits
the website. (In this model, the ad is not targeted to this specific user, but to a population.) The observation
yk ∈ {0, 1} indicates whether the ad was clicked on, with yk|Hk, uk, Zk ∼ Zk,uk . The goal of the decision
maker is to solve

sup
π

Eπ

[
N−1

∑
k=1

yk,uk

]
= sup

π
Eπ

[
N−1

∑
k=1

Zk,uk

]
.

The latent click rate Z0 is a random variable, thought to be drawn from some prior distribution. We
assume the system is stationary, so Z0 = Z1 = . . . ZN almost surely; the click-through-rate of the ad is not
changing across time.

If the decision-maker knew the click-through rates, they would pick the ad arg maxi Z0,i and display it in
every period. But since these are unobservable, the DM faces a tension between exploring ads to learn about
their latent click-rate and exploiting past observations to get clicks right now.

Remark (On the role of the prior). Discussion we had in class: think of the prior as a way to share data
across tasks/experiments. A company that optimized ad placement would do this on a recurring basis, across
time and across many websites. This structure is extremely common and that is no accident: usually you
only invest in a sophisticated algorithm for solving some decision problem if you have to solve variants of it
repeatedly1. Questions around enforcing robustness to distribution shift, etc., are very interesting but we
will not tackle them.

The next example is more complex and not as mathematically clean as the previous ones. Still it
reflects how our general problem formulation might provide a way of thinking about more complex
scenarios.

Example 3 (A recommender system). Consider a recommender system. The system interacts with many
users and leveraging cross-user data is essential. But many systems (e.g. Netflix, Spotify, TikTok, etc.) also

1The field of decision-analysis is full of important non-recurring decisions. The logic of dynamic programming plays
a central role, but there is also an emphasis of careful elicitation of a decision-maker’s prior beliefs, their assessment of
costs, etc.

2

have recurring interactions with individual users. Here we think of modeling recurring interactions with an
individual user whose latent state evolves across time. Different problem formulations highlight different
elements of the problem:

1. (Cold-start/Exploration) The latent state Zk encodes the user’s long-running tastes. While tastes
do evolve, it is still reasonably interesting to model them as being fixed but latent, in which case
Z0 = Z1 = . . . , ZN as in Example 2. Models of this type isolate the problem of efficiently learning
about a user’s tastes so that future recommendations can be tailored to match them.

2. (Contextual/Sequential RecSys) The latent state Zk encodes the user’s mood or context. Think “when
I’m at the gym I like to listen to workout music.” The app doesn’t know you’re at the gym and doesn’t
influence whether you’re at the gym, but your recent listening behavior might reflect that you’re in the
mood for workout music. This problem is similar to (1) in that recommendation actions can reveal
information about the latent state but do not actively influence it. It differs from (1) in that the latent
state is changing across time.

3. (Reinforcement learning in RecSys) The latent state can also encode things like habits, boredom,
etc, which are actively influenced by. In “optimizing audio recommendations for the long term: a
reinforcement learning perspective”, one we looked at users’ habitual listening of individual podcasts.
When recommending a user try a new podcast show, one is not just reflecting their latent tastes,
but potentially impacting their listening habit months into the future. [Many podcast shows release
episodes daily, and have listeners who engage frequently across a long timespan.]

3 Reduction to case of the perfect state observations

Here we review ways of reducing a problem with imperfect state information to an equivalent
problem with a fully observable state variable. Because of this reduction, all results an algorithms
we develop for problems with perfect state information can be applied – at least in principle — to
problems with imperfect state information.

These notes will use the variable xk to denote a fully observable state, thus maintaining consis-
tency with the previous notes. In all cases, that xk is observable means xk = function(Hk) is some
function or “compression” of the history that retains sufficient information.

3.1 An observable Markov state

From the decision-maker’s perspective, zk is not “the state”2! The state variable xk should

1. Be observable: the DM be able to compute the state from observed data, i.e. there is some
function φ such that xk = φ(Hk).

2. Be sufficient: given the state, the DM doesn’t need to remember the history. Formally, if
ck ≡ gk(zk, uk, wk) denote the cost at stage k, then

P(xk + 1 = x ∧ ck = c | Hk, uk) = P(xk + 1 = x ∧ ck = c | Xk, uk). (1)
2I will call it “the latent state”, though this is not universally accepted.

3

3.2 Alternative sufficient conditions (Dan’s custom definitions)

Some of you may find the Markov condition in (1) to be difficult to parse. A potential difficulty
is that x appears on both sides of (1); the state variable must be sufficient for predicting states.
Encoding more information in the state both helps (since xk contains more of the history) and hurts
(since xk+1 is now more complex and harder to predict). I will provide an set of sufficient conditions
which I find easier to digest.

Observable costs: For this subsection, I will assume that costs are observable. That is the stage
cost ck = someFunction(uk, yk+1) is computable given observations.

Remark (When are costs observable.). Costs/rewards are observable in Example 2. In Example 3,
costs/rewards are not observable if the goal is to maximize “user satisfaction”, but are observable if the goal is
to maximize some proxy like engagement, retention etc.

As long as the state-observation noise is independent of control decisions, LQG problem in Example 1
can be rewritten as a problem with observable costs by noting that

Eπ[
N−1

∑
k=0

(zT
k Qzk + uT

k Ruk + zT
NQzN)] =Eπ

[
N

∑
k=1

(yT
k (C

−1)>QC−1yk)

]
+

N−1

∑
k=0

uT
k Ruk + yT

N(C
−1)TQC−1yN)

+ (E
[
yT

0 (C
−1)>QC−1y0

]
+

N

∑
k=0

E[ξ>k Qξk]︸ ︷︷ ︸
indep. of u’s

.

Sufficient conditions for a state variable. How do we formalize this? Here are some sufficient
conditions.

1. (Recursive updating) There is a function f such that xk+1 = f (xk, uk, yk+1)

2. (Sufficient for predicting observables) P(yk+1 = y | uk, xk) = P(yk+1 = y | uk, Hk) for any y.

Here we require xk is sufficient to predict observable, whereas the Markov property requires xk is
contains all information relevant to predicting future states — requiring a kind of circular thinking.
Of course, we can’t really get away from that circular thinking; here hidden it in the requirement
that xk can be recursively updated. The next lemma confirms that xk is indeed a Markov state
assuming it satisfies these conditions.

Lemma 1. If costs are observable and conditions 1,2 above hold, then

P(xk+1 = x ∧ ck = c | Hk, uk) = P(xk + 1 = x ∧ ck = c | Xk, uk).

Proof. Focus only on showing the Markov property for xk, as a the argument for ck is similar. We
have

P(xk+1 = x | Hk, uk) = P(f (xk, uk, yk+1) | Hk, uk) = P(f (xk, uk, yk+1) | xk, uk) = P(xk+1 = x | xk, uk),

where the first and final equalities use property (1) and the second equality uses (2). Note that
it is important in the proof that Hk contains all the information in xk, so we are only taking hte
conditional expectation over yk+1 and not xk.

4

3.3 Examples of state variables

3.3.1 History as state

By definition, one can satisfy (1) and (2) by taking xk = Hk to be the full history. (The function f is
then one that appends the most recent observation and control decision to the history).

3.3.2 Posterior distribution as state

For concreteness, suppose the latent state zk ∈ {1, . . . m} takes on finite number of possible values.
Let

xk,i = P(zk = i | Hk) i ∈ [m].

This is sufficient since

P(yk+1 = y | Hk, uk) =
n

∑
i=1

P(zk = i | Hk, uk)P(yk+1 = y | Hk, uk, zk = i) =
n

∑
i=1

xk,iqi,uk(y)

= P(yk+1 = y | xk, uk).

Moreover, the posterior distribution can be updated recursively by sequential Bayesian updating:

xk+1,i =
xk,iqi,uk(yk+1)

∑n
j=1 xk,jqj,uk(yk+1)

.

The same results apply when the latent state is continuous, though in practice you need some
way to store the posterior distribution. Sometimes it is enough to track sufficient statistics, as is
illustrated in the next example.

Example 4 (Revisiting the MAB). Consider the MAB problem in Example 2. Since z0 = . . . zN−1 almost
surely, simplify notation by writing z ≡ zk. Suppose there exist prior hyperparameters α0 ∈ Rm

+ and
β0 ∈ Rm

+ such that z ∼ Beta(α0, β0). Over time, one can update these parameters as

αk+1,i = αk,i + 1(uk = i, yk = 1) βk+1,i = αk,i + 1(uk = i, yk = 0).

The posterior distribution is z | Hk ∼ Beta(αk, βk). In this problem, one choose the state variable xk =

[αk, βk].

3.4 Recurrent neural network

Consider a recurrent neural network where the input at time k is (yk, uk). The model maintains a
recursively updates a hidden state hk, as

hk = fw(hk−1; [yk, uk])

where w denotes trainable weights of tte neural network. The output ŷk+1 = someFunction(hk, [yk, uk])

is optimized to minimize error in predicting yk+1. In the context of Example 3, you should imagine
that the weights w are trained on data collected across many users, whereas our problem formu-
lation focuses on optimizing interactions with a single user (who is randomly chosen from the
population).

5

Define the approximate state variable xk = (hk−1, yk). This satisfies our recursive updating
requirement (1) and is trained to approximate the sufficiency condition (2).

4 Linear quadratic control and the separation principle

Consider the LQ control problem zk+1 = Azk + Buk +wk k = 0, ..., N− 1 we treated in the previous
class session. We no longer the controller does not have access to the current latent state zk. Instead
it receives at the beginning of each period k an observation of the form yk = Czk + ξk where
{wk}, {ξk} are independent sequences and are independent of z0. The objective is to minimize the
total cost

inf
π

Eπ[
N−1

∑
k=1

(zT
k Qzk + uT

k Ruk + zT
NQzN)]

over policies π = (µ0, ..., µN−1) where uk = µk(Hk) that map sequences of past we saw to the
action.

Recall that when there are prefect state observations (yk = zk), the optimal policy sets

µ?
k (Hk) = Lkzk

where
Li = −(BTKi+1B + R)−1BTKi+1A i = 0, · · · , N − 1

and
Ki = AT(Ki+1 − Ki+1B(BTKi+1B + R)−1BTKi+1)AQ

The next proposition shows that this solution structure extends to the case of imperfect state
observations.

Proposition 1. (Separation principle) The optimal policy of the LQ control with imperfect state information
is π? = (µ?

0 , · · · , µ?
N−1) where

µ?
k (Hk) = LkE[zk|Hk]

The matrices L and K are the same as above.

The separation principle is quite satisfying. Imagine you know about how to solve control
problems (hopefully!) and your friend is a statistician. You team up and agree to divide the work —
you write the code for a controller and your friend codes up a procedure to estimate the latent state.
Neither of you understand what the other did. Proposition 1 says that (at least in principle), this
separation of tasks comes at no price.

6

How do you estimate latent states? In the important special case where the disturbances {wk},
{ξk} and the initial state x0 are independent Gaussian vectors, Kalman filtering provides a way to
recursively update the parameters of the (Gaussian) posterior distribution of the latent state. See
Appendix E of the textbook for a precise introduction.

Remark (How do estimate something unobservable?). It is worth noting that the state-estimation part
of this result is subtle. How do you train a model to estimate latent states if you never observe latent states?
One plausible answer is that it may be possible to fairly precisely estimate the latent state of a physical control
system by (1) employing expensive sensors and (2) using data that is only available in hindsight. One can
then train a model to predict these more accurate state readings from the noisy measurements available with
cheap sensors and real-time information.

When the separation principle completely fails. The proof of Proposition 1 of the separation
principle can feel like a bunch of algebra. To really digest what is going on, it may be helpful to
understand what breaks the separation principle. Basically, the separation principle is the grandest
form of the ‘certainty equivalence’ property we saw in the last class: it is optimal to select a control
in each period as if there was no noise in the dynamics and as if your state estimate were correct.
This idea fails completely if a decision-maker’s uncertainty is a major driver of how they should
act, such as:

1. (Risk aversion) A patient who is pre-diabetic is provided a cheap device which helps monitor
their blood glucose level based on thumb pricks. Data from these measurements is then
visible to their doctor, who needs to determine whether the patient should be called in for a
closer examination and a more expensive/inconvenient laboratory test. Should the doctor
behave as if the blood glucose measurements are correct? If the measurements are pretty
noisy, then obviously not! A key feature of this example is that there is a huge downside to
missing diabetes but a comparatively small cost to having a patient take a lab test.

2. (Information gathering) Consider the MAB problem in Example 4. The separation principle
suggests to behave as if each ad i’s click through rate were the posterior mean αk,i/(αk,i + βk,i).
This results in a so-called greedy policy, which selects the arm arg maxi αk,i/(αk,i + βk,i) in
any period k. This maximizes immediate expected reward myopically, failing to explore
poorly-understood arms. The optimal policy should actively gather information about arms
with high upside, and accounting for uncertainty about an arm’s latent quality plays an
essential role in that consideration.

Why it works here (1): ‘predicting’ the mean minimizes quadratic costs. The discussion above
suggests that the separation principle may not even in single period problems due to risk-aversion.
We can get some intuition as to why using the conditional mean might nevertheless be optimal in
the LQ control case. Consider the optimization problem below with a quadratic estimation loss
and a quadratic penalty

min
u

EZ[(Z− u)TQ(Z− u) + uTRu],

where Q, R � 0. It is easy to show that the minimizer to this is

u? = (Q + R)−1QE[z],

7

which is a linear function of the mean. When R = 0, the optimal objective value is E[(Z −
E[Z])TQ(Z−E[Z])], which penalizes the variance of estimation error. Otherwise, the objective
value separates into the sum of two terms: one of which depends on the variance of x and one
which depends on the mean, which influences the energy cost u>Ru. The proof of the separation
principle relies on a similar decomposition of the cost-to-go functions.

Why it works here (2): Control decisions cannot reduce estimation errors The discussion above
suggests that the separation principle may not hold in dynamic optimization problems in which
costly information gathering can improve future performance. The structure of our LQ control
problem rules this out; control decisions can alter the state of the system by a fixed, known amount,
but this does nothing to resolve uncertainty about the random noise terms {wk}, {ξk} which
additively impact latent state dynamics and observations. This is formalized in the following
lemma, which states that the state estimation error, zk − E[zk|Hk] is independent of the control
choice.In particular, zk and E(zk|Hk) contain the same linear terms in (u0, · · · , uk−1), which cancel
each other out.

Lemma 2. For every k, the estimation error zk −E(zk|Hk) does not depend on u1, · · · , uk−1.

Proof. Since there is no control when k = 0, the claim is obviously true. For k > 0, write zk
recursively

zk = Azk−1 + Buk−1 + wk−1

= A(Azk−2 + Buk−2 + wk−2) + Buk−1 + wk−1

= · · ·

= Akz0 +
k−1

∑
i=0

AiBui +
k−1

∑
i=0

Ak−1−iwi

zk −E[zk|Hk] = Ak(z0 −E[z0|Hk])−
k−1

∑
i=0

Ak−1−i(wi −E[wi|Hk])

Hence does not depend on u1, · · · , uN−1.

Completing the proof. Now we are ready to prove Proposition 1.

Proof. For kN = Q and PN = 0, we write the cost-to-go function as mean cost plus estimation
variance (does not depend on the controls)

JN(HN) = E[zT
NQzN |HN] + E[eT

N PNeN |HN]

where eN = zN −E(zN |HN). Continuing in this way

JN−1(HN−1) = min
u

l(HN−1, u)

8

where

l(HN−1, u) = uTRu + E[zT
N−1QzN−1|HN−1]

+ E[eT
N PNeN |HN−1, uN−1 = u]

+ E[(AzN−1 + BuN−1 + wN−1)
TKN(AzN−1 + BuN−1 + wN−1)|HN−1, uN−1 = u]

i.e. the expected accumulated cost-to-go at stage N − 1 conditional on history HN−1 and action u is
the instantaneous cost plus the cost-to-go. The cost-to-go at next stage is the sum of expectation of
measurement error (not affected by action) and expectation of quadratic cost of next state, given by
the linear dynamics, conditional on the history.

Differentiate with respect to u we get

µ?(HN−1) = LN−1E[zN−1|HN−1]

where
LN−1 = −(R + BTkN B)−1BTkN A

Plug the linear policy back into the quadratic function

l(HN−1, LN−1E[zN−1|HN−1]) = E[wT
N−1QwN−1] + E[eT

N PNeN |HN−1]

+ E[zT
N−1(Q + ATkN A)zT

N−1|HN−1]

−E[zN−1|HN−1]
TPN−1E[zN−1|HN−1]

where
PN−1 = ATKN B(R + BTKN B)−1BKN A

Notice that can write the last term as

E[zN−1|HN−1]
TPN−1E[zN−1|HN−1] = E[zT

N−1PN−1zN−1|HN−1]−E[eT
N−1PN−1eN−1|HN−1]

Plug this back into the original one we have

JN−1(HN−1) =E[zT
N−1KN−1zN−1|HN−1]

+ E[eT
N−1PN−1eN−1|HN−1]

+ E[eT
N PNeN |HN−1]

+ CN−1

Thus the cost-to-go function is equal to a quadratic function of state taking expectation over
state, plus a bunch of terms that is not affected by the control decision.

9

	Problems with imperfect state information
	Examples
	Reduction to case of the perfect state observations
	An observable Markov state
	Alternative sufficient conditions (Dan's custom definitions)
	Examples of state variables
	History as state
	Posterior distribution as state

	Recurrent neural network

	Linear quadratic control and the separation principle

