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This class introduces

1 Finite horizon discounted objectives

Here we specify our problem where the cost function only depends on the time through the
discounted factor ak, while the new state xk+1 now is decided by f instead of fk, that is:

gk(xk, uk, wk) = αkg(xk, uk, wk) α ∈ (0, 1)

xk+1 = f (xk, uk, wk)

where {wk} are now iid instead of simply independent, which means they do not depends on time
as well. The problem

inf
π

E[
N−1

∑
k=0

αkg(xk, uk, wk)] (1)

is nevertheless solved by a nonstationary policies π∗ = (µ∗0 , . . . , µ∗N−1).
The DP algorithm solves for the optimal cost-to-go functions:

JN(x) = αN J(x)

JN−k(x) = min
u

E[αN−kg(x, u, w) + JN−k+1( f (x, u, w))],

Rather than write it in this form, we can write J̃k
?
(x) = J?N−k(x)

αN−k and the DP algorithm becomes:

J̃0(x) = J(x)

J̃k(x) = min
u∈U(x)

E[g(x, u, w) + α J̃k−1( f (x, u, w))]

From now on, we’ll drop the .̃
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Random horizon interpretation Introduce the random variable τ ∼ Geometric(1− α), assumed
to be independent of all else. Then, since P(τ > k) = αk,

Eπ

[
N−1

∑
k=0

αkg(xk, uk, wk)

]
= Eπ

[
(N−1)∧τ

∑
k=0

g(xk, uk, wk)

]
,

where τ ∧ (N − 1) = min{τ, N − 1}. Discounting can be understood as a reflection of horizon
uncertainty.

The source of nonstationarity We’ve seen that, despite i.i.d disturbances, stationary costs and
transitions, a nonstationary policy is generally optimal for the problem (1). Why? the main factor
distinguishing the sub problems beginning in period k from those beginning at some later period
k′ > k (at the same state) is the number of periods remaining. As k nears N, the decision-maker
becomes increasingly myopic. This may be desirable feature of the problem if the end of the horizon
N is a true constraint. In other settings, we want the decision-maker to prioritize the near-term
without imposing the definitive end-time N. Infinite horizon discounted objectives are an elegant
way to formalize this goal.

2 Infinite horizon discounted objectives

Consider now the infinite horizon analogue of (1), where the goal is to solve

inf
π

lim sup
N→∞

Eπ[
N−1

∑
k=0

αkg(xk, uk, wk)]. (2)

Don’t pay much attention to the difference between ‘limsup’ and ‘lim’ here. We’ll impose conditions
under which limits exist. Under such regularity conditions, the random horizon interpretation
extends to this case and one can understand the objective to be infπ Eπ[∑τ

k=0 g(xk, uk, wk)].

Proposition (Informal). Under appropriate regularity conditions, (2) admits an optimal policy π∗ =

(µ∗0 , µ∗1 , . . .) which is stationary. That is µ∗1 = µ∗2 = µ∗3 = · · · .

Intuitive rationale. Imagine N is enormous, but finite. For k that is much much smaller than N,
we expect that Jk(x) ≈ J0(x); The difference between having N periods remaining and N − k
periods remaining is effectively irrelevant, discount factor downweights the far away future at an
expontential rate. Hence, a policy µ∗0 with µ∗(x) ∈ arg minu E[g(x, u, w) + αJ1( f (x, u, w))] will also
nearly solve minu E[g(x, u, w) + αJk( f (x, u, w))] for k that are very small relative to N.

2.1 Technical assumptions

• The state space is finite or countable.

– This assumption sidesteps subtle measure theoretic issues that arise in dynamic pro-
gramming problems with general state space. For many specific models, like linear
quadratic control, these issues clearly do not arise. But when developing our generic
theory, our state spaces are defined over the rationals rather than the reals.

2



• The control space is finite.

– – This is used only to ensure that all minima are attained. Even when minima are not
attained, most of these arguments carry through in terms of infima (i.e. sequences of
policies whose performances converges to the infimum in (2)).

• The cost functions are uniformly bounded, i.e. sup(x,u,w) |g(x, u, w)| 6 M < ∞.

– Typically, cost functions are written as some function g(xk, uk, xk+1) of the state, action
and next state. In this case, the above assumption is satisfied when the state space is
finite or when the state space is compact and g is continuous. For problems where the
assumption is violated, the proofs given below will not work because they are based
on the max-norm of cost-to-go functions, which would be infinite. Arguments are then
based on other weighted max-norms.

2.2 Bellman operators

Each iteration of the DP algorithm can be viewed as an operation that takes a function Jk−1 and
gets a new function Jk, we introduce the bellman operators. For bounded J : X → R, we define
(TJ) : X → R by:

TJ(x) = min
u∈U(x)

E[g(x, u, w) + αJ( f (x, u, w))]

Suppose our goal is to evaluate

J∗n(x) = Eµ[
N−1

∑
k=n

αkg(xk, µ(xk), wk) + αN J(xN)|xn = x]

The DP algorithm from previous classes tell us how. WARNING. Here we have indexed time
backward. J∗k is the optimal cost-to-go function for a problem with k periods remaining, whereas
previously it referred to a problem with N − K periods remaining.

The DP algorithm can be written concisely in terms of Bellman operators as

J?0 = J

J?1 = TJ

· · ·
J?N = TJ?N−1 = · · · = TN J

Bellman operator for a stationary policy For a fixed policy µ : X → ∪xU(x) where µ(x) ∈ U(x),
we define:

(Tµ J)(x) = E[g(x, µ(x), w) + αJ( f (x, µ(x), w))]
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Suppose our goal is to evaluate

Jµ
n (x) = Eµ[

N−1

∑
k=n

αkg(xk, µ(xk), wk) + αN J(xN)|xn = x]

Then we can write DP algorithm for policy evaluation:

Jµ
0 = J

Jµ
1 = Tµ J

· · ·
Jµ
N = Tµ Jµ

N−1 = · · · = TN
µ J

Greedy policies
When we apply bellman operator on cost-to-go function J, we take the minimum. We now define
the set of policies that attain those minimum. We call them the greedy policies of J : G(J) =

{µ|Tµ J = TJ}, i.e.
µ(x) ∈ arg min

u∈U(x)
E[g(x, u, w) + αJ( f (x, u, w))] ∀x

.

2.3 Main result

Proposition 1. 1. There exists a unique J? : X → R (called the optimal cost-to-go function) that
satisfies the fixed point equation:

J? = TJ?

. For any J,
||TN J − J?||∞ 6 αN ||J − J?||∞

2. For every stationary policy µ, there exists a unique cost-to-go function Jµ : X → R that solves the
fixed point equation:

Jµ = Tµ Jµ.

For any J,
||TN

µ J − Jµ||∞ 6 αN ||J − Jµ||∞

3. If µ ∈ G(J?), then Jµ(x) = J?(x) for all x. For any (possibly non-stationary) policy π,

lim inf
N→∞

Eπ
[ N−1

∑
k=0

αkgk(xK, uk, wk)
∣∣∣x0 = x

]
> J?(x)

2.4 Remarks on interpretation

1. The first part of the theorem states that for a given policy, its cost-to-go function is the
unique fixed point of the Bellman operator Tµ. Recalling the definition of Tµ, this can be
interpreted as a temporal consistency condition: the expected cost to go must equal the
expected instantaneous cost plus the expected cost-to-go from the next state. Recall that TN

µ J
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is the cost-to-go function for an N period problem; the second part of item (1) identifies Jµ as
its infinite horizon limit.

2. The second part of the algorithm shows that the optimal cost function TN J for a N period
problem converges at a geometric rate to an infinite horizon limit: J∗ = limN→∞ TN J. More-
over, the optimal cost-to-go function J∗ is the unique solution to the Bellman fixed point
equation J∗ = J∗.

3. The third part of the result shows that stationary policy µ is optimal if it attains the argmin
(implicitly expressed via T) in the Bellman optimality equation J∗ = TJ∗.

2.5 Properties of the Bellman operator

We prove some generic properties of the Bellman operator which will be useful throughout the
course. Proposition 1 also follows as a consequence of these properties.

1. Monotonicity: If J(x) 6 J′(x) ∀x ∈ X, then TJ(x) 6 TJ′(x) ∀x ∈ X. We can also write
J � J′ ⇒ TJ � TJ′.

2. Constant Shift: T(J + c · e) = TJ + αc · e where we take e(x) = 1 ∀x ∈ X to denote a vector
of all ones.

3. Contraction: ‖TJ − TJ′‖∞ 6 α‖J − J′‖∞ ∀J, J′. In words, applying T to two cost-to-go
functions brings them geometrically closer.

The exact same statements also hold for Tµ. The monotonicity and constant shift follow by
inspecting the definition of the Bellman operators. We prove that these imply the contraction
property.

Proof of Contraction. Let ‖ · ‖ denote the infinity-norm ‖ · ‖∞. Consider:

J′ − ‖J − J′‖e � J � J′ + ‖J − J′‖e

Applying monotonicity gives:

T(J′ − ‖J − J′‖e) � TJ � T(J′ + ‖J − J′‖e)

Applying constant shift gives:

TJ′ − α‖J − J′‖e � TJ � TJ′ + α‖J − J′‖e

Subtracting TJ′ yields our desired result.

2.6 Contraction mapping theorem

We will prove this for F : B(X )→ B(X ), where B(X ) = {J : X → R : ‖J‖∞ < ∞}. Note that we
need the completeness of the space for the theorem to work (a Cauchy sequence converges to a
limit in a complete metric space).

Proposition 2. If ||FJ − FJ′|| 6 α‖J − J′‖ for all J, J′ ∈ B(X ), then:
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1. There exists a unique J∗ ∈ B(X ) such that FJ∗ = J∗.

2. For all J ∈ B(X ), ‖FN J − J∗‖ 6 αN‖J − J′‖.

Proof. We first prove that {Jk} is Cauchy, and by the completeness of the space the limit J∞ exists.
For fixed J, let J0 = J, Jk = FJk−1. We have:

||Jk+1 − Jk|| = ||FJk − FJk−1||
6 α||Jk − Jk−1|| (contraction operator)

6 ... 6 αk||J1 − J0|| (induction)

∀m > 1, we have:

||Jk+m − Jk|| 6
m

∑
l=1
||Jk+l − Jk+l−1|| (triangle inequality)

6 αk
m−1

∑
l=0

αl ||J1 − J0||

6 αk 1
1− α

||J1 − J0|| → 0 as k→ ∞

Therefore, {Jk} is Cauchy and by the completeness of the space, J∞ = limN→∞ FN J exists.
We now show the existence of a fixed point. The natural candidate for this fixed point is J∞. We

have:

0 6 ||FJ∞ − J∞||
6 ||FJ∞ − Jk||+ ||Jk − J∞|| (separation and triangle inequality)

6 α||J∞ − Jk−1||+ ||Jk − J∞|| → 0 as k→ ∞

We can also show existence by using the fact that contractivity gives continuity; F(limk→∞ Jk) =

limk→∞ FJk = J∗.
Now we look at the geometric convergence rate. Recalling that FJ∞ = J∞, we have:

||Jk − J∞|| = ||Fk J − Fk J∞|| 6 αk||J0 − J∞||

For the last step, we look at uniqueness. Suppose that J = FJ and J′ = FJ′ are two fixed points.
In order to show that J = J′, we can equivalently consider the distance between them:

||J − J′|| = ||FJ − FJ′|| 6 α||J − J′||

Therefore, ||J − J′|| = 0, and J = J′.

Note: Some simple functions don’t have a fixed point, consider f (x) = ex. Intuitively, the issue is that
the map x 7→ ex magnifies differences in the input, whereas contraction mappings “dampen” them.

2.7 Back to our main result

We now have the necessary tools to prove the main proposition.

6



Proof. The unique existence of J∗ is guaranteed by the Contraction Mapping Theorem, thus it
remains to prove item 3.

Suppose that µ ∈ G(J∗). By definition, Tµ J∗ = TJ∗ = J∗. Note that J∗ is the unique fixed point
of Tµ, so Jµ = J∗.

We now show no policy can attain lower cost We first show this for stationary policies, i.e. we
show that J∗ - Jµ for all µ. We observe that:

Jµ = Tµ Jµ % TJµ

Applying T to both sides and applying the monotonicity property gives:

Jµ % TJµ % T2 Jµ % ... % Tk Jµ % ... % J∗

Now, for non-stationary π, denote M = ||g||∞, and

Jπ(x) = lim
N→∞

Eπ
[ N−1

∑
k=0

αkg(xk, uk, wk)
∣∣∣x0 = x

]
> lim

N→∞
Eπ
[ m−1

∑
k=0

αkg(xk, uk, wk)
∣∣∣x0 = x

]
−

N−1

∑
k=m

αk M

> (Tm~0)(x)− αm

1− α
M

→ J∗(x) as m→ ∞.
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