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Setup

• Suppose there are m queues and a single server.
• There are no new arrivals.
• A cost g(i) is incurred per unit time per customer in queue i
• Service time dist. for a customer in queue i is exponential(µi )
• After service is completed a customer in queue i

1. Leaves the system with probability pi0

2. Joins queue j > 0 with probability pij .
• Costs are discounted exponentially at rate β > 0.

Main result:
A priority rule is optimal. Such a policy orders the m queues and,
at each decision period, services the highest priority non-empty
queue.

This result follows by using a few clever ideas to reduce the
problem to a bandit and then applying the Gittins index theorem.
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First idea: track the state of the customers not the queues

• There are initially n customers in the system, and we index
them by ` ∈ {1, · · · n}.

• Let i`(t) ∈ {0, · · · ,m} be the state of customer ` at time
t ∈ R+. The absorbing state 0 represents departure.

• u(t) ∈ {0, · · · , n} indicates which customer is being served.
• Serving a customer in state 0 is feasible, but not optimal.

• The objective is to minimize

E

 ∞∫
t=0

n∑
`=1

g
(

i`(t)
)

dt


where we set g(0) = 0.
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Second idea: uniformization

As we have seen before, a trick called uniformization allows us to
reduce discounted continuous time problems to discounted discrete
time problems.

• Set µ = maxi µi .
• Introduce random event times (potentially fictitious. . . ):

• t0 = 0, t1, t2, · · ·
• τ1 = t1 − t0, τ2 = t2 − t1

i.i.d∼ exponential(µ)
• Set i`k ≡ i`(tk).

• Modify costs and transition probabilities:
• p̃ii = µi

µ pii + µ−µi
µ and p̃ij = µi

µ pij for j 6= i .
• g̃(i) = 1

β+µg(i).
• Set α = µ

β+µ to be the effective discount factor.
• Our original continuous time problem is equivalent to:

Minimizeπ Eπ
[ ∞∑

k=0
αk
( n∑
`=0

g̃(i`k)
)]
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Third idea: move expected future costs to the present period

Right now, our problem does not look like a bandit because we
incur costs for customers that are not served. An accounting trick
moves all costs to the period in which service is provided.

• Define R(i , j) = α
1−α g̃(i)− α

1−α g̃(j)
• Set R(i) =

∑n
i=0 p̃ijR(i , j).

• Interpret R(i) as the reduction in expected cost due to
servicing a customer in queue i if we were to assume this is the
final service they receive.

• One can show our objective is equivalent to that in a bandit
problem:

Eπ
[ ∞∑

k=0
αk
( n∑
`=0

g̃(i`k)
)]

=
n∑
`=1

1
1− α g̃(x `0)−Eπ

[ ∞∑
k=0

αkR(iuk
k )
]
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Justifying the accounting trick

Consider customer `.
Let T1,T2, · · · denote the times at which it is played/serviced.
Let i1, i2, · · · denote its states at those times.
The total cost contribution from customer ` is:

E

[
T1∑

k=0

αk g̃(i1) +
T2∑

k=T1+1

αk g̃(i2) + · · ·

]

=E

[(
∞∑

k=0

αk g̃(i1)−
∞∑

k=T1+1

αk g̃(i1)

)
+

(
∞∑

k=T1+1

αk g̃(i2)−
∞∑

k=T2+1

αk g̃(i2)

)
+ · · ·

]

=E

[(
∞∑

k=0

αk g̃(i1)

)
+

(
∞∑

k=T1+1

αk (g̃(i2)− g̃(i1))

)
+

(
∞∑

k=T2+1

αk (g̃(i3)− g̃(i2))

)
+ · · ·

]
=E
[ 1

1− α
g̃(i1) + αT1 ·

α

1− α
· (g̃(i2)− g̃(i1)) + αT2 ·

α

1− α
· (g̃(i3)− g̃(i2)) + · · ·

]
=

g̃(i1)
1− α

− E
[
αT1 R(i1) + αT2 R(i2) + · · ·

]
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Final step: applying the Gittins index theorem

We have the problem of maximizing E
[∑∞

k=0 α
kR(iuk

k )
]
, where

when played in state i bandit `’s next state is j with probability p̃ij .

• By symmetry, the Gittins index G` : {0, · · · ,m} → R does not
depend on the bandit process (i.e. the identity of the
customer). We have G`(·) = G(·) for all ` ∈ {1, · · · , n}

• The Gittins index theorem says the optimal policy selects at
time k:

u∗k ∈ argmax
`∈{1,··· ,n}

G(i`k).

This is a priority rule, where the priority is determined by the
values of G(·).
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