
Course Notes On Dynamic Optimization (Fall 2023)
Lecture 7A: Indefinite Horizon Problems

Instructor: Daniel Russo

Email: djr2174@gsb.columbia.edu

Graduate Instructor: David Cheikhi
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These notes are partly based of scribed notes from a previous edition of the class. I have
done some follow up light editing, but there may be typos or errors.

Topics:

• Stochastic shortest path problems as a generalization of finite horizon and discounted prob-
lems.

• Contraction in a weighted maximum norm.

1 Indefinite horizion problems

1.1 Overview and perspective

So far we have covered two important problem classes: finite horizon (with general additive
objective) and infinite horizon problems with discount objectives.

Some situations are not so naturally modeled with either formulation. Imagine you play an
Atari game trying to accrue as many points as possible before your player perishes. Fixing a finite
horizon and searching over nonstationary policies seems like a clunky way to model the situation.
But discounting also seems artificial — the ‘financial’ interest accrued during a 30 minute game
is. . .not large.

Here we cover stochastic shortest path problems. These model interactions, like the Atari game or
interactions with a customer on a web-service, which continue until some special termination state
is reached. The goal is to minimize cumulative expected cost (or maximize cumulative expected
reward) accrued throughout this indefinite1 horizon.

I (Dan) love this class of problems because they unify my thinking. Dynamic programming
can quickly get cluttered. One can study finite horizon models, infinite horizon discounted
models, infinite horizon total cost models (in both the positive and negative cost case), average

1Indefinite: “lasting for an unknown or unstated length of time.”
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cost objectives, and so on. Indefinite horizon models provide a single formalism which generalizes
finite horizon and infinite-horizon discounted problems, and extends seamlessly to study a special
class of problems with average cost objective. Many other issues in more advanced DP (e.g. costs
being infinite under some very bad policy) are previewed in this case, also.

1.2 Transition probability notation

In these notes, I will restrict to finite state spaces (or, later, countable state spaces) and will work the
transition probabilities

p(x′|x, u) = P( f (x, u, wk) = x′),

where the probability on the right-hand-side is integrating over the i.i.d disturbance wk. In words,
this is the probability of transitioning to x′ when control u was applied in previous state x.

1.3 Problem Formulation

We consider the problem of minimizing expected costs until a special termination state ∅ is reached.

• The state space is X ∪ {∅} where X where X is countable.

• The ‘terminal state’ ∅ is costless (g(∅, u) = 0 and absorbing (P(xk+1 = ∅|xk = ∅, uk = u) =
1). This implies that any policy incurs zero expected cost starting from ∅.

• Single period costs are uniformly bounded, i.e. supx,u |g(x, u)| < ∞.

• Minima are attained, i.e. for any J and x, arg minu∈U(x) g(x, u)+∑x′∈X g(x, u)+ p(x′|x, u)J(x′)
is nonempty. (For instance, the set of feasible controls at any state is finite.)

Remark (Warning on notation). We can view the cost-to-go function J either as (1) having domain
X ∪ {∅} or as (2) having domain X . In the first case, we follow the implicit convention that J(∅) = 0 any
time we write J, without repeating this. In the second case, you should remember that the transition matrix
induced by a policy µ is sub-stochastic, in the sense that ∑x′∈X p(x′|x, u) 6 1 for given state/control pair
(x, u).

Define the termination time

τ = inf{k ∈ {0, 1, 2, . . .} : xk = ∅},

following the convention that τ = ∞ if the terminal state is never reached. Define the cost-to-go
function of a policy

Jπ(x) = Eπ

[
τ

∑
k=0

g(xk, uk) | x0 = x

]
A policy π∗ is said to be optimal if it satisfies Jπ∗(x) = infπ Jπ(x) for every x ∈ X .

Assumption 1. Under any policy and initial state, the terminal state is reached with probability 1. Moreover,
the expected termination time is uniformly bounded:

sup
π

sup
x∈X

Eπ [τ | x0 = x] < ∞.
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1.4 Casting finite horizon problems as a special case

Roughly speaking, finite horizon problems are a special case of our formulation in one views the
pair (x, k) indicating both a ‘state of some system’ x and a ‘state of time’ k as the overall system
state. Each time period is associated with a transition xk = (x, k)→ xk+1 = (x′, k + 1) until some
period k = N − 1 after which the system transitions to the the terminal state.

More formally, finite horizon problems are a special case of our formulation satisfying the
following condition.

• X factors into N disjoint sets as X = X0 ∪ · · · ∪ XN−1 where

p(∅|x, u) = 1 for all x ∈ XN−1 , u ∈ U(x)

and, for each k < N − 1,

∑
x′∈Xk+1

p(x′|x, u) = 1 for all x ∈ Xk , u ∈ U(x).

1.5 Casting infinite horizon discounted problems as a special case

Infinite horizon discounted problems are essentially a special case of our formulation in which

p(∅|x, u) = 1− α ∈ (0, 1)

for all x, u. In this case, τ | π, x0 ∼ Geometric(1− α) and

Jπ(x) = Eπ

[
τ

∑
k=0

g(xk, uk) | x0 = x

]
= lim

N→∞
Eπ

[
N

∑
k=0

1(τ > k)g(xk, uk) | x0 = x

]

= lim
N→∞

Eπ

[
N

∑
k=0

P(τ > k)g(xk, uk) | x0 = x

]

= lim
N→∞

Eπ

[
N

∑
k=0

αkg(xk, uk) | x0 = x

]
.

Every policy incurs the same expected cost in this indefinite horizon problem as it does in the
analogous infinite horizon discounted problem.

2 Theory of indefinite horizon problems

2.1 Bellman operators

Following the convention that J ∈ RX (omitting the terminal state). As before, Bellman operators
can be undertood as mapping the space of cost-to-go function into itself; here the correct space is
the set of bounded functions J = {J ∈ RX : ‖J‖∞ < ∞}. Define the Bellman operator Tµ : J → J
by

Tµ J(x) = g(x, µ(x)) + ∑
x′∈X

p(x′|x, µ(x))J(x′)
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and the the Bellman optimality operators T : J → J by

TJ(x) = min
u∈U(x)

g(x, u) + ∑
x′∈X

p(x′|x, u)J(x′).

These have the following properties:

• Monotonicity: If J � J′ then TJ � TJ′ (same for Tµ).

• Sub-constant shift: for a scalar r > 0 and a vector of all ones e ∈ RX , T(J + re) � T(J) + re.
(The same holds for Tµ and the inequality is reversed if r is negative.)

• Contraction: uh oh, these are not contractions in the maximum norm. Are they contraction
operators in some other norm?

2.2 Contraction

We aim to construct a norm in which the Bellman operator is a contraction, searching in the space
of weighted maximum-norms. For a strictly positive weighting w ∈ RX>0, define the weighted
maximum-norm

‖J‖∞,w = max
x∈X

w(x)|J(x)|.

Which weighting do we pick? We eventually choose w(x) = 1/V(x) for some “Lyapunov”
function V. A Lyapunov function is some kind of “generalized energy function” which is chosen
such that energy is expected to dissipate (on average) from any initial state. For our purposes we
define it formally as follows.

Definition 1. We say V : X → R>0 is a Lyapunov function if there exists β < 1 such that

max
u∈U(x)

∑
x′∈X

p(x′|x, u)V(x′) 6 βV(x) for all x ∈ X .

Define βV to be the smallest scalar β satisfying this inequality.

The next result shows that the Bellman operators are contractions in the weighted maximum
norm induced by a Lypunov function.

Proposition 1. If V is Lyapunov function, then T and Tµ are contractions with respect to the weighted
maximum norm ‖ · ‖∞,1/V with modulus βV .

The previous proposition is quite general, but identifying a Lyapunov function must be done
on a case-by-case basis. The next lemma provides a Lyapunov function for our problem.

Lemma 1. The function V(x) = supπ Eπ [τ | x0 = x] is a Lypunov function with βV 6 ‖V‖∞−1
‖V‖∞

.

Proof. Recognize that V is the cost-to-go function in an alternative problem with ”costs” g(x, u) =
−1 for all x and u; one can show that it satisfies the Bellman equation

V(x) = 1 + max
u∈U(x)

∑
x′∈X

p(x′|x, u)V(x′) ∀x ∈ X . (1)
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Re-arranging terms yields
∑

x′∈X
p(x′|x, µ(x))V(x′) 6 V(x)− 1.

Dividing both sides by V(x) and taking the maximum over x yields

max
x∈X

∑x′∈X p(x′|x, µ(x))V(x′)
V(x)

6 max
x∈X

V(x)− 1
V(x)

=
‖V‖∞ − 1
‖V‖∞

.

2.3 Understanding the weighted maximum norm

It is immediate from the definition that our bound on βV is close to 1 when the expected termination
time could be large, under some policy and some initial state. A somewhat unsatisfying feature
of this theory is that you might expect ‘reasonably good’ policies to rarely visit certain states and
to terminate quickly, but nevertheless βV would depend on the worst policy and state you could
choose.

Discounted problems are a special case of our formulation in which termination time has
distribution τ | x0, π ∼ Geometric(1− α). In this case, ‖V‖∞ = 1/(1− γ) so

βV 6 1− 1
1/(1− α)

= α.

Therefore, we recover our previous result about contractivity of the Bellman operator in the
discounted case.

In the finite horizon case, ‖V‖∞ = N and so βV 6 (N − 1)/N = 1− 1/N.
Finally, observe that a small weighted-max norm implies the unweighted max-norm is small,

since

‖J‖∞,1/V = max
x∈X

J(x)
V(x)

> max
x∈X

J(x)
‖V‖∞

=
‖J‖∞

‖V‖∞
,

or ‖J‖∞ 6 ‖J‖∞,1/V‖V‖∞.

2.4 Proof of Proposition 1

Proof. First, we establish the result for Tµ:

‖Tµ J − Tµ J′‖∞,1/V = max
x∈X

1
V(x)

∣∣∣∣∣ ∑
x′∈X

p(x′|x, µ(x))(J(x′)− J′(x′))

∣∣∣∣∣
= max

x∈X

1
V(x)

∣∣∣∣∣ ∑
x′∈X

p(x′|x, µ(x))V(x′)
(

J(x′)− J′(x′)
V(x′)

)∣∣∣∣∣
6 max

x∈X

(
∑x′∈X p(x′|x, µ(x))V(x′)

V(x)

)
‖J − J′‖∞,1/V

6 α‖J − J′‖∞,1/V
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Now, since Tµ is a contraction,

Tµ J(x)
V(x)

6
Tµ J′(x)
V(x)

+ βV‖J − J′‖∞,1/V ∀µ.

Then

TJ(x)
V(x)

= min
µ

Tµ J(x)
V(x)

6 min
µ

Tµ J′(x)
V(x)

+ βV‖J − J′‖∞,1/V =
TJ′(x)
V(x)

+ βV‖J − J′‖∞,1/V .

Reversing the role of J and J′ gives

|TJ(x)− TJ′(x)|
V(x)

6 α‖J − J′‖∞,1/V ∀x ∈ X .
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