
Course Notes On Dynamic Optimization (Fall 2023)
Lecture 8: Online value iteration and optimistic exploration

Instructor: Daniel Russo

Email: djr2174@gsb.columbia.edu

Graduate Instructor: David Cheikhi
Email: d.cheikhi@columbia.edu

These notes are partly based of scribed notes from a previous edition of the class. I have
done some follow up light editing, but there may be typos or errors.

1 Problem setup

Throughout these notes we continue to study indefinite horizon problems under the assumption
that all policies eventually reach the terminal state.

2 Value iteration

In dynamic programming, the algorithm that itreatively applies the Bellman operator is called
value iteration. Here is a version with a fixed iteration count N. In discounted problems, one could
set N ≈ log(1/ε)/(1− α) to ensure and ε–accurate approximation to J∗ is produced. This is overly
conservative, however, so in practice you would not use this version of the algorithm, you’d use
one that decides when to stop based on looking at the closeness between successive J’s.

Algorithm 1 Value iteration

Require: J0 ∈ R|X |, MDP M = (X ∪∅,U , g, p, d0), and iteration limit N.
1: for Episode n = 0, 1, 2, . . . , N − 1 do
2: Reset J+n ← Jn
3: for Each state x ∈ X do
4: Compute J+n (x)← minu∈U(xn

k)
g(xn

k , un
k) + ∑x′∈X p(x′|xn

k , un
k)Jn(x′).

5: end for
6: Update Jn+1 ← J+n
7: end for
8: return JN

1

3 Real time dynamic programming

The algorithm requires the following primitives:

• The ability to simulate the state trajectory under a given policy.

• The ability to perform one-step lookahead at a specific state. For instance, we can compute
TJ(x).

– It is worth emphasizing that many problems have large state spaces but sparse transi-
tions. That is, it is easy to loop over all possible successor states from a given state but
not to loop over all possible states. RTDP is especially natural in this case.

Algorithm 2 Real-Time Dynamic Programming (RTDP)

Require: J0 ∈ R|X |, MDP M = (X ∪∅,U , g, p, d0), and episode limit N.
1: for Episode n = 0, 1, 2, . . . , do
2: Reset J+n ← Jn and t← 0
3: Sample xn

0 ∼ d0
4: while xn

k 6= ∅ do
5: Compute J+n (x)← minu∈U(xn

k)
g(xn

k , un
k) + ∑x′∈X p(x′|xn

k , un
k)Jn(x′).

6: Choose action un
k ∈ arg minu∈U(xn

k)
g(xn

k , un
k) + ∑x′∈X p(x′|xn

k , un
k)Jn(x′)

7: Apply un
k and observe next state xn

k+1.
8: Update period count: k← k + 1.
9: end while

10: Update Jn+1 ← J+n
11: end for
12: return JN

We denote the policy employed by RTDP by µn ∈ G(Jn). In other words,

µn(x) ∈ arg min
u∈U(x)

g(x, u) + ∑
x∈X

p(x′|x, u)Jn(x′)

for each x. A point of possible confusion is that µn is never pre-computed or stored. Instead, we
compute it in an real-time fashion by performing one-step lookahead at the states we visit.

4 Illustrating exploration challenges with the ‘River Swim’ problem

River Swim Problem. We consider the following MDP describing the decision process of one
person swimming across the river from land (state 1) to the island (state n) in Figure 1.

Here X = {1, 2, . . . , n} and U(x) = {L, R}, ∀x ∈ X . The cost function is given by:

g(s, L) = 0,

g(s, R) =

{
ε, if s 6 n− 1

−1, if s = n

2

Figure 1: State-action Space of River Swim Problem

And the transition is deterministic, i.e. p(s− 1|s, L) = 1, s > 2; p(s + 1|s, R) = 1, s 6 n− 1. And
p(1|1, L) = p(n|n, R) = 1. It can be easily seen that if ε is small relative to 1− γ, then µ∗(x) = R, ∀x.

The next lemma shows that RTDP fails when applied with a pessimistic initialization.

Lemma 1. Consider a discounted analogue of the River swim problem (for simplicity). Suppose the initial
state is always the leftmost state (i.e. d0(1) = 1) and RTDP is applied with initial cost-to-go function J0 =~0.
Then, RTDP only visits state 1, always selects action L, and its cost-to-go functions satisfy Jn =~0 for each n.

Proof. Consider the Bellman update at state 1:

TJ0(1) = max{0 + αJ0(1) ε + αJ0(2)} = 0 + J0(1) = 0.

From this calculation J+0 (1) = 0, so the Bellman update does not change the cost-to-go estimate.
Moreover, u1

0 = L, so the next state is x0
1 = 1. Repeating this observation, we see the system stays

in the leftmost state indefinitely and the cost-to-go function never changes.

One possible resolution to this issue is to enforce that the initial distribution should place
strictly positive probability on each initial state. We show that a different, optimistic, initialization,
completely resolves the issue.

5 Regret bound under optimism

Right now, my proof requires the following condition to get the tightest bound. Looser bounds do
not require this condition.

Definition 1. We say the state transitions are acyclic if, under any policy, no state is visited more
than once during an episode.

Here is the key proposition.

Proposition 1. Suppose transitions are acylcic; If RTDP is applied with J0 � J∗, then,

sup
N∈N

E

[
N−1

∑
n=0

(Jµk(s
n
0)− J∗(xn

0))

]
︸ ︷︷ ︸

Cummulative Regret

6 ‖J∗ − J0‖1︸ ︷︷ ︸
Initialization error

. (1)

5.1 First analysis step: preservation of optimism

Lemma 2 (Preservation of Optimism). Under RTDP, If J0 � J∗, then J0 � J1 � · · · � Jn � J∗, ∀n with
probability 1.

3

Proof. We prove this result by induction. And we use n = 0 as a base of induction. Assume
Jn−1 � J∗, then we have:

TJn−1 � TJ∗ = J∗,

where the first inequality follows from the monotonicity of the Bellman operator and the equality
follows from the fact that J∗ is the fixed point of T. Then we discuss the following two situations
with respect to the state x ∈ X :

• If x ∈ {xn
0 , · · · , xn

τn
}, then the value at state x is updated and Jn(x) = TJn(x) 6 J∗(x) by the

above inequality.

• otherwise, the value at state x is not updated and Jn(x) = Jn−1(x) 6 J∗(x) by the induction
hypothesis.

5.2 Second analysis step: relating regret to the Bellman gap at visited states

Lemma 3. Let J ∈ R|X | satisfy J � J∗ and the stationary policy µ ∈ G(J) be greedy with respect to J.
Then

Jµ(x)− J∗(x) 6 E

[
τ

∑
k=0

(TJ(xk)− J(xk)) | x0 = x

]
.

Proof. Write Pµ ∈ R|X |×|X | for the sub-stochastic transition matrix under µ, Pµ(x, x′) = p(x′|x, µ(x)).
If gµ ∈ R|X |, then Tµ J = gµ + Pµ J. We find,

Jµ − J∗ � Jµ − J (by optimism)

= Tµ Jµ − J (since Jµ is a fixed point)

=
(
Tµ Jµ − Tµ J

)
+
(
Tµ J − J

)
=
(
Tµ Jµ − Tµ J

)
+ (TJ − J) (since µ ∈ G(J))

=
(

gµ + Pµ Jµ − gµ − Pµ J
)

= Pµ (Jµ − J) + (TJ − J)

= · · ·

=
∞

∑
k=0

Pk
µ (TJ − J) (by iterating the recursion).

For any x,
(

∑∞
k=0 Pk

µ (TJ − J)
)
(x) = E [∑τ

k=0 (TJ(xk)− J(xk)) | x0 = x], completing the proof.

5.3 Completing the proof

When reading this proof, it is helpful to keep in mind that

J0 � J1 � · · · � Jn � · · · � J∗.

The main idea in the proof is to relate regret in episode n to the overall reduction in optimism
∑x∈X (Jn+1(x)− Jn(x))

4

Proof.

Jµn(xn
0)− J∗(xn

0)︸ ︷︷ ︸
Regret

6 E

[
τn

∑
k=0

(TJn(xn
k)− Jn(xn

k)) | xn
0 , Jn

]
(2)

= E

[
τn

∑
k=0

(Jn+1(xn
k)− Jn(xn

k)) | xn
0 , Jn

]
︸ ︷︷ ︸

Reduction in optimism

. (3)

Define e to be a vector all 1’s, so 〈e , J〉 = ∑x∈X J(x). Then,

τn

∑
k=0

(Jn+1(xn
k)− Jn(xn

k)) = 〈e , Jn+1 − Jn〉,

using that Jn+1(x) = Jn(x) for any x /∈ {xn
0 , · · · , xn

τn
} and also using for the first (and last) time that

state transitions are acyclic). Therefore

Jµn(xn
0)− J∗(xn

0) 6 E [〈e , Jn+1 − Jn〉 | xn
0 , Jn] .

Summing over n and using the law of iterated expectations gives,

E

[
N−1

∑
n=0

(Jµn(xn
0)− J∗(xn

0))

]
6 E

[
N−1

∑
n=0
〈e , Jn+1 − Jn〉

]
= E [〈e , JN − J0〉] .

Since J0 � JN � J∗, we upper bound the final term with probability 1 as

〈e , JN − J0〉 6 〈e , J∗ − J0〉 = ‖J∗ − J0‖1.

5

	Problem setup
	Value iteration
	Real time dynamic programming
	Illustrating exploration challenges with the `River Swim' problem
	Regret bound under optimism
	First analysis step: preservation of optimism
	Second analysis step: relating regret to the Bellman gap at visited states
	Completing the proof

	`Provably efficient' learning in tabular MDPs

