
Course Notes On Dynamic Optimization (Fall 2023)
Lecture 9A: Approximate value iteration

Instructor: Daniel Russo

Email: djr2174@gsb.columbia.edu

Graduate Instructor: David Cheikhi
Email: d.cheikhi@columbia.edu

These notes are partly based of scribed notes from a previous edition of the class. I have
done some follow up light editing, but there may be typos or errors.

1 Problem setup

Throughout these notes we continue to study indefinite horizon problems under the assumption
that all policies eventually reach the terminal state.

2 Parametric approximations to the value function

In many problems, the number of possible distinct states scales exponentially in some measure vari-
able – the number of queues in a , the length of the lead time in inventory control, etc. Computing
or even storing the cost-to-go function for each possible state quickly becomes intractable.

A large set of techniques in the fields of approximate dynamic programming and reinforcement
learning attempt to overcome the curse-of-dimensionality by fitting (or ‘learning’) a parametric
approximation of the cost-to-go function J∗.

(a) State aggregated approx. (b) Neural network approx. (c) Tetris

1

2.1 State aggregation

Suppose we believe apriori that some states should be ‘similar’ to others. State aggregated repre-
sentations exploit this by ignoring the (hopefully unimportant) distinctions between similar states.
See Figure 1a.

For any partition of the states and choice of canonical representatives of the subsets that form
the partition, we can define a canonical surjective map φ : X → {x̄1, . . . , x̄m} which sends states to
the canonical representative of the cluster the state is a member of (conversely, any such φ induces
a partition). Our general goal is to come up with algorithms whose computational and statistical
complexity scales with the number of partitions (as opposed on the number of original states).

The class of state-aggregated cost-to-go functions

Jφ = {J ∈ RX | J(x) = J(x′) ∀x, x′ φ(x) = φ(x′)}

consists of all rules for assigning real numbers to states that do not distinguish between sates in a
common cluster. Any member J of this class can be encoded by a parameter θ ∈ Rk of length equal
to the number of clusters by defining θi = φ(x̄i) and setting

Jθ(x) = θi ⇐⇒ φ(x) = x̄i.

For algorithms that use this approximation to be efficient, we require that φ(·) is efficient com-
putable.

2.2 Linear function approximation

In a game of Tetris (Fig 1c) we can describe the current state by defining a binary variable for each
possible cell in the grid. For a 10× 10 grid, we would then have ≈ 2100 possible states. Instead, one
might seek to approximate the optimal cost-to-go as

J∗(x) ≈ 〈φ(x), θ̂〉,

by searching for the weights θ∗. Successful early applications use handcrafted features vectors
defined by

φ(s) =



height of column 1
...

height of column n
|intercol. height diff. 1|

...
|intercol. height diff. n− 1|
Maximum column height


,

which has only 20 dimensions. The design of these features reflects a lot of human intuition about
the game.

2

2.3 Neural network

Since about 2012, most impressive demonstrating of reinforcement learning have use neural
networks (Fig 1c) rather than linear models.

3 Fitted value iteration

Algorithm 1 Fitted value iteration – idealized version

Require: Jθ0 ∈ R|X |, and iteration limit N
1: for Episode n = 0, 1, 2, . . . , N − 1 do
2: Fit Jθn+1 ∈ arg min Ĵ∈JΘ

‖ Ĵ − TJθ‖2
2,w.

3: end for
4: return JθN

3.1 Practical variants

The idealized fitted value iteration algorithm 1 is a fundamental abstraction for studying issues in
reinforcement learning and approximate dynamic programming. Here we describe implementable
variants of the algorithm, working up to a method that looks like Q-learning.

Algorithm 2 approximates the idealized Algorithm 1 by sampling a finite number of states
from w. This require an ability to a) sample from w and b) compute TJθ(x) for any given state x.
Think of tetris, where it is hopeless to loop over all possible states, but you could comptue the the
Bellman backup TJθ(x) for a given game state, since the set of possible succesor states to x can be
easily enumerated. Batch fitted value iteration requires exactly solving an optimization problem

Algorithm 2 Batch fitted value iteration

Require: Jθ0 ∈ R|X |, and iteration limit N, sampling distribution w, sample size M,
1: for Episode n = 0, 1, 2, . . . , N − 1 do
2: for m = 1, . . . , M do
3: Sample xm ∼ w
4: Compute J+(xm)← minu∈U(xm) g(xm, u) + ∑x′∈X p(x′|xm, um)Jθn(x′).
5: end for
6: Fit θn+1 = arg minθ ∑M

m=1(Jθ(xm)− J+(xm))2.
7: end for
8: return JθN

to generate the next paramter θn+1. It seems wasteful to exactly compute the Bellman backup of a
cost-to-go function that is anyway . The next algorithm instead makes a single gradient update. (In
between these two is a version that makes a fixed number of gradient updates.)

Algorithm 3 still requires the ability to plan locally, i.e. to solve TJθ(x) at a given state x.
Moreover, we’d need to continue to do that in an online fashion in order to implement the greedy
policy with respect to the final cost-to-go function J. To avoid this, it is common to work with
so-called Q functions, which track a cost-to-go for each possible state and each hypothetical control

3

Algorithm 3 SGD style fitted value-iteration

Require: Jθ0 ∈ R|X |, and iteration limit N, distribution w
1: for n = 0, 1, 2, . . . , N − 1 do
2: Sample xn ∼ w
3: Compute J+(xn)← minu∈U(xn) g(xn, u) + ∑x′∈X p(x′|xn, un)Jθn(x′).

4: Update θn+1 = θn −∇θ(Jθ(xn)− J+(xn))2
∣∣∣∣
θ=θn

.

5: end for
6: return JθN

decision. The optimal Q function is the unique solution to the fixed point equation,

Q∗(x, u) = g(x, u) + ∑
x′∈X

p(x′|x, u) min
u′∈U(x′)

Q∗(x′, u′) ∀x, u ∈ U (x).

Algorithm 4 modifies Algorithm 3 to work with Q functions. This method is called Q-learning
(though practical implementations may differ in terms of how the states at which updates occur
are sampled.)

Algorithm 4 SGD style fitted Q-iteration

Require: Qθ0 ∈ R|X |, and iteration limit N, distribution w over X × U .
1: for n = 0, 1, 2, . . . , N − 1 do
2: Sample (xn, un) ∼ w
3: Apply (xn, un) and observe the next state x′n.
4: Compute Q+(xn, un)← g(xn, un) + minu∈U(x′n) Qθn(x′n, u).

5: Update θn+1 = θn −∇θ(Qθ(xn, un)−Q+(xn, un))2
∣∣∣∣
θ=θn

.

6: end for
7: return QθN

4 Guarantees for approximate value iteration

We give some guarantees for approximate value iteration. These are, in general, the best one can
do. But they do not paint a very promising story.

Recall that T is a contraction in the norm ‖J‖∞,1/V = supx∈X
|J(x)|
V(x) with modulus α = (‖V‖∞ −

1)/‖V‖∞. That is,
‖TJ − TJ′‖∞,1/V 6 α‖J − J′‖∞,1/V ,

where we defined
V(x) = sup

π
Eπ[τ | x0 = x].

What can we say about approximate value iteration?

4

Define the approximate bellman operator given by

T̂ J = arg min
Ĵ∈JΘ

‖ Ĵ − TJ‖2
2,w.

View this as on operator on the space JΘ and define the error measure on that space
Already something is a little weird here – or at least unfortunate – here. We are approximating

the Bellman operator in one norm but it is a contraction in a different norm.
The next generic lemma bound performance degredation when you plan with respect to an

cost-to-go function.

Lemma 1. If µ ∈ G(J) then ‖Jµ − J∗‖∞,1/V 6 1
(1−α)

‖J − J∗‖∞,1/V .

Proof. Given below.

How big is the error in the cost-to-go? We bound it here in terms of the horizon and a very
severe notion of approximation error.

Lemma 2 (Cost-to-go error). Under the approximate value iteration scheme where J0 ∈ JΘ and

Jn = T̂ Jn−1 n = 1, . . . ,

the following error bound is satisfied:

lim sup
n→∞

‖Jn − J∗‖∞,1/V 6
2α

(1− α)
· εΘ

where
εΘ = sup

J∈JΘ

‖T̂ J − TJ‖∞,1/V .

Proof. Your homework!

If we put these two upper bounds together we accrue two factors of the ‘horizon’ 1/(1− α).

Corollary 1. Consider the approximate value iteration scheme where J0 ∈ JΘ and Jn = T̂ Jn−1 for
n = 1, 2,

Then,

lim sup
n→∞

‖Jµn − J∗‖∞,1/V 6
2α

(1− α)2 · εΘ

4.1 Unfortunate features of this bound

Horizon dependence In discounted problems, α is simply the discount factor,and 1/(1− α) is the
effective horizon. In finite horizon problems with N periods, 1/(1− α) = N is exactly equal to the
horizon. The amplification of error with the square of the horizon is quite unfortunate, suggesting
that even on a per-period basis, decision-quality degrades with the length of the horizon.

5

Th need for uniform approximation. εΘ depends on a (weighted) infinity norm of error, and so
in a sense its is small only if parametric approximation is accurate uniformly across the state space.
Moreover, while we might expect that our basis functions reflect well the cost-to-go under ‘good’
policies, εΘ seems to require that we can accurately reprent the Bellman backup of an arbitrary
input J. The next definition formalizes the scenario in which εΘ = 0.

Definition 1. The class of value functions JΘ is closed under Bellman operators if TJ ∈ JΘ for each
J ∈ JΘ.

Some recent ‘RL Theory’ literature calls this condition “completeness’ rather than closure.

5 Proof of Lemma 1

Proof. Recall that V is a Lyapunov function, meaning that for every possible policy µ′

Pµ′V � αV. (1)

Now, set δ = ‖J − J∗‖∞,1/V . Then for all x,

J(x)− δV(x) 6 J∗(x) 6 J(x) + δV(x),

i.e.
J−δV � J∗ � J + δV.

Using monotonicity and the Lyapunov condition yields

Tµ J∗ � Tµ (J + δV) (Monotonicity)

= gµ + Pµ (J + δV) Definition

= Tµ J + δPµV

� Tµ J + (δα)V (Lyapunov condition)

= TJ + (δα)V (Since µ ∈ G(J))

� T(J∗ + δV) + (δα)V (Monotonicity)

= min
µ′

(Tµ′ J∗ + δV) + (δα)V (Definition)

� min
µ′

Tµ′ J∗ + δ max
µ′′

Tµ′′V + (δα)V

� min
µ′

Tµ′ J∗ + 2(δα)V (Lyapunov condition)

= TJ∗ + 2(δα)V

= J∗ + 2(δα)V (J∗ is a fixed point).

The notation minµ′ Tµ′ J refers to element-wise minimization that comes from picking µ′(x) =

arg minu∈U(x) g(x, u) + ∑x′∈X p(x′|x, u)J(x′).
We showed Tµ J∗ � J∗ + 2(δα)V. Applying Tµ to both sides and using the Monotinicty property

and the Lyapunov property of V gives

T2
µ J∗ � Tµ J∗ + 2(δα)αV � 2δ(α + α2)V.

6

Repeating this inductively, we get

Jµ = lim
k→∞

Tk
µ J∗ � 2δ

1− α
V.

We get

0 � Jµ − J∗ � 2δ

1− α
V

so supx∈X
|Jµ(x)−J∗(x)|

V(x) 6 2δ
1−α as desired.

7

	Problem setup
	Parametric approximations to the value function
	State aggregation
	Linear function approximation
	Neural network

	Fitted value iteration
	Practical variants

	Guarantees for approximate value iteration
	Unfortunate features of this bound

	Proof of Lemma 1
	State-aggregated fitted value iteration
	State-aggregated Real time dynamic programming
	Regret bound under optimism
	First step: some rewriting
	Second analysis step: preservation of optimism
	Second analysis step: relating regret to the Bellman gap at visited states
	Completing the proof

