
Course Notes On Dynamic Optimization (Fall 2023)
Lecture 9B: The robustness benefits of online value iteration

Instructor: Daniel Russo

Email: djr2174@gsb.columbia.edu

Graduate Instructor: David Cheikhi
Email: d.cheikhi@columbia.edu

These notes are partly based of scribed notes from a previous edition of the class. I have
done some follow up light editing, but there may be typos or errors.

Most RL algorithms proceed in an online manner. Rather than loop over states, as in classic
DP algorithms, or sample states from a fixed distribution, as in our fitted VI algorithms, they learn
from data from deploying policies in their environment. This raises lots of challenges (how do you
explore?) and seems like a questionable constraint in practice when so many success stories use
simulators.

So, if you did have a simulator, is there something advantageous about trying to solve for effective policy
in an “online manner.” In the special case of state-aggregated representations, we’ll be able to answer
that affirmatively.

These notes are largely inspired from the following references.

• Performance loss bounds for approximate value iteration with state aggregation. B Van Roy,
2006.

• Simple agent, complex environment: Efficient reinforcement learning with agent states. Shi
Dong, Benjamin Van Roy, Zhengyuan Zhou, 2022.

However, in my attempt to understand (and simplify) things, the proofs, formulation, etc turned
out to be quite different. Any errors are my own.

1 Error bound for fitted value iteration in the state-aggregated

Define the approximation error

ε∗ = sup
x∈X
|J∗(x)− J∗(φ(x))|.

This depends only on the cost-to-go function under the optimal policy, a huge improvement over εΘ

in the previous notes.
But we still get an unfortunate amplification of error as the horizon grows.
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Lemma 1 (Informal). Consider a discounted problem with discount factor α. Under approximate value
iteration with state-aggregated representations

lim
n→∞

‖Jµn − J∗‖∞ = O
(

ε∗
(1− α)2

)
It is possible to construct a problem in which this bound is tight and the quadratic scaling in the effective
horizon 1/(1− α) occurs.

2 State-aggregated Real time dynamic programming

We revisit RTDP in the state-aggregated case. As before, the algorithm requires the following
primitives:

• The ability to simulate the state trajectory under a given policy.

• The ability to perform one-step lookahead at a specific state. For instance, we can compute
TJ(x).

– It is worth emphasizing that many problems have large state spaces but sparse transi-
tions. That is, it is easy to loop over all possible successor states from a given state but
not to loop over all possible states. RTDP is especially natural in this case.

Algorithm 1 Real-Time Dynamic Programming (RTDP)

Require: J0 = (J0(x̄1), . . . , J0(x̄m)) ∈ Rm, episode limit N, aggregation rule φ, error limit ε∗.
1: for Episode n = 0, 1, 2, . . . , do
2: Reset J+n ← Jn and k← 0
3: Sample xn

0 ∼ d0
4: while xn

k 6= ∅ do
5: Compute J+n (φ(xn

k ))← minu∈U(xn
k )

g(xn
k , un

k ) + ∑x′∈X p(x′|xn
k , un

k )Jn(φ(x′))− ε∗.
6: Choose action un

k ∈ arg minu∈U(xn
k )

g(xn
k , un

k ) + ∑x′∈X p(x′|xn
k , un

k )Jn(φ(x′))
7: Apply un

k and observe next state xn
k+1.

8: Update period count: k← k + 1.
9: end while

10: Update Jn+1 ← J+n
11: end for
12: return JN

3 Regret bound under optimism

Right now, my proof requires the following condition to get the tightest bound. I know how to get
rid of this condition in the discounted case, at the expense of worse bounds, but not yet in general.

Definition 1. We say the state transitions are φ-acyclic if, under any policy, for any i ∈ [m],
φ(xk) = x̄i occurs at most once during an episode.
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Proposition 1. Suppose transitions are φ-acylcic; If φ-RTDP is applied with J0 � J∗, then,

E

[
N−1

∑
n=0

(Jµn(xn
0 )− J∗(xn

0 ))

]
︸ ︷︷ ︸

Cummulative Regret

6
m

∑
i=1

(J∗(x̄i)− J0(x̄i))︸ ︷︷ ︸
Initialization error

+ε∗ ×E

[
N−1

∑
n=0

τn

]
. (1)

In particular,

lim sup
N→∞

E
[
∑N−1

n=0 (Jµn(xn
0 )− J∗(xn

0 ))
]

E
[
∑N−1

n=0 τn
]

︸ ︷︷ ︸
average regret per-period

6 ε∗.

3.1 First step: some rewriting

Lemma 2. For any n and k 6 τn − 1, Jn+1(xn
k ) = TJn(xn

k )− ε∗.

Proof. State aggregation implies Jn+1(x) = Jn+1(φ(x)). Because transitions are φ-acyclic, once J+n is
updated at some cluster its value is never changed again within an episode. Therefore,

Jn+1(xn
k ) = J+n (φ(xn

k )).

Now

J+n (φ(xn
k )) = min

u∈U(xn
k )

g(xn
k , un

k ) + ∑
x′∈X

p(x′|xn
k , un

k )Jn(φ(x′))− ε∗

= min
u∈U(xn

k )
g(xn

k , un
k ) + ∑

x′∈X
p(x′|xn

k , un
k )Jn(x′)− ε∗ (Since Jn is state-aggregated)

= TJn(xn
k )− ε∗.

3.2 Second analysis step: preservation of optimism

The value V0 in the initial iterate of the RTDP-φ is optimistic in the sense of J0 � J∗. We will show
that this optimism is preserved throughout the iterations of RTDP-φ or, equivalently,

Lemma 3 (Preservation of Optimism). Under φ-RTDP, if J0 � J∗ then with probability 1,

Jn � J∗, for n = 0, . . . , N − 1. (2)

Proof. Suppose that Jn � J∗ for some n ∈ {0, 1, . . . , N − 2}. Then,
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J+n (φ(xn
k )) = min

u∈U(xn
k )

g(xn
k , un

k ) + ∑
x′∈X

p(x′|xn
k , un

k )Jn(φ(x′))− ε∗

= min
u∈U(xn

k )
g(xn

k , un
k ) + ∑

x′∈X
p(x′|xn

k , un
k )Jn(x′)− ε∗ (Since Jn is state-aggregated)

= TJn(xn
k )− ε∗

6 TJ∗(xn
k )− ε∗ (By monotinicty and optimism of Jn)

= J∗(xn
k )− ε∗ (Since J∗ is a fixed point of T)

6 J∗(xn
k ) + ε∗ − ε∗ (Definition of approximation error)

= J∗(xn
k ).

3.3 Second analysis step: relating regret to the Bellman gap at visited states

This lemma is copy pasted from last week’s notes.

Lemma 4. Let J ∈ RX satisfy J � J∗ and the stationary policy µ ∈ G(J) be greedy with respect to J. Then

Jµ(x)− J∗(x) 6 E

[
τ

∑
k=0

(TJ(xk)− J(xk)) | x0 = x

]
.

Proof. Write Pµ ∈ R|X |×|X | for the sub-stochastic transition matrix under µ, Pµ(x, x′) = p(x′|x, µ(x)).
If gµ ∈ R|X |, then Tµ J = gµ + Pµ J. We find,

Jµ − J∗ � Jµ − J (by optimism)

= Tµ Jµ − J (since Jµ is a fixed point)

=
(
Tµ Jµ − Tµ J

)
+
(
Tµ J − J

)
=
(
Tµ Jµ − Tµ J

)
+ (TJ − J) (since µ ∈ G(J))

=
(

gµ + Pµ Jµ − gµ − Pµ J
)

= Pµ (Jµ − J) + (TJ − J)

= · · ·

=
∞

∑
k=0

Pk
µ (TJ − J) (by iterating the recursion).

For any x,
(

∑∞
k=0 Pk

µ (TJ − J)
)
(x) = E [∑τ

k=0 (TJ(xk)− J(xk)) | x0 = x], completing the proof.

3.4 Completing the proof

When reading this proof, it is helpful to imagine that

J0 � J1 � · · · � Jn � · · · � J∗.
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The main idea in the proof is to relate regret in episode n to the overall reduction in optimism
∑x∈X (Jn+1(x)− Jn(x))

Proof. By Lemma 2,
Jn+1(xn

k ) = TJn(xn
k )− ε∗.

Using this together with Lemma 4 and optimism, we find that for any fixed n,

Jµn(xn
0 )− J∗(xn

0 )︸ ︷︷ ︸
Regret

6 E

[
τn

∑
k=0

(TJn(xn
k )− Jn(xn

k )) | xn
0 , Jn

]

= E

[
τn

∑
k=0

(Jn+1(xn
k )− Jn(xn

k ) + ε∗) | xn
0 , Jn

]
(∗)
= E

[
τn

∑
k=0

(Jn+1(φ(xn
k ))− Jn(φ(xn

k )) + ε∗) | xn
0 , Jn

]

= E

[
m

∑
i=1

(Jn+1(x̄i)− Jn(x̄i))× Tn
i + τnε∗ | xn

0 , Jn

]
where Tn

i :=
τn−1

∑
k=0

1(φ(xn
k ) = i)

(∗)
= E

[
m

∑
i=1

(Jn+1(x̄i)− Jn(x̄i)) + τnε∗ | xn
0 , Jn

]
.

The key step is equality (*), which uses that Tn
i ∈ {0, 1} since the transitions are φ-acyclic and (by

the definition of the algorithm), estimated cost-to-go is not updated for a cluster when Tn
i = 0.

Summing over n, using the law of iterated expectations, and simplifying a telescoping sum
yields

E [Jµn(xn
0 )− J∗(xn

0 )] 6 E

[
k

∑
i=1

(JN(x̄i)− J0(x̄i))

]
+ ε∗E

[
N−1

∑
n=0

τn

]
.

The last step uses optimism, i.e. JN � J∗ to rewrite the bound as

E [Jµn(xn
0 )− J∗(xn

0 )] 6
k

∑
i=1

(J∗(x̄i)− J0(x̄i)) + ε∗E

[
N−1

∑
n=0

τn

]
.
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