
B9140 Dynamic Programming and Reinforcement Learning Fall 2017

Prof. Daniel Russo September 11, 2017

Homework 1, Due in class Monday September 18

When formulating a problem and/or providing a dynamic programming recursion, make sure to clearly

define the state space, action space, cost function, and state dynamics. When characterizing an optimal

policy, make sure to clearly define the nature of the state that it takes as input and the action that it produces

as output.

1 Deterministic Costs

In class, we formulated a problem where the cost incurred in period k, gk(xk, uk, wk), is a function not only

of the state xk and control uk but of the random disturbance wk. Consider a modified MDP with the same

transition dynamics

xk+1 = fk(xk, uk, wk) k ∈ {0, 1, . . . , N − 1}

but where costs incurred at stage k are a deterministic function of g̃k(xk, uk) of the state and control, defined

by

g̃k(x, u) = E[gk(x, u, wk)] ∀x ∈ Xk, u ∈ Uk(x).

Show that the optimal cost–to–go function J∗(x0) and the optimal policy is the same for both problems.

(You may assume for simplicity that there is a unique optimal policy for the problem with random costs

gk(xk, uk, wk).)

Solution

We will argue that every step of the DP algorithm is the same for each problem.

Precisely, the DP algorithm with random stage costs produces a sequence of cost-to-go functions (J∗0 , . . . J
∗
N )

and an optimal policy (µ0, . . . , µN ). The DP algorithm for the problem with deterministic stage costs pro-

duces a sequence of cost-to-go functions we will denote by (J̃0, . . . J̃N ) and an optimal policy we will

denote by (µ̃0, . . . , µ̃N ). We’ll show J∗k = J̃∗k and µk = µ̃k for every k.

Working backward through time we have that for all x ∈ Xn

J∗N (x) = min
u∈UN (x)

E[gN (x, u, w)] = min
u∈UN (x)

g̃N (x, u) = J̃∗N (x)

and

µN (x) = argmin
u∈U(x)

E[gN (x, u, w)] = argmin
u∈U(x)

g̃N (x, u) = µ̃N (x)



Proceeding by induction, assume J∗k+1 = J̃∗k+1. Then for all x ∈ Xk

J∗k (x) = min
u∈Uk(x)

E[gk(x, u, w) + J∗k+1(fk(x, u, w))]

= min
u∈Uk(x)

g̃k(x, u) + E[J̃∗k+1(fk(x, u, w))] = J̃∗k (x).

Therefore J∗k = J̃∗k for k = 0, 1, . . . , N . Similarly, we conclude

µk(x) = argmin
u∈Uk(x)

E[gk(x, u, w) + J∗k+1(fk(x, u, w))]

= argmin
u∈Uk(x)

g̃k(x, u) + E[J̃∗k+1(fk(x, u, w))] = µ̃k(x).

2 Optimal Sequential Search

Consider the problem of actively searching for the location of an unknown target z∗ ∈ [0, 1]. At each time

k, we query a location uk ∈ [0, 1] and are told whether z∗ is smaller or larger than uk. (We observe 1{z∗ >
uk}) Based on these observations, we can construct increasingly refined intervals [ak, bk] ⊆ [ak−1, bk−1] ⊆
... ⊆ [0, 1] that are guaranteed to contain z∗. In particular, [a1, b1] = [0, u0] if we observe that z∗ ≤ u0 and

is [u0, 1] otherwise.

We will use dynamic programming to study how to sequentially acquire information about z∗ in an optimal

manner. Assume the location of the target z∗ is drawn uniformly at random from [0, 1]. The objective is to

sequentially choose the querry points u0, u2, ...uN−1 to minimize E [log(bN − aN )] .

a) Formulate this problem as a finite horizon Markov decision process.

b) Solve for the optimal policy µ∗N−1(aN−1, bN−1) and cost-to-go function J∗N−1 at stage N − 1. Hint:
it is easier to work with the variable pk ≡ (uk − ak)/(bk − ak) ∈ [0, 1]

c) Prove that a myopic policy is optimal. That is, show µ∗k = µ∗N−1 for all k.

Solution

a) The state space X = {[a, b] ∈ [0, 1]2 : a ≤ b} is the set of intervals in [0,1] and the set of controls is

U([ak, bk]) = [ak, bk]. The transition dynamics are defined by

[ak+1, bk+1] =

[uk, bk] w/Prob. (bk − uk)/(bk − ak)

[ak, uk] otherwise

b)

JN−1([a, b]) = min
p∈[0,1]

{p log (p|b− a|) + (1− p) log ((1− p)|b− a|)}

= log(b− a) + min
p∈[0,1]

{p log(p) + (1− p) log(1− p)} = log(b− a) + log(1/2)



The optimal choice is pN−1 = 1/2, or equivalently, the optimal policy is µ∗N−1([a, b]) = (a + b)/2.

This can be seen by setting the derivative of {p log(p) + (1− p) log(1− p)} to zero:

p

p
− 1− p

1− p
+ log(p)− log(1− p) = 0 ⇐⇒ p = 1− p ⇐⇒ p = 1/2.

c) We show by induction that for all k, Jk([ak, bk]) = log(bk − ak) + ck where ck is a constant. Since

ck doesn’t affect our choice of action, it follows immediately that a myopic policy is optimal.

Base case: JN ([a, b])
Def
= log(b− a) =⇒ cN = 0

Induction step: Suppose the claim holds for period k + 1. Then proceeding as in part (b)

Jk([a, b]) = log(b− a) + min
p∈[0,1]

{p log(p) + (1− p) log(1− p)}+ ck+1︸ ︷︷ ︸
ck

= log(b− a) + ck

Comments for those familiar with information theory

Knowledge of information theory is not needed, or necessarily even helpful for solving this problem, but it

does provide an interesting interpretation of this result.

Based on our first N observations, we can update the prior distribution of z∗ to a posterior distribution,

which is Uniform(aN, bN). The terminal cost E [log(bN − aN )] is the differential entropy of the posterior

distribution of z∗, a common measure of our uncertainty about z∗. This result shows a myopic policy, which

always samples a point that leads to the largest expected reduction in the entropy of z∗ in this period, is in

fact optimal for the multi-period problem. This result can be generalized to situations where z∗ is drawn

from any continuous distribution on [0,1]. More can be learned from the recent papers (Bisection Search

with Noisy Responses R. Waeber, P.I. Frazier & S.G. Henderson, 2013) and (Twenty Questions with Noise:

Bayes Optimal Policies for Entropy Loss B. Jedynak, P.I. Frazier & R. Sznitman, 2012).

3 Optimal Stopping

This problem asks you to solve problem 3.19 of Bertsekas Vol. 1. The solution from the textbook author is

provided in a separate document. The solutions are from an earlier version of the text, and therefore label

this as problem 4.19.


