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Homework 2, Due in class Monday October 9

1 Discounting Is Equivalent To A Geometrically Distributed Horizon

Consider a special case of the (undiscounted) MDPs with indefinite horizon we discussed in Class 2. The

state space is X ∪ {t} where t is a terminal state. In particular, t is costless (g(t, u) = 0) and absorbing

(P (t, u, t) = 1). Assume that for all x ∈ X , and controls u P (x, u, t) = 1 − γ. That is, the time of

termination is geometrically distributed with parameter 1 − γ and is independent of the choice of policy.

The agent’s goal is to minimize cumulative (undiscounted) expected costs incurred prior to termination.

Since t is costless and absorbing, it natural to only track the cost to go for non-terminal states x ∈ X . For

any J ∈ R|X| define

(TµJ)(x) = g(x, µ(x)) +
∑
x′∈X

P (x, µ(x), x′)J(x′)

and

(TJ)(x) = min
u∈U(x)

g(x, u) +
∑
x′∈X

P (x, u, x′)J(x′)

Argue that these Bellman operators are equivalent to those in a discounted MDP with state space X (and

no terminal state), but with transition probabilities given by P̃ (x, u, x′) = P (x, u, x′)/γ. Using this, argue

that any policy has the same cost-to-go function in the MDP with geometric as in the discounted MDP with

infinite horizon.

2 Planning With An Approximate Cost-To-Go Function

Consider an MDP with discount factor γ < 1 and n states (i.e. |X| = n). Let J ∈ Rn be an approximate

cost to go function. Consider a policy µ that satisfies TµJ = TJ . Show that

‖Jµ − J∗‖∞ ≤
2γ‖J − J∗‖∞

1− γ

Interpretation: The policy µ is the result of optimizing performance as if J were the true cost-to-go function

J∗. The result here argues that if J∗ is close to J then µ must be near-optimal.

Hint: it is possible to prove this result using only that T and Tµ are contractions with respect to the same

norm ‖ · ‖∞. You may wish to look back at how we proved a similar error bound in terms of ‖J − TJ‖∞.



3 A Bad Example For Policy Iteration

Do question 2.5 of Bertsekas Volume II, which is reproduced below.

Bonus question: This paper suggests policy iterations stops after a number of iterations that scales at most

linearly with the number of actions and logarithmically with the number of states. How do we reconcile this

with the example in problem 2.5? (I have not thought about this much, but I do not know the answer...the

paper could have a mistake)

4 Policy Iteration is Newton’s Method

Do question 2.8 of Bertsekas Volume II, which is reproduced below.

https://arxiv.org/pdf/1008.0530.pdf



