
and µ∗
k−1(1) = continue. Q.E.D.

Thus the optimum policy is to continue until the δth object, where δ is the minimum integer such that(
1

N−1 + · · · + 1
δ

)
≤ 1, and then stop at the first time an element is observed with largest rank.

Exercise 4.19

a) Let the state xk ∈ {T, T̄} where T represents the driver having parked before reaching the kth spot.
Let the control at each parking spot uk ∈ {P, P̄} where P represents the choice to park in the kth spot.
Let the disturbance wk equal 1 if the kth spot is free; otherwise it equals 0. Clearly, we have the control
constraint that uk = P̄ , if xk = T or wk = 0. The cost associated with parking in the kth spot is:

gk(T̄ , P, 1) = k

If the driver has not parked upon reaching his destination, he incurs a cost gN (T̄ ) = C. All other costs
are zero. The system evolves according to:

xk+1 =
{

T, if xk = T or uk = P
T̄ , otherwise

Once the driver has parked, his remaining cost is zero. Thus, we can define Fk to be the expected
remaining cost, given that the driver has not parked before the kth spot. (Note that this is simply Jk(T̄ )).
The DP algorithm is given by:

F0 = C

Fk = min
uk∈{P,P̄}

E
wk

{
gk(T̄ , uk, wk) + Jk−1(xk−1)

}

Fk = min
[
p
[
k + Jk−1(T )

]
︸ ︷︷ ︸

park, free

+ qJk−1(T̄ )︸ ︷︷ ︸
park, not free

, Jk−1(T̄ )︸ ︷︷ ︸
don′t park

]

But since Ji(T ) = 0 ∀i:

Fk = min
[
pk + qFk−1, Fk−1

]
(1)

= p min
[
k, Fk−1

]
+ qFk−1
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b) From (1), we see that the driver should stop when Fk−1 > k. Assume it is optimal to stop at the
(k+1)st spot. Then Fk > k + 1 > k. Now, we also see from (1) that Fk ≤ Fk−1 ∀k. Thus, Fk−1 > k

and it is also optimal to stop at the kth spot. Now assume that it is optimal not to stop at the kth spot.
Then

Fk ≤ Fk−1 ≤ k ≤ k + 1

and it is optimal not to stop at the (k+1)st spot.

Thus, there exists some k∗ where it is optimal to continue if k ≥ k∗ and it is optimal to park if k < k∗.
In particular, k∗ is the smallest integer satisfying k∗ ≥ Fk∗−1. Since Fk∗ ≤ F0 = C we know that such a
k∗ < ∞ exists.

Claim:
Fk = k + qkC − q

p
(1 − qk) whenever k < Fk−1

Proof: The proof follows by induction. For k = 1,

F1 = p min[1, C] + qC = p + qC

where the claim gives F1 = 1 − q
p (1 − q) + qC = p + qC

Assume the claim for k = i. Then:

Fi+1 = p min
[
i + 1, Fi

]
+ qFi

= p(i + 1) + q

[
i + qiC − q

p
(1 − qi)

]
using i + 1 < Fi

= i + 1 − q + qi+1C − q

p

[
q(1 − qi)

]

= i + 1 + qi+1C − q

p

[
q(1 − qi) + p

]

= i + 1 + qi+1C − q

p
(1 − qi+1)

Since k∗ − 1 < Fk∗−2 we can determine k∗ as the smallest integer satisfying:

k∗ ≥ Fk∗−1 = k∗ − 1 + qk∗−1C − q

p
(1 − qk∗−1)

Rearranging this inequality yields:
1
p
≥ qk∗−1C +

qk∗

p

or finally,
(q + pC)−1 ≥ qk∗−1
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