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Supervised Machine Learning

Learning from datasets
A passive paradigm
Focus on pattern recognition
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Reinforcement Learning

Environment

Action

Outcome

Reward

Learning to attain a goal through interaction with a
poorly understood environment.
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Canonical (and toy) RL environments

Cart Pole
Mountain Car
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https://gym.openai.com/envs/CartPole-v0
https://gym.openai.com/envs/MountainCar-v0


Impressive new (and toy) RL environments

Atari from pixels
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https://www.youtube.com/watch?v=V1eYniJ0Rnk


Challenges in Reinforcement Learning

Partial Feedback
I The data one gathers depends on the actions they take.

Delayed Consequences
I Rather than maximize the immediate benefit from the

next interaction, one must consider the impact on future
interactions.
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Dream Application: Management of
Chronic Diseases

Various researchers are working on mobile health interventions
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Dream Application: Intelligent Tutoring
Systems

*Picture shamelessly lifted from a slide of Emma Brunskill’s
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Dream Application: Beyond Myopia in
E-Commerce

Online marketplaces and web services have repeated
interactions with users, but are deigned to optimize
the next interaction.
RL provides a framework for optimizing the
cumulative value generated by such interactions.
How useful will this turn out to be?
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Deep Reinforcement Learning

RL where function approximation is performed using
a deep neural network, instead of using linear
models, kernel methods, shallow neural networks,
etc.

Justified excitement
I Hope is to enable direct training of control systems

based on complex sensory inputs (e.g. visual or auditory
sensors)

I DeepMind’s DQN learns to play Atari from pixels,
without learning vision first.

Also a lot of less justified hype.
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Warning

1 This is an advanced PhD course.
2 It will be primarily theoretical. We will prove

theorems when we can. The emphasis will be on
precise understand of why methods work and why
they may fail completely in simple cases.

3 There are tons of engineering tricks to Deep RL. I
won’t cover these.
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My Goals

1 Encourage great students to do research in this area.
2 Provide a fun platform for introducing technical

tools to operations PhD students.
I Dynamic programming, stochastic approximation,

exploration algorithms and regret analysis.
3 Sharpen my own understanding.
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Tentative Course Outline

1 Foundational Material on MDPs
2 Estimating Long Run Value
3 Exploration Algorithms

* Additional topics as time permits
Policy gradients and actor critic
Rollout and Monte-Carlo tree search.
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Markov Decision Processes: A warmup

On the white-board
Shortest path in a directed graph

Imagine while traversing the shortest path, you discover
one of the routes is closed. How should you adjust your
path?
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Example: Inventory Control

Stochastic demand
Orders have lead time
Non-perishable inventory
Inventory holding costs
Finite selling season
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Example: Inventory Control
Periods k = 0, 1, 2, . . . ,N

xk ∈ {0, . . . , 1000} current inventory
uk ∈ {0, . . . , 1000− xk} inventory order

wk ∈ {0, 1, 2, . . .} demand (i.i.d w/ known dist.)
xk+1 = bxk − wkc+ uk Transition dynamics

Cost function

g(x , u,w) = cHx︸ ︷︷ ︸
Holding cost

+ cLbw − xc︸ ︷︷ ︸
Lost sales

+ cO(u)︸ ︷︷ ︸
Order cost
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Example: Inventory Control

Objective:

minE
 N∑

k=0
g(xk , uk ,wk)



Minimize over what?
I Over fixed sequences of controls u0, u1, . . .?
I No, over policies (adaptive ordering strategies).

Sequential decision making under uncertainty where
I Decisions have delayed consequences.
I Relevant information is revealed during the decision

process.
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Further Examples

Dynamic pricing (over a selling season)
Trade execution (with market impact)
Queuing admission control
Consumption-savings models in economics
Search models in economics
Timing of maintenance and repairs
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Finite Horizon MDPs: formulation
A discrete time dynamic system

xk+1 = fk(xk , uk ,wk) k = 0, 1, ...,N

where
xk ∈ Xk state

uk ∈ Uk(xk) control
wk (i.i.d w/ known dist.)

Assume state and control spaces are finite.

The total cost incurred is
N∑

k=0
gk(xk , uk ,wk)︸ ︷︷ ︸
cost in period k
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Finite Horizon MDPs: formulation

A policy is a sequence π = (µ0, µ1, ..., µN) where

µk : xk 7→ uk ∈ Uk(xk).

Expected cost of following π from state x0 is

Jπ(x0) = E
 N∑

k=0
gk(xk , uk ,wk)


where xk+1 = fk(xk , uk ,wk) and E[·] is over the w ′ks.
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Finite Horizon MDPs: formulation

The optimal expected cost to go from x0 is

J∗(x0) = min
π∈Π

Jπ(x0)

where Π consists of all feasible policies.

We will see the same policy π∗ is optimal for all initial
states. So

J∗(x) = Jπ∗(x) ∀x
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Minor differences with Bertsekas Vol. I

Bertsekas
Uses a special terminal cost function gN(xN)

I Can always take gN(x , u,w) to be independent of u,w .
Lets the distribution of wk depend on k and xk .

I This can be embedded in the functions fk , gk .
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Principle of Optimality

Regardless of the consequences of initial decisions, an
optimal policy should be optimal in the sub-problem
beginning in the current state and time period.

Sufficiency: Such policies exist and minimize total
expected cost from any initial state.
Necessity: A policy that is optimal from some
initial state must behave optimally in any
subproblem that is reached with positive probability.
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The Dynamic Programming Algorithm

Set

J∗N(x) = min
u∈UN(x)

E[gN(x , u,w)] ∀x ∈ Xn

For k = N − 1,N − 2, . . . 0, set

J∗k (x) = min
u∈Uk(x)

E[gk(x , u,w)+J∗k+1(fk(x , u,w))] ∀x ∈ Xk .
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The Dynamic Programming Algorithm

Proposition
For all x ∈ X0, J∗(x) = J∗0 (x). The optimal cost to go is
attained by a policy π∗ = (µ0, ..., µN) where

µN(x) ∈ arg min
u∈UN(x)

E[gN(x , u,w)] ∀x ∈ XN

and for all k ∈ {0, . . . ,N − 1}, x ∈ Xk

µ∗k(x) ∈ arg min
u∈Uk(x)

E[gk(x , u,w) + J∗k+1(fk(x , u,w))].
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The Dynamic Programming Algorithm

Class Exercise
Argue this is true for a 2 period problem (N=1).
Hint, recall the tower property of conditional expectation.

E[Y ] = E[E[Y |X ]]
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A Tedious Proof
For any policy π = (µ0, µ1) and initial state x0,

Eπ[g0(x0, µ0(x0),w0) + g1(x1, µ1(x1),w1)]
= Eπ[g0(x0, µ0(x0),w0) + E[g1(x1, µ1(x1),w1)|x1]]
≥ Eπ[g0(x0, µ0(x0),w0) + min

u∈U(x1)
E[g1(x1, u,w1)|x1]]

= Eπ[g0(x0, µ0(x0),w0) + J∗1 (x1)]
= Eπ[g0(x0, µ0(x0),w0) + J∗1 (f0(x0, µ0(x0),w0))]
≥ min

u∈U(x0)
E[g0(x0, u,w0) + J∗1 (f0(x0, u,w0)]

= J∗0 (x0)

Under π∗, every inequality is an equality.
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Markov Property
Markov Chain
A stochastic process (X0,X1,X2, . . .) is a Markov chain if
for each n ∈ N, conditioned on Xn−1, Xn is independent
of (X0, . . . ,Xn−2). That is

P(Xn = ·|Xn−1) = P(Xn = ·|X0, . . . ,Xn−1)

Without loss of generality we can view a Markov chain as
the output of a stochastic recursion

Xn+1 = fn(Xn,Wn)

for an i.i.d sequence of disturbances (W0,W1, . . .).

Daniel Russo (Columbia) Fall 2017 28 / 34



Markov Property
Markov Chain
A stochastic process (X0,X1,X2, . . .) is a Markov chain if
for each n ∈ N, conditioned on Xn−1, Xn is independent
of (X0, . . . ,Xn−2). That is

P(Xn = ·|Xn−1) = P(Xn = ·|X0, . . . ,Xn−1)

Without loss of generality we can view a Markov chain as
the output of a stochastic recursion

Xn+1 = fn(Xn,Wn)

for an i.i.d sequence of disturbances (W0,W1, . . .).
Daniel Russo (Columbia) Fall 2017 28 / 34



Markov Property

Our problem is called a Markov decision process because

P(xn+1 = x |x0, u0,w0, . . . , xn, un)
= P(fn(xn, un,wn) = x |xn, un)
= P(xn+1 = x |xn, un)

Requires the encoding of the state is sufficiently rich.
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Inventory Control Revisited

Suppose that inventory has a lead time of 2 periods.
Orders can still be placed in any period.
Is this an MDP with state=current inventory?

I No!
I Transition probabilities depend on the order that is

currently in transit.

This is an MDP if we augment the state space so

xn = (current inventory, inventory arriving next period).
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State Augmentation
In the extreme, choosing the state to be the full history

x̃n−1 = (x0, u0, . . . , un−2, xn−1)

suffices since

P(x̃n = ·|x̃n−1, un−1) = P(x̃n = ·|x0, u0, . . . , xn−1, un−1).

For the next few weeks we will assume the Markov
property holds.
Computational tractability usually requires a
compact state representation.
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Example: selling an asset
An instance of optimal stopping.

Deadline to sell within N periods.
Potential buyers make offers in sequence.
The agent chooses to accept or reject each offer

I The asset is sold once an offer is accepted.
I Offers are no longer available once declined.

Offers are statistically independent.
Profits can be invested with interest rate r > 0 per
period.

Class Exercise
1 Formulate this as a finite horizon MDP.
2 Write down the DP algorithm.
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Example: selling an asset

Special terminal state t (costless and absorbing)
xk 6= t is the offer considered at time k .
x0 = 0 is fictitious null offer.
gk(xk , sell) = (1 + r)N−kxk .
xk = wk−1 for independent w0,w1, . . .
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Example: selling an asset
DP Algorithm

J∗k (t) = 0 ∀k
J∗N(x) = x
J∗k (x) = max{(1 + r)N−kx ,E[J∗k+1(wk)]}

A threshold policy is optimal:

Sell ⇐⇒ xk ≥
E[J∗k+1(wk)]
(1 + r)N−k
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