
Lecture 2: Infinite Horizon and Indefinite Horizon MDPs

B9140 Dynamic Programming & Rienforcement Learning. – Prof. Daniel Russo

Last time:

• RL overview and motivation

• Finite Horizon MDPs: formulation and the DP algorithm

Today:

• Infinite horizon discounted MDPs

• Basic theory of Bellman operators; contraction mappings; existence of
optimal policies;

• Analogous theory for indefinite horizon (episodic) MDPs.
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Warmup: Finite Horizon Discounted MDPs

A special case of last time

• Finite state and control spaces.

• Periods 0, 1, . . . N with controls u0, . . . , uN−1.

• Stationary transition probabilities fk(x, u, w) = f (x, u, w) for all k ∈ {0, . . . , N − 1}.

• Stationary control spaces: Uk(x) = U(x) for all k ∈ {0, . . . , N − 1}.

• Discounted costs: gk(x, u, w) = γkg(x, u, w) for k ∈ {0, . . . , N − 1}

• Special terminal costs: gN(x) = γNc(x).
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Warmup: Finite Horizon Discounted MDPs

A policy π = (µ0, . . . , µN−1) is a sequence of mappings where µk(x) ∈ U(x) for all x ∈ X ..

The expected cumulative “cost-to-go” of a policy π from starting state x is

Jπ(x) = E

[
N−1∑
k=0

γkg(xk, µk(xk), wk) + γNc(xN)

]
where the expectation is over the i.i.d disturbances w0, . . . , wN−1.

The optimal expected cost to go is

J∗(x) = min
π∈Π

Jπ(x) ∀x ∈ X
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The Dynamic Programming Algorithm

Set

J∗N(x) = c(x) ∀x ∈ X
For k = N − 1, N − 2, . . . 0, set

J∗k (x) = min
u∈U(x)

E[g(x, u, w) + γJ∗k+1(f (x, u, w))] ∀x ∈ X .

Main Proposition from last time

For all initial states x ∈ X , the optimal cost to go is J∗(x) = J∗0 (x). This is attained by a

policy π∗ = (µ∗0, ..., µ
∗
N−1) where for all k ∈ {0, . . . , N − 1}, x ∈ X

µ∗k(x) ∈ arg min
u∈U(x)

E[g(x, u, w) + γJ∗k+1(f (x, u, w))].
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The DP Algorithm for policy evaluation

How to find the cost-to-go for any policy π = (µ0, . . . , µN−1)?

- Jπ(x) = J0(x) where J0 is output by the following iterative algorithm.

JN(x) = c(x) ∀x ∈ X
For k = N − 1, N − 2, . . . 0, set

Jk(x) = E[g(x, µk(x), w) + γJk+1(f (x, µk(x), w))] ∀x ∈ X .
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Bellman Operators

For any stationary policy µ mapping x ∈ X to µ(x) ∈ U(x), define Tµ, which maps a cost to

go function J ∈ R|X | to another cost to go function TµJ ∈ R|X |, by

(TµJ)(x) = E[g(x, µ(x), w) + γJ(f (x, µ(x), w))]

where (as usual) the expectation is take over the disturbance w.

• We call Tµ the Bellman operator corresponding to a policy µ.

• It is a map from the space of cost-to-go functions to the space of cost-to-go functions.
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Bellman Operators

Define T , which maps a cost-to-go function J ∈ R|X | to another cost-to-go function

TJ ∈ R|X | by

(TJ)(x) = min
u∈U(x)

E[g(x, u, w) + γJ(f (x, u, w))]

where (as usual) the expection is take over the disturbance w.

• We call T the Bellman operator.

• It is a map from the space of cost-to-go functions to the space of cost-to-go functions.
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Alternate notation: transition probabilities

Write the expected cost function as

g(x, u) = E[g(x, u, w)]

and transition probabilities as

p(x′|x, u) = P(f (x, u, w) = x′)

where both integrate over the distribution of the disturbance w.

In this notation

TµJ(x) = g(x, µ(x)) + γ
∑
x′∈X

p(x′|x, µ(x))J(x′)

and

TJ(x) = min
u∈U(X)

g(x, u) + γ
∑
x′∈X

p(x′|x, u)J(x′).
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The Dynamic Programming Algorithm

Old notation: Set

J∗N(x) = c(x) ∀x ∈ X
For k = N − 1, N − 2, . . . 0, set

J∗k (x) = min
u∈U(x)

E[g(x, u, w) + γJ∗k+1(f (x, u, w))] ∀x ∈ X .

Operator notation

J∗N = c ∈ R|X |

For k = N − 1, N − 2, . . . , 0, set

J∗k = TJ∗k+1.
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The Dynamic Programming Algorithm

Main Proposition from last time: old notation

For all initial states x ∈ X , the optimal cost to go is J∗(x) = J∗0 (x). This is attained by a

policy π∗ = (µ∗0, ..., µ
∗
N−1) where for all k ∈ {0, . . . , N − 1}, x ∈ X

µ∗k(x) ∈ arg min
u∈U(x)

E[g(x, u, w) + γJ∗k+1(f (x, u, w))].

Main Proposition from last time: operator notation

For all initial states x ∈ X , the optimal cost to go is J∗(x) = J∗0 (x). This is attained by a

policy π∗ = (µ∗0, ..., µ
∗
N−1) satisfying

Tµ∗kJ
∗
k+1 = TJ∗k+1 ∀k ∈ {0, 1, . . . , N − 1}.
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The DP Algorithm for policy evaluation

How to find the cost-to-go for any policy π = (µ0, . . . , µN−1)?

- Jπ(x) = J0(x) where J0 is output by the following iterative algorithm.

Old notation

JN(x) = c(x) ∀x ∈ X
For k = N − 1, N − 2, . . . 0, set

Jk(x) = E[g(x, µk(x), w) + γJk+1(f (x, µk(x), w))] ∀x ∈ X .

Operator notation

JN = c ∈ R|X |

For k = N − 1, N − 2, . . . , 0, set

Jk = TµkJk+1.
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Composition of Bellman Operators

In the DP algorithm

J∗ = TJ∗1 = T (TJ∗2 ) = · · · = TNc.

Analogously, for any policy π = (µ0, µ1, . . . µN−1),

Jπ = Tµ0Tµ1 · · ·TµN−1c.

• Applying the Bellman operator to c iteratively N times gives the optimal cost-to-go in an

N period problem with terminal costs c.

• Applying the Bellman operators associated with a policy to c iteratively N times gives its

cost-to-go in an N period problem with terminal costs c.
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Infinite Horizon Discounted MDPs

The same problem as before, but take N →∞.

• Finite state and control spaces.

• Periods 0, 1, . . . with controls u0, u1 . . . ,.

• Stationary transition probabilities fk(x, u, w) = f (x, u, w) for all k ∈ N.

• Stationary control spaces: Uk(x) = U(x) for all k ∈ N.

• Discounted costs: gk(x, u, w) = γkg(x, u, w) for k ∈ N

The objective is to minimize

lim
N→∞

E

[
N∑
k=0

γkg(xk, uk, wk)

]
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Infinite Horizon Discounted MDPs

• A policy π = (µ0, µ1, µ2, . . .) is a sequence of mappings where µk : x 7→ U(x).

• The expected cumulative “cost-to-go” of a policy π from starting state x is

Jπ(x) = lim
N→∞

E

[
N∑
k=0

γkg(xk, µk(xk), wk)

]
where xk+1 = f (xk, µk(xk), wk) and the expectation is over the i.i.d disturbances

w0, w1, w2 . . .

• The optimal expected cost-to-go is

J∗(x) = inf
π∈Π

Jπ(x) ∀x ∈ X .

• We say a policy π is optimal if Jπ = J∗.

• For a stationary policy π = (µ, µ, µ, . . .) we write Jµ instead of Jπ.



Infinite Horizon and Indefinite Horizon MDPs Lecture 2 / #15

Infinite Horizon Discounted MDPs: Main Results

Cost-to go functions

Jµ is the unique solution to the equation TµJ = J and iterates

of the relation Jk+1 = TµJk converge to Jµ at a geometric rate.

Optimal cost-to go functions

J∗ is the unique solution to the Bellman equation TJ = J and iterates

of the relation Jk+1 = TJk converge to J∗ at a geometric rate.

Optimal policies

There exists an optimal stationary policy. A stationary

policy (µ, µ, . . .) is optimal if and only if TµJ
∗ = TJ∗.

By computing the optimal cost-to-go function we are solving a fixed point equation, and one

way to solve this equation is by iterating the Bellman operator. Once we calculate the optimal

cost-to-go function we can find the optimal policy by solving the one period problem

min
u∈U(x)

E [g(x, u, w) + γJ∗(f (x, u, w))] .
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Example: selling an asset

An instance of optimal stopping.

• No deadline to sell.

• Potential buyers make offers in sequence.

• The agent chooses to accept or reject each offer

– The asset is sold once an offer is accepted.

– Offers are no longer available once declined.

• Offers are iid.

• Profits can be invested with interest rate r > 0 per period.

– We discounting with rate γ = 1/(1 + r).
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Example: selling an asset

• Special terminal state t (costless and absorbing)

• xk 6= t is the offer considered at time k.

• x0 = 0 is fictitious null offer.

• g(x, sell) = x.

• xk = wk−1 for independent w0, w1, . . .

Bellman equation J∗ = TJ∗ becomes

J∗(x) = max{x, γE[J∗(w)]}

The optimal policy is a threshold

Sell ⇐⇒ xk ≥ α where α = γE[J∗(w)].

This stationary policy is much simpler than what we saw last time.
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Properties of the Bellman operator

Monotonicity: T and Tµ are monotone.

For any J ≤ J ′

TµJ ≤ TµJ
′

TJ ≤ TJ ′

Contraction: T and Tµ are maximum-norm contractions with modulus γ.

For any J, J ′

‖TµJ − TµJ ′‖∞ ≤ γ‖J − J ′‖∞

‖TJ − TJ ′‖∞ ≤ γ‖J − J ′‖∞

where ‖J‖∞ = maxx∈X |J(x)| is called the “maximum-norm” or “supremum norm”.

Relating T and Tµ: TJ ≤ TµJ but equality always holds for some µ.

• For all J and µ, TJ ≤ TµJ .

• For any J , there is a µ such that TJ = TµJ
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Properties of the Bellman operator: proofs

Relating T and Tµ:

TµJ(x) = g(x, µ(x)) + γ
∑
x′∈X

p(x′|x, µ(x))J(x′)

≥ min
u∈U(x)

g(x, u) + γ
∑
x′∈X

p(x′|x, u)J(x′) = TJ(x).

The inequality is an equality for all x if

µ(x) ∈ argmin
u∈U(x)

g(x, u) + γ
∑
x′∈X

p(x′|x, u)J(x′) ∀x ∈ X .
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Properties of the Bellman operator: proofs

Monotonicity: For any J ≤ J ′

TµJ(x) = g(x, µ(x)) + γ
∑
x′∈X

p(x′|x, µ(x))J(x′)

≤ g(x, µ(x)) + γ
∑
x′∈X

p(x′|x, µ(x))J ′(x′) = TµJ
′(x).

For any J , TJ(x) = minµ TµJ(x).

Therefore

J ≤ J ′ =⇒ TJ(x) = min
µ
TµJ(x) ≤ min

µ
TµJ

′(x) = TJ ′(x)
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Properties of the Bellman operator: proofs

Basic fact: For any functions f and g, |minz f (z)−minz g(z)| ≤ maxz |f (z)− g(z)|.

Contraction: Fix any J, J ′ and x ∈ X

|TµJ ′(x)−TµJ ′(x)| =

∣∣∣∣∣γ∑
x′∈X

p(x′|x, µ(x)))(J(x′)− J ′(x′))

∣∣∣∣∣ ≤ γmax
x′∈X
|J(x′)−J ′(x′) = γ‖J−J ′‖∞.

Maximizing over x ∈ X gives

‖TµJ ′ − TµJ ′‖∞ ≤ γ‖J − J ′‖∞.

Now, we use this to prove T is a contraction.

|TJ(x)− TJ ′(x)| = |min
µ
TµJ(x)−min

µ
TµJ(x)|

≤ max
µ
|TµJ(x)− TµJ ′(x)| (fact above)

≤ γ‖J − J ′‖∞ (contraction).

Maximizing over x implies the result.
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Basic fact on previous slide (You can skip this)

We show, for any functions f and g with the same domain,

|min
z1
f (z1)−min

z2
g(z2)| ≤ max

z
|f (z)− g(z)|.

Proof:

First,

min
z1
f (z1)−min

z2
g(z2) = min

z1
max
z2

(f (z1)− g(z2)) ≤ max
z

(f (z)− g(z))

Analogously

min
z1
f (z1)−min

z2
g(z2) = min

z1
max
z2

(f (z1)− g(z2)) ≥ min
z

(f (z)− g(z))

If C ≡ minz1 f (z1)−minz2 g(z2) is positive, one can choose z such that f (z)− g(z) is also

positive and is larger than C. If C is negative, we can choose z such that f (z)− g(z) is

negative and smaller than C. Therefore

|min
z1
f (z1)−min

z2
g(z2)| ≤ max

z
|f (z)− g(z)|.
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Banach Fixed Point Theorem

Definition: F : Rn → Rn is a contraction with respect to ‖ · ‖ with modulus ρ ∈ (0, 1) if

‖FJ − FJ ′‖ ≤ ρ‖J − J ′‖ ∀J, J ′ ∈ Rn.

Theorem If F : Rn → Rn is a contraction with respect to ‖ · ‖ with modulus ρ then

• There exists a unique J∗ ∈ Rn satisfying FJ∗ = J∗

• For any J ∈ Rn, ‖F kJ − J∗‖ ≤ ρk‖J − J∗‖.

(The theorem actually holds for any complete metric space.)
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Proof of Banach’s Fixed Point Theorem

We’ll first show J∞ ≡ limN→∞ F
NJ exits, then that J∞ is a fixed point of F and F kV

converges at a geometric rate to J∞. Finally, we’ll conclude the fixed point must be unique.

For some J ∈ Rn, set J0 = J and Jk+1 = TJk. Then

‖J2 − J1‖ ≤ ρ‖J1 − J0‖ =⇒ ‖Jk+1 − Jk‖ ≤ ρk‖J1 − J0‖.

Then for all m ≥ 1

‖Jk+m − Jk‖ ≤
m∑
`=1

‖Jk+` − Jk‖ ≤
∞∑
`=1

‖Jk+` − Jk‖ ≤
∞∑
`=0

ρkρ`‖J1 − J0‖ =
ρk

1− ρ
‖J1 − J0‖.

This shows the sequence is Cauchy and hence J∞ ≡ limN→∞ F
NJ exits.

Existence of a fixed point: We’ll show FJ∞ = J∞.

0 ≤ ‖FJ∞ − J∞‖ ≤ ‖FJ∞ − Jk‖ + ‖Jk − J∞‖ ∀k
≤ ρ‖J∞ − Jk−1‖ + ‖Jk − J∞‖
→ 0 as k →∞.
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Convergence Rate: Since J∞ is a fixed point

‖Jk − J∞‖ = ‖F kJ0 − F kJ∞‖ ≤ ρk‖J0 − J∞‖

Uniqueness: If J = FJ and J ′ = FJ ′ then

‖J − J ′‖ = ‖FJ − FJ ′‖ ≤ ρ‖J − J ′‖

which implies ‖J − J ′‖ = 0.

�
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Bellman’s equation and optimal policies

Since T is a contraction:

1. There exists a unique solution to the “Belman equation” TJ = J .

2. The solution can be found by iterating the relation Jk+1 = TJk.

We have defined

J∗(x) = inf
π
Jπ(x) where Jπ(x) = lim

N→∞
Eπ

[
N∑
k=0

γkg(xk, µk(xk), wk)

]

We simplify notation by writing Jµ when π = (µ, µ, µ, . . .)

Proposition:

• J∗ is the unique solution to the Bellman equation J = TJ .

• The greedy policy µ w.r.t J∗, defined by TµJ
∗ = TJ∗, satisfies Jµ = J∗
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Bellman’s equation and optimal policies

Proposition:

• J∗ is the unique solution to the Bellman equation J = TJ .

• The greedy policy µ w.r.t J∗, defined by TµJ
∗ = TJ∗, satisfies Jµ = J∗

Proof: Let 0 ∈ R|X | denote a vector of zeros.

For any π = (µ0, µ1, . . . , ),

Jπ = lim
N→∞

Tµ0Tµ1 · · ·TµN0.

- Fix J̄ solving T J̄ = J̄

- Fix µ solving TµJ̄ = T J̄

- Then

TµJ̄ = J̄ =⇒ T kµ J̄ = J̄

=⇒ Jµ ≡ lim
N→∞

TNµ J̄ = J̄ .

It remains to show J̄ = J∗.

- Certainly J̄ ≥ J∗ since J̄(x) = Jµ(x) ≥ infπ Jπ(x) = J∗(x)

- But also J̄ ≤ J∗ since any policy π = (µ0, µ1, . . .)

J̄(x) = lim
N→∞

(TN0)(x) ≤ lim
N→∞

(Tµ0Tµ1 · · ·TµN0)(x) = Jπ(x).

�
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Indefinite Horizon Problems

We consider the problem of minimizing expected costs until a special termination state t is

reached.

• The problem will end in finite time, but we’re not sure when.

Many RL problems involve learning over a sequence of episodes, each of which has indefinite

horizon.

Examples

• Atari games

• Many models of customer interaction with a web service

• Problems with a regenerative structure (e.g. Queuing)

The book calls these Stochastic Shortest Path Problems.
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Indefinite Horizon Problems

We consider the problem of minimizing expected costs until a special termination state t is

reached.

• The state space is X ∪ {t}.

• X is a finite set

• t is costless (g(t, u) = 0 and absorbing (p(t|t, u) = 1)

• Any policy incurs zero expected cost starting from t.

Assumption: Under any policy and initial state, the terminal node is reached with probability 1.

It turns out to be more elegant to explicitly track the cost only of non terminal states x ∈ X .

Define the Bellman operators

TµJ(x) = g(x, µ(x)) +
∑
x′∈X

p(x′|x, µ(x))J(x′)

TJ(x) = min
u∈U(x)

g(x, u) +
∑
x′∈X

p(x′|x, u)J(x′)

where J ∈ R|X |.
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Warmup: Geometrically distributed horizon

Consider a special case of the problem above with independent geometric horizon.

The probability of termination in the next period is 1− γ:

•
∑

x′∈X p(x′|x, u) = γ for all x, u.

Your homework asks you to show this is equivalent

(in terms of expected costs incurred)

to an infinite horizon problem with discount factor γ.

Then T and Tµ are maximum norm contractions with modulus γ.

Proof for Tµ

|TµJ(x)−TµJ ′(x)| =

∣∣∣∣∣∑
x′∈X

p(x′|x, µ(x))(J(x′)− J ′(x′))

∣∣∣∣∣ ≤
(∑
x′∈X

p(x′|x, µ(x))

)
‖J−J ′‖∞ = γ|J−J ′|

�
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Properties of the Bellman operator

Monotonicity: T and Tµ are monotone.

Contraction: T and Tµ are weighted maximum-norm contractions with modulus

that depends on the transition probabilities.

Relating T and Tµ: TJ ≤ TµJ but equality always holds for some µ.

Due to these properties much of the theory from infinite horizon

discounted problems applies to indefinite horizon problems.
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Contraction

For w : x 7→ w(x) > 0, define the weighted maximum-norm

‖J‖∞,w = max
x∈X

w(x)|J(x)|.

Goal: construct a w such that T is a contraction w.r.t. ‖ · ‖∞,w.

Define τ = inf{k ∈ N : xk = t} to be the first hitting time of t.

For x ∈ X , define

V (x) = sup
π

Eπ[τ |x0 = x]

This satisfies the Bellman equation

V (x) = 1 + max
u∈U(x)

∑
x′∈X

p(x′|x, u)V (x′) ∀x ∈ X

for an MDP with ”costs” g(x, u) = −1 for all x ∈ X .
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Contraction

Proposition:

T and Tµ are contractions with respect to the weighted

maximum norm ‖ · ‖∞,1/V with modulus α = maxx∈X
V (x)−1
V (x)

.

Proof for Tµ:

Note that from Bellman’s equation for V , for all x ∈ X∑
x′∈X

p(x′|x, µ(x))V (x′) ≤ V (x)− 1 ≤ αV (x)

so

max
x∈X

∑
x′∈X p(x′|x, µ(x))V (x′)

V (x)
≤ α.

Then

‖TµJ − TµJ ′‖∞,1/v = max
x∈X

1

V (x)

∣∣∣∣∣∑
x′∈X

p(x′|x, µ(x))(J(x′)− J ′(x′))

∣∣∣∣∣
= max

x∈X

1

V (x)

∣∣∣∣∣∑
x′∈X

p(x′|x, µ(x))V (x′)

(
J(x′)− J ′(x′)

V (x′)

)∣∣∣∣∣
≤ max

x∈X

(∑
x′∈X p(x′|x, µ(x))V (x′)

V (x)

)
‖J − J ′‖∞,1/V

≤ α‖J − J ′‖∞,1/V
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Contraction

Proposition:

T and Tµ are contractions with respect to the weighted

maximum norm ‖ · ‖∞,1/V with modulus α = maxx∈X
V (x)−1
V (x)

.

Proof for T :

Since Tµ is a contraction

TµJ(x)

V (x)
≤ TµJ

′(x)

V (x)
+ α‖J − J ′‖∞,1/V ∀µ.

Then

TJ(x)

V (x)
= min

µ

TµJ(x)

V (x)
≤ min

µ

TµJ
′(x)

V (x)
+ α‖J − J ′‖∞,1/V =

TJ ′(x)

V (x)
+ α‖J − J ′‖∞,1/V .

Reversing the role of J and J ′ gives

|TJ(x)− TJ ′(x)|
V (x)

≤ α‖J − J ′‖∞,1/V ∀x ∈ X .

�.
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Understanding the weighted max-norm

Proposition:

T and Tµ are contractions with respect to the weighted

maximum norm ‖ · ‖∞,1/V with modulus α = maxx∈X
V (x)−1
V (x)

.

• Maximizing over x we see

α =
‖V ‖∞ − 1

‖V ‖∞
= 1− 1

‖V∞‖
α is close to 1 when the expected termination time is large from some initial states.

• When the termination time has distribution Geometric(1− γ), ‖V ‖∞ = 1/(1− γ) so

α = 1− 1

1/(1− γ)
= γ

and the theory here generalizes our previous result.

• A small weighted-max norm implies the max-norm is small, since

‖J‖∞,1/V = max
x∈X

J(x)

V (x)
≥ max

x∈X

J(x)

‖V ‖∞
=
‖J‖∞
‖V ‖∞

,

or ‖J‖∞ ≤ ‖J‖∞,1/V ‖V ‖∞.


