B9140 Dynamic Programming & Reinforcement Learning Lecture 3 - Sep 25, 2017

Algorithms for Infinite Horizon MDPs

Lecturer: Daniel Russo Scribe: Kumar Goutam, Apurv Shukla, Raghav Singal

1 Introduction

We briefly review some material covered in the last lecture.

We characterize an infinite horizon discounted MDP $M = \{X, U, \gamma, g, P\}$, where:

- X represents the state space
- U the control space
- γ is the discounting factor
- g(x,u) the cost function, wherein we assume discounted costs i.e. $g_k(x,u) = \gamma^k g(x,u)$
- P(x, u, x') is the 3-dimensional array denoting the transition probability from x to x', when action u

We assume the state space, control space and transition probability matrix to be stationary. We define the

optimal cost as $\min_{u \in U} \lim_{N \to \infty} \mathbb{E}(\sum_{k=0}^{N} \gamma^k g(x_k, u_k))$. For a stationary policy $\mu : x \to U(x)$, we define the Bellman operator for the policy μ as: $T_{\mu} : J \in \mathbb{R}^{|X|}$ as $T_{\mu}J(x) = \mathbb{E}[g(x,\mu(x)) + \gamma \sum_{x'} P(x,\mu(x),x')J(x')]$ and the Bellman operator $T : J \in \mathbb{R}^{|X|} \to TJ \in \mathbb{R}^{|X|}$ by $TJ(x) = \min_{u \in U(x)} \mathbb{E}(g(x, u) + \gamma \sum_{x'} P(x, u, x') J(x'))$. Some important properties of the Bellman operator

- Monotonicity: For any $J \leq J'$ we have $T_{\mu}J \leq T_{\mu}J'$
- Contraction: $||T_{\mu}J T_{\mu}J'||_{\infty} \le \alpha ||J J'||, \ \alpha < 1, \ ||J||_{\infty} = \max_{x \in X} J(x)$
- $\forall J, \mu, TJ \leq T_{\mu}J$. For any J, there exists μ such that $TJ = T_{\mu}J$

Using the Bellman operators, we obtain the optimal cost-to-go function and the optimal policy by:

- The optimal cost-to-go function is the unique solution of the fixed point equation TJ = J
- Once we know J^* , we obtain the optimal policy μ^* by solving a one-step look ahead problem w.r.t J^* i.e. $T_{\mu}J^{*} = TJ^{*}$

While programming in algorithms for MDP we input tolerance ϵ and $\{X, U, \gamma, g, P\}$, specifying them as:

- $X = \{1, 2, \dots, n\}$
- $U = \{1, 2, \dots, m\}$
- $q \in \mathbb{R}^{n \times m}$: where g(x, u) is the expected instantaneous cost when we take action u in state x.
- $P \in \mathbb{R}^{n \times m \times n} : P(x, u, x') = P(x_{k+1} = x' | x_k = x, u_k = u)$

In the next step we perform consistency checks on the algorithm, namely dimensional consistency and checking for the fact that the sum of transition probability from every state is 1, i.e. $\sum_{x',u} P(x,u,x') =$ $1\forall x, u$. At the end of computation we return a policy μ and perhaps a cost-to-go function. Three popular algorithms for solving MDPs are:

- Value Iteration
- Policy Iteration
- Linear Programming for MDPs

2 Policy evaluation

For a given policy $\mu: X \to U$, how do we find the corresponding J_{μ} ? We define the following terms:

$$g_{\mu} \in \mathbb{R}^{n}, \qquad g_{\mu}(x) = g(x, \mu(x))$$

 $P_{\mu} \in \mathbb{R}^{n \times n}, \quad P_{\mu}(x, x') = P(x, \mu(x), x')$

Recall the definition of $T_{\mu}: \mathbb{R}^n \to \mathbb{R}^n$:

$$(T_{\mu}J)(x) = g(x,\mu(x)) + \gamma \sum_{x'} P(x,\mu(x),x')J(x')$$

= $g_{\mu}(x) + \gamma \sum_{x'} P_{\mu}(x,x')J(x')$

Hence, we can re-write the above equation in matrix form:

$$T_{\mu}J = g_{\mu} + \gamma P_{\mu}J$$

We also know that J_{μ} solves $J = T_{\mu}J$. Hence, we solve the above system of linear equations (using any linear system solver of our choice) for J to get J_{μ} :

$$J_{\mu} = \sum_{k=0}^{\infty} \gamma^k P_{\mu}^k g_{\mu}$$
$$= (I - \gamma P_{\mu})^{-1} g_{\mu}$$

3 Value iteration

Recall the definition of $T: \mathbb{R}^n \to \mathbb{R}^n$:

$$(TJ)(x) = \min_{u} \{g(x,u) + \gamma \sum_{x^{'}} P(x,u,x^{'}) J(x^{'})\}.$$

Suppose the input policy is J_0 . In value iteration, we repeat $J_k = TJ_{k-1}$ over k. The natural question is when do we stop. We know $J^* = TJ^*$. Accordingly, one might propose to stop when $J \approx TJ$ and output policy μ satisfying $T_{\mu}J = TJ$. Following three propositions prove that this is a "reasonable" stopping criterion.

Proposition 1. If $||J - TJ||_{\infty} < \epsilon$, then $||J - J^*||_{\infty} < \frac{\epsilon}{1 - \gamma}$.

Proof.

$$\begin{split} ||J - J^*||_{\infty} &= ||J - TJ^*||_{\infty} \\ &= ||J - TJ + TJ - TJ^*||_{\infty} \\ &\leq ||J - TJ||_{\infty} + ||TJ - TJ^*||_{\infty} \\ &< \epsilon + \gamma ||J - J^*||_{\infty}. \end{split}$$

Therefore, $||J - J^*||_{\infty} < \frac{\epsilon}{1 - \gamma}$.

Proposition 2. Define policy μ as $T_{\mu}J = TJ$. If $||J - T_{\mu}J||_{\infty} < \epsilon$, then $||J - J_{\mu}||_{\infty} < \frac{\epsilon}{1-\gamma}$.

Proof skipped in class.

Proposition 3. $||J - TJ||_{\infty} < \epsilon$ and $T_{\mu}J = TJ$, then $||J^* - J_{\mu}||_{\infty} < \frac{2\epsilon}{1-\gamma}$.

Proof. From proposition 1,

$$||J - J^*||_{\infty} < \frac{\epsilon}{1 - \gamma}.$$

Moreover,

$$T_{\mu}J = TJ \Rightarrow ||T_{\mu}J - J||_{\infty} = ||TJ - J||_{\infty} < \epsilon.$$

Applying proposition 2, we get

$$||J - J_{\mu}||_{\infty} < \frac{\epsilon}{1 - \gamma}.$$

Combining the above statements with triangle inequality, we get the required result.

Algorithm 1 presents the pseudo-code for value iteration.

Algorithm 1 Value iteration

```
Require: J, \epsilon

1: stop = False

2: while stop == False do

3: J' = TJ

4: if ||J - J'||_{\infty} \le \epsilon (1 - \gamma)/2 then

5: stop = True

6: end if

7: J = J'

8: \mu(x) = \arg\min_{\mu} \{g(x, u) + \gamma \sum_{x'} P(x, u, x') J(x')\}

9: end while

10: return (J, \mu)
```

By propositions 1 and 3, $||J - J^*||_{\infty} < \frac{\epsilon}{2}$ and $||J_{\mu} - J^*||_{\infty} < \epsilon$.

4 Policy iteration

The following algorithm defines policy iteration:

- Input μ_0
- For $k = 0, 1, 2, \dots$
 - solve $J_k = T_{\mu_k} J_k$ (just a linear system of equations)
 - Find μ_{k+1} as the solution to $T_{\mu_{k+1}}J_k = TJ_k$, i.e., solve $\underset{u}{\operatorname{argmin}}\{g(x,u) + \gamma \sum_{x'} P(x,u,x')J_k(x')\}$
 - If $J_k = TJ_k$, STOP and return μ_{k+1}

Proposition 4. For the above algorithm, we have $J_0 \geq J_1 \geq J_2 \geq \dots$

Proof. We have

$$J_{\mu_k} = T_{\mu_k} J_k$$
 (by definition)
 $\geq T J_{\mu_k}$ (T is minimum)
 $= T_{\mu_{k+1}} J_{\mu_k}$ (by algorithm design)

Applying $T_{\mu_{k+1}}$ on both sides, we get:

$$T_{\mu_{k+1}}J_{\mu_k} \geq T_{\mu_{k+1}}^2J_{\mu_k}$$

Continuing in a similar fashion, we would get:

$$J_{\mu_k} \ge T_{\mu_{k+1}} J_{\mu_k} \ge T_{\mu_{k+1}}^2 J_{\mu_k} \ge \dots \ge J_{\mu_{k+1}}$$

Since, $J_k = J_{\mu_k}$, we get the desired result.

Proposition 5. If $J_{k+1} = J_k$, then μ_{k+1} is optimal.

Proof. If $J_{k+1} = J_k$, i.e., $J_{\mu_{k+1}} = J_{\mu_k}$, then in the previous proof, we would get equality everywhere. In particular, we would get:

$$J_{\mu_k} = T J_{\mu_k} \Rightarrow J_{\mu_k} = J^*.$$

Corollary: Policy iteration terminates in finite time.

Proof. As there are at most a finite number of policies (as the state space and action space are both finite) and each time we get to see a new policy, the algorithm terminates in finite time. \Box

Proposition 6. Policy iteration requires no more iterations than value iteration.

Proof. Write $J_{\mu_k}=J_k$. We have, $J_k\geq TJ_k\geq J_{k+1}$. Hence, we get $J_1\leq TJ_0, J_2\leq TJ_1\leq T^2J_0$ and so on, which would lead to $J_K\leq T^kJ_0$. So, $J^*\leq J_N\leq T^NJ_0\leq J_0$.

5 Linear programming

To obtain the solution of MDP by linear programming, we introduce $\alpha \in \mathbb{R}^n$, $\sum_i \alpha_i = 1$, $\alpha_i > 0$. The alpha's can be interpreted as state relevant weights. Then, the optimal cost-to-go function of the MDP can be found by solving the following system:

$$arg \max_{J} \alpha^{T} J$$

$$s.t. \quad J \leq T J$$

$$(1)$$

Proof. Let J^* be the optimal cost-to-go function of the MDP. J^* is feasible $(J^* = TJ^*)$ with cost $\alpha^T J$. Consider any other feasible J, then $J \leq TJ \leq T^2J \ldots \leq T^NJ \ldots \leq J^*$ where the first equality follows by definition of the constraint set, the subsequent inequalities from monotonicity and the final inequality by the taking $N \to \infty$ and using the property of Bellman operators. So J^* is the required optimal solution since $\alpha_i > 0$.

However, the (1) is a non-linear system of equations, with |X| non-linear inequalities and |X||U| linear inequalities. (1) can be restated as:

$$\max_{J} \quad \alpha^{T} J$$

$$\text{s.t.} J(x) \leq \min_{u \in U} g(x, u) + \gamma \sum_{x'} P(x, u, x') J(x'), \forall x$$
(2)

Therefore we can introduce the all the constraints and write the LP as:

$$\max \quad \alpha^T J \tag{3}$$

$$s.t.J(x) \le g(x,u) + \gamma \sum_{x'} P(x,u,x')J(x') \forall x,u$$
(4)

The Dual of the LP becomes:

$$\min_{\lambda} \sum_{x,u} \lambda(x,u) g(x,u)$$
s.t.
$$\sum_{u} \lambda(x,u) = \alpha(x) + \gamma \sum_{x',u} P(x,u,x') \lambda(x',u) \forall x$$
(5)

Further noting that $\min \mathbb{E}[\sum_{k=0}^{\infty} \gamma^k g(x_k, u_k)] \iff \min \sum_{x,u} (\mathbb{E}[\sum_{k=0}^{\infty} \gamma^k \mathbb{1}\{x_k = x, u_k = u\}]) g(x,u)$ we see that the cost function of the dual LP (5) corresponds to the optimal cost-to-go function of the MDP. A constrained MDP is a MDP where the cost is also a function of the amount of time spent in a state or might depend on the state-action pair.

The LP approach to approximately solving a DP was first presented by [Schweitzer and Seidmann, 1985] and a fuller theory was developed in [De Farias and Van Roy, 2003].

It was recently shown in [Ye, 2011] that the simplex method for LP form of MDPs with fixed discounting factor is strongly polynomial time with policy iteration requiring at most $\mathcal{O}(\frac{|X||U|}{(1-\gamma)}\log(\frac{|X|^2}{1-\gamma})$

References

[De Farias and Van Roy, 2003] De Farias, D. P. and Van Roy, B. (2003). The linear programming approach to approximate dynamic programming. *Operations research*, 51(6):850–865.

[Schweitzer and Seidmann, 1985] Schweitzer, P. J. and Seidmann, A. (1985). Generalized polynomial approximations in markovian decision processes. *Journal of mathematical analysis and applications*, 110(2):568–582.

[Ye, 2011] Ye, Y. (2011). The simplex and policy-iteration methods are strongly polynomial for the markov decision problem with a fixed discount rate. *Mathematics of Operations Research*, 36(4):593–603.