B9140 Dynamic Programming & Reinforcement Learning Lecture 3 - Sep 25, 2017
Algorithms for Infinite Horizon MDPs

Lecturer: Daniel Russo Scribe: Kumar Goutam, Apurv Shukla, Raghav Singal

1 Introduction

We briefly review some material covered in the last lecture.
We characterize an infinite horizon discounted MDP M = {X, U, ~, g, P}, where:

e X represents the state space

e U the control space

~ is the discounting factor

g(z,u) the cost function, wherein we assume discounted costs i.e. gi(z,u) = Y¥g(x,u)

P(z,u,z’) is the 3-dimensional array denoting the transition probability from z to 2/, when action u
is taken.

We assume the state space, control space and transition probability matrix to be stationary. We define the
optimal cost as min,ecy limy_ oo]E(Zgzo Yeg(xr, ur)).

For a stationary policy p: & — U(x), we define the Bellman operator for the policy p as: T), : J € RIXI as
T,J(z) = Elg(x, u(z)) + 7>, Pz, u(z),2")J(2')] and the Bellman operator T : J € RXI — 7.J € RIXI by
TJ(x) = min,epy(z) E(g(z,uw) +v >, P(z,u,2")J(2")). Some important properties of the Bellman operator
are:

e Monotonicity: For any J < J’ we have T,,J < T,,J’
e Contraction: ||T,,J —T,J ||oc < a|lJ — J||, & < 1, ||J]|oc = maxgzex J(z)
o VJ,u, TJ <T,J. For any J, there exists y such that T'J =T,,J
Using the Bellman operators, we obtain the optimal cost-to-go function and the optimal policy by:

e The optimal cost-to-go function is the unique solution of the fixed point equation T'J = J

e Once we know J*, we obtain the optimal policy p* by solving a one-step look ahead problem w.r.t J*
ie. T,J"=TJ*

While programming in algorithms for MDP we input tolerance € and {X,U,~, g, P}, specifying them as :
o X ={1,2,....,n}
e U=1{1,2,...,m}
e g € R™™™: where g(z,u) is the expected instantaneous cost when we take action u in state x.
o PcR™™m*": P(g,u,z') = P(xp41 = 2|2k = 2, up = u)

In the next step we perform consistency checks on the algorithm, namely dimensional consistency and
checking for the fact that the sum of transition probability from every state is 1, i.e. Zx,,u P(z,u,z") =
1Vz,u. At the end of computation we return a policy p and perhaps a cost-to-go function. Three popular
algorithms for solving MDPs are:

e Value Iteration
e Policy Iteration

e Linear Programming for MDPs

2 Policy evaluation

For a given policy p: X — U, how do we find the corresponding J,7 We define the following terms:

gu €R™ gu(2) = g(z, u(x))
P, e R™" P,(z,x)=Pz,u(z)z)

Recall the definition of T}, : R" — R™:

’

(TpJ) (@) = g(z, p(2)) +7 2 P, u(), z')J ()

= gu(x) + ’yZlPu(:r,x/)J(:cl)

Hence, we can re-write the above equation in matrix form:
T,J =g, +~vP,J

We also know that J, solves J = T,J. Hence, we solve the above system of linear equations (using any
linear system solver of our choice) for J to get J,,:

Jup = E ’YkP;’fgu
k=0
= (I - 'VPM)_lgu

3 Value iteration

Recall the definition of T : R™ — R":

’

(TJ)(x) = min{g(z,u) +7> P(a,u,z')J(a")}.

Suppose the input policy is Jy. In value iteration, we repeat Ji = T'J_1 over k. The natural question is when
do we stop. We know J* = T J*. Accordingly, one might propose to stop when J =~ T'J and output policy
w satisfying T,,J = T'J. Following three propositions prove that this is a “reasonable” stopping criterion.
Proposition 1. If || = TJ||s <€, then ||J — J*||c < 5.
Proof.

=T le =I[lJ =TJ"|
|J-TJ+TJ—-TJ*|
1] =TJ|lse + [|TT = TJ*||oc
e+ T = T oo

AN IN

Therefore, [|J — J*||oc < 75-
Proposition 2. Define policy i as T),J =TJ. If ||[J =T, J|lec <€, then |[J = Julloe < 15

Proof skipped in class.

Proposition 3. ||J - TJ||« <€ and T),J =TJ, then ||J* — J,||s < 12_67.

Proof. From proposition 1,
€

1—

1T = T"[loe <
Moreover,
T, =TJ = ||TyJ = J||ec = |TT = J||oo <€

Applying proposition 2, we get
€

1—

1 = Julloo <
Combining the above statements with triangle inequality, we get the required result.

Algorithm 1 presents the pseudo-code for value iteration.

Algorithm 1 Value iteration

Require: J, €
1: stop = False
2: while stop == False do

3 J=TJ

4: i ||J = J||ec < €(1 —7)/2 then
5: stop = True

6: end if

T J=J

8 p(x) =argmin{g(z,u) +v>., Pz,u,2")J(z")}
"
9: end while
10: return (J, p)

By propositions 1 and 3, ||J — J*|[cc < § and [|J, — J*|[oc < €.

4 Policy iteration

The following algorithm defines policy iteration:
e Input pg
e For k=0,1,2,...
— solve Ji =T, Ji (just a linear system of equations)

— Find pig41 as the solution to Ty, ., Ji = T'Jy, i.e., solve argmin{g(z,u) +v)_ P(x,u, z)z}
u ’
— If Jy =TJg, STOP and return p41

Proposition 4. For the above algorithm, we have Jy > Jy > Jo >

Proof. We have
Jue =TIk (by definition)
>TJ,, (T is minimum)
=T, Ju, (by algorithm design)

Pk+1

Applying T),,, on both sides, we get:
THh+1 Juk > T2 Juk

Pk+1

Continuing in a similar fashion, we would get:

T = T o = T2 T > >

He+1 Mk — ~ppy1 MRk = ° " = “Hk+1
Since, Ji = Jy, , we get the desired result. O
Proposition 5. If Jy11 = Ji, then pgy1 is optimal.

Proof. If Jyy1 = Ji, ie., J,
particular, we would get:

we1 = Juu, then in the previous proof, we would get equality everywhere. In

Ty =Ty = Juy = J*

Corollary: Policy iteration terminates in finite time.

Proof. As there are at most a finite number of policies (as the state space and action space are both finite)
and each time we get to see a new policy, the algorithm terminates in finite time. O

Proposition 6. Policy iteration requires no more iterations than value iteration.

Proof. Write J,, = J,. We have, J, > T'J;, > Jp41. Hence, we get J; < T'Jy, Jo <TJ; < T?Jy and so on,
which would lead to Jx < T*Jy. So, J* < Jy < TNJy < Jp. O

5 Linear programming

To obtain the solution of MDP by linear programming, we introduce o € R™, Y. o; = 1, ¢; > 0. The alpha’s
can be interpreted as state relevant weights. Then, the optimal cost-to-go function of the MDP can be found
by solving the following system:

arg Ian]xxozTJ (1)
st. J<TJ

Proof. Let J* be the optimal cost-to-go function of the MDP. J* is feasible (J* = TJ*) with cost aTJ.
Consider any other feasible J, then J < TJ < T2J... < TNJ... < J* where the first equality follows by
definition of the constraint set, the subsequent inequalities from monotonicity and the final inequality by the
taking NV — oo and using the property of Bellman operators. So J* is the required optimal solution since
a; > 0.]

However, the (1) is a non-linear system of equations, with |X| non-linear inequalities and |X||U| linear
inequalities. (1) can be restated as:

m}x alJ (2)

s.t.J(z) < mingeyg(x,u) + ’yZP(m,u, x')J(x"),Vz

Therefore we can introduce the all the constraints and write the LP as:

max ol J (3)

st.J(z) < g(x,u) + VZP(% w, ') J (2" WV, u (4)

x

The Dual of the LP becomes:

mgnz Az, u)g(x, u) (5)

s.t. Z Mz, u) = a(z) + ’yZP(x,u, 22, u)Va

z/ u

Further noting that min E[Y ;% o v*g(xr, ux)] <= min}, (B2 v* o = 2, u, = u}])g(z, u) we see
that the cost function of the dual LP (5) corresponds to the optimal cost-to-go function of the MDP. A
constrained MDP is a MDP where the cost is also a function of the amount of time spent in a state or might
depend on the state-action pair.

The LP approach to approximately solving a DP was first presented by [Schweitzer and Seidmann, 1985]
and a fuller theory was developed in [De Farias and Van Roy, 2003].

It was recently shown in [Ye, 2011] that the simplex method for LP form of MDPs with fixed discounting

2
factor is strongly polynomial time with policy iteration requiring at most O(|(}fﬂg)‘ log(%)

References

[De Farias and Van Roy, 2003] De Farias, D. P. and Van Roy, B. (2003). The linear programming approach
to approximate dynamic programming. Operations research, 51(6):850-865.

[Schweitzer and Seidmann, 1985] Schweitzer, P. J. and Seidmann, A. (1985). Generalized polynomial approx-
imations in markovian decision processes. Journal of mathematical analysis and applications, 110(2):568—
582.

[Ye, 2011] Ye, Y. (2011). The simplex and policy-iteration methods are strongly polynomial for the markov
decision problem with a fixed discount rate. Mathematics of Operations Research, 36(4):593-603.

