
B9140 Dynamic Programming & Reinforcement Learning Lecture 3 - Sep 25, 2017

Algorithms for Infinite Horizon MDPs
Lecturer: Daniel Russo Scribe: Kumar Goutam, Apurv Shukla, Raghav Singal

1 Introduction

We briefly review some material covered in the last lecture.
We characterize an infinite horizon discounted MDP M = {X,U, γ, g, P}, where:

• X represents the state space

• U the control space

• γ is the discounting factor

• g(x, u) the cost function, wherein we assume discounted costs i.e. gk(x, u) = γkg(x, u)

• P (x, u, x′) is the 3-dimensional array denoting the transition probability from x to x′, when action u
is taken.

We assume the state space, control space and transition probability matrix to be stationary. We define the
optimal cost as minu∈U limN→∞ E(

∑N
k=0 γ

kg(xk, uk)).
For a stationary policy µ : x → U(x), we define the Bellman operator for the policy µ as: Tµ : J ∈ R|X| as
TµJ(x) = E[g(x, µ(x)) + γ

∑
x′ P (x, µ(x), x′)J(x′)] and the Bellman operator T : J ∈ R|X| → TJ ∈ R|X| by

TJ(x) = minu∈U(x) E(g(x, u) + γ
∑
x′ P (x, u, x′)J(x′)). Some important properties of the Bellman operator

are:

• Monotonicity: For any J ≤ J ′ we have TµJ ≤ TµJ ′

• Contraction: ‖TµJ − TµJ ′‖∞ ≤ α‖J − J ′‖, α < 1, ‖J‖∞ = maxx∈X J(x)

• ∀J, µ, TJ ≤ TµJ . For any J , there exists µ such that TJ = TµJ

Using the Bellman operators, we obtain the optimal cost-to-go function and the optimal policy by:

• The optimal cost-to-go function is the unique solution of the fixed point equation TJ = J

• Once we know J∗, we obtain the optimal policy µ∗ by solving a one-step look ahead problem w.r.t J∗

i.e. TµJ
∗ = TJ∗

While programming in algorithms for MDP we input tolerance ε and {X,U, γ, g, P}, specifying them as :

• X = {1, 2, . . . , n}

• U = {1, 2, . . . ,m}

• g ∈ Rn×m: where g(x, u) is the expected instantaneous cost when we take action u in state x.

• P ∈ Rn×m×n : P (x, u, x′) = P (xk+1 = x′|xk = x, uk = u)

In the next step we perform consistency checks on the algorithm, namely dimensional consistency and
checking for the fact that the sum of transition probability from every state is 1, i.e.

∑
x′,u P (x, u, x′) =

1∀x, u. At the end of computation we return a policy µ and perhaps a cost-to-go function. Three popular
algorithms for solving MDPs are:

1

• Value Iteration

• Policy Iteration

• Linear Programming for MDPs

2 Policy evaluation

For a given policy µ : X → U , how do we find the corresponding Jµ? We define the following terms:

gµ ∈ Rn, gµ(x) = g(x, µ(x))

Pµ ∈ Rn×n, Pµ(x, x
′
) = P (x, µ(x), x

′
)

Recall the definition of Tµ : Rn → Rn:

(TµJ)(x) = g(x, µ(x)) + γ
∑
x′
P (x, µ(x), x

′
)J(x

′
)

= gµ(x) + γ
∑
x′
Pµ(x, x

′
)J(x

′
)

Hence, we can re-write the above equation in matrix form:

TµJ = gµ + γPµJ

We also know that Jµ solves J = TµJ . Hence, we solve the above system of linear equations (using any
linear system solver of our choice) for J to get Jµ:

Jµ =
∞∑
k=0

γkP kµ gµ

= (I − γPµ)−1gµ

3 Value iteration

Recall the definition of T : Rn → Rn:

(TJ)(x) = min
u
{g(x, u) + γ

∑
x′
P (x, u, x

′
)J(x

′
)}.

Suppose the input policy is J0. In value iteration, we repeat Jk = TJk−1 over k. The natural question is when
do we stop. We know J∗ = TJ∗. Accordingly, one might propose to stop when J ≈ TJ and output policy
µ satisfying TµJ = TJ . Following three propositions prove that this is a “reasonable” stopping criterion.

Proposition 1. If ||J − TJ ||∞ < ε, then ||J − J∗||∞ < ε
1−γ .

Proof.
||J − J∗||∞ = ||J − TJ∗||∞

= ||J − TJ + TJ − TJ∗||∞
≤ ||J − TJ ||∞ + ||TJ − TJ∗||∞
< ε+ γ||J − J∗||∞.

Therefore, ||J − J∗||∞ < ε
1−γ .

Proposition 2. Define policy µ as TµJ = TJ . If ||J − TµJ ||∞ < ε, then ||J − Jµ||∞ < ε
1−γ .

Proof skipped in class.

2

Proposition 3. ||J − TJ ||∞ < ε and TµJ = TJ , then ||J∗ − Jµ||∞ < 2ε
1−γ .

Proof. From proposition 1,

||J − J∗||∞ <
ε

1− γ
.

Moreover,
TµJ = TJ ⇒ ||TµJ − J ||∞ = ||TJ − J ||∞ < ε.

Applying proposition 2, we get

||J − Jµ||∞ <
ε

1− γ
.

Combining the above statements with triangle inequality, we get the required result.

Algorithm 1 presents the pseudo-code for value iteration.

Algorithm 1 Value iteration

Require: J , ε
1: stop = False
2: while stop == False do
3: J ′ = TJ
4: if ||J − J ′||∞ ≤ ε(1− γ)/2 then
5: stop = True
6: end if
7: J = J ′

8: µ(x) = arg min
µ
{g(x, u) + γ

∑
x′ P (x, u, x′)J(x′)}

9: end while
10: return (J, µ)

By propositions 1 and 3, ||J − J∗||∞ < ε
2 and ||Jµ − J∗||∞ < ε.

4 Policy iteration

The following algorithm defines policy iteration:

• Input µ0

• For k = 0, 1, 2, . . .

– solve Jk = Tµk
Jk (just a linear system of equations)

– Find µk+1 as the solution to Tµk+1
Jk = TJk, i.e., solve argmin

u
{g(x, u) + γ

∑
x′
P (x, u, x

′
)Jk(x

′
)}

– If Jk = TJk, STOP and return µk+1

Proposition 4. For the above algorithm, we have J0 ≥ J1 ≥ J2 ≥

Proof. We have
Jµk

= Tµk
Jk (by definition)

≥ TJµk
(T is minimum)

= Tµk+1
Jµk

(by algorithm design)

Applying Tµk+1
on both sides, we get:

Tµk+1
Jµk
≥ T 2

µk+1
Jµk

3

Continuing in a similar fashion, we would get:

Jµk
≥ Tµk+1

Jµk
≥ T 2

µk+1
Jµk
≥ . . . ≥ Jµk+1

Since, Jk = Jµk
, we get the desired result.

Proposition 5. If Jk+1 = Jk, then µk+1 is optimal.

Proof. If Jk+1 = Jk, i.e., Jµk+1
= Jµk

, then in the previous proof, we would get equality everywhere. In
particular, we would get:

Jµk
= TJµk

⇒ Jµk
= J∗.

Corollary: Policy iteration terminates in finite time.

Proof. As there are at most a finite number of policies (as the state space and action space are both finite)
and each time we get to see a new policy, the algorithm terminates in finite time.

Proposition 6. Policy iteration requires no more iterations than value iteration.

Proof. Write Jµk
= Jk. We have, Jk ≥ TJk ≥ Jk+1. Hence, we get J1 ≤ TJ0, J2 ≤ TJ1 ≤ T 2J0 and so on,

which would lead to JK ≤ T kJ0. So, J∗ ≤ JN ≤ TNJ0 ≤ J0.

5 Linear programming

To obtain the solution of MDP by linear programming, we introduce α ∈ Rn,
∑
i αi = 1, αi > 0. The alpha’s

can be interpreted as state relevant weights. Then, the optimal cost-to-go function of the MDP can be found
by solving the following system:

argmax
J

αTJ (1)

s.t. J ≤ TJ

Proof. Let J∗ be the optimal cost-to-go function of the MDP. J∗ is feasible (J∗ = TJ∗) with cost αTJ .
Consider any other feasible J , then J ≤ TJ ≤ T 2J . . . ≤ TNJ . . . ≤ J∗ where the first equality follows by
definition of the constraint set, the subsequent inequalities from monotonicity and the final inequality by the
taking N → ∞ and using the property of Bellman operators. So J∗ is the required optimal solution since
αi > 0.

However, the (1) is a non-linear system of equations, with |X| non-linear inequalities and |X||U | linear
inequalities. (1) can be restated as:

max
J

αTJ (2)

s.t.J(x) ≤ minu∈Ug(x, u) + γ
∑
x′

P (x, u, x′)J(x′),∀x

Therefore we can introduce the all the constraints and write the LP as:

max αTJ (3)

s.t.J(x) ≤ g(x, u) + γ
∑
x′

P (x, u, x′)J(x′)∀x, u (4)

4

The Dual of the LP becomes:

min
λ

∑
x,u

λ(x, u)g(x, u) (5)

s.t.
∑
u

λ(x, u) = α(x) + γ
∑
x′,u

P (x, u, x′)λ(x′, u)∀x

Further noting that minE[
∑∞
k=0 γ

kg(xk, uk)] ⇐⇒ min
∑
x,u(E[

∑∞
k=0 γ

k
1{xk = x, uk = u}])g(x, u) we see

that the cost function of the dual LP (5) corresponds to the optimal cost-to-go function of the MDP. A
constrained MDP is a MDP where the cost is also a function of the amount of time spent in a state or might
depend on the state-action pair.
The LP approach to approximately solving a DP was first presented by [Schweitzer and Seidmann, 1985]
and a fuller theory was developed in [De Farias and Van Roy, 2003].
It was recently shown in [Ye, 2011] that the simplex method for LP form of MDPs with fixed discounting

factor is strongly polynomial time with policy iteration requiring at most O(|X||U |(1−γ) log(|X|
2

1−γ)

References

[De Farias and Van Roy, 2003] De Farias, D. P. and Van Roy, B. (2003). The linear programming approach
to approximate dynamic programming. Operations research, 51(6):850–865.

[Schweitzer and Seidmann, 1985] Schweitzer, P. J. and Seidmann, A. (1985). Generalized polynomial approx-
imations in markovian decision processes. Journal of mathematical analysis and applications, 110(2):568–
582.

[Ye, 2011] Ye, Y. (2011). The simplex and policy-iteration methods are strongly polynomial for the markov
decision problem with a fixed discount rate. Mathematics of Operations Research, 36(4):593–603.

5

