
B9140 Dynamic Programming & Reinforcement Learning Lecture number - Oct 3

Asynchronous DP, Real-Time DP and Intro to RL
Lecturer: Daniel Russo Scribe: Kejia Shi, Yexin Wu

Today’s lecture looks at the following topic:

• Classical DP: asynchronous value iteration

• Real-time Dynamic Programming: RTDP (closest intersection between the classical DP and RL)

• RL: overview; look at policy evaluation; Monte Carlo (MC) vs Temporal Difference (TD)

1 Classical Dynamic Programming

1.1 Value Iteration

Algorithm 1: Value Iteration

Input: J ∈ Rn
1 for k = 0, 1, 2, ... do
2 for state space i = 1, 2, ..., n do
3 J ′(i) = (TJ)(i)
4 end
5 stop if ...
6 J = J ′

7 end

1.2 Gauss-Seidel VI

Gauss-Seidel Value Iterations is the most commonly used variant of asynchronous value iteration. This
method updates one state at a time, while incorporating into the computation the interim results.

Algorithm 2: Gauss-Seidel Value Iteration

Input: J ∈ Rn
1 for k = 0, 1, 2, ... do
2 for i = 1, 2, ..., n do
3 J(i) = (TJ)(i) # not J’ here
4 end
5 stop if (...some stopping criterion is met)

6 end

Proposition 1. Asynchronous Value Iteration Consider an algorithm that starts with J0 ∈ R|X| and makes
updates at a sequence of states (x0, x1, x2, ...), where for any k,

Jk+1(x) =

{
(TJk)(x) if xk = x;
Jk(x) otherwise

If each state is updated infinitely often, then Jk → J∗ as k →∞.
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Proof. Case 1: If J0 6 TJ0, then we have

J0 6 TJ0 6 T 2J0 6 ... 6 T kJ0 6 ... 6 J∗.

We also have J0 6 TJ0 = J1, since our assumption. We change only one state of them and get it bigger
with other states untouched.

By monotonicity, we have J1 6 TJ0 6 TJ1. Repeating this we have J2 > J1 and J2 6 TJ2.

Inductively, J0 6 J1 6 J2 6 ... 6 Jk and Jk 6 TJk, which implies Jk 6 J∗.

Let J∞ = limk→∞ Jk. Certainly we have J∞ = TJ∞. (run forever, get arbitrarily close)

Note: Jk+1(xk)− Jk(xk) = TJk(xk)− Jk(xk): RHS: Bellman gap; LFS: goes to 0 when k →∞.

Case 2: If J0 > TJ0, then similar to case 1, just flip everything around.

Case 3: For any J0, take δ > 0, e = (1, 1, ..., 1), we have

J− ≡ J∗ − δe 6 J0 6 J∗ + δe ≡ J+.

Let J−k , J+
k be the output of asynchronous value iteration applied to J− and J+.

Monotonicity gives us J−k 6 Jk 6 J+
k . One can show that J− 6 TJ−, J+ 6 TJ+.

So J+ → J∗ and J− → J∗, which means Jk → J∗.

Note: Another way to prove is through contractions. Here we use monotonicity. Intuitively, everywhere we
update, it’s a right direction with its momentum maintained.

Why we do this?

• Distributed computation: most DPs have too many states, the real case is that you can’t update states
in a line. Some are slower than the others. (Communication delays, see textbook Chap 2.6)

• Form the basis of learning from interaction: most RL algos look at TJk at xk.

2 Real-Time Dynamic Programming

This is a variant of asynchronous value iteration where states are sampled by an agent that, at all times,
makes decisions greedily under her current guess of the value function. The following proposition gives a first

Algorithm 3: Real-Time Dynamic Programming

Input: J0
1 for k = 0, 1, 2, ... do
2 observe xk the current state
3 play uk = arg minu g(x, u) + γΣx′P (x, u, x′)Jk(x′)
4 update Jk+1(x) = TJk(x) if x = xk; otherwise Jk+1(x) = Jk(x)

5 end

convergence result for RTDP. For details see [BBS95]. Note that unlike the previous case, this proposition
does not require that every state is visited infinitely often.
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Proposition 2. Under RTDP, Jk converges to some vector J∞, J∞(x) = TJ∞(x) at all x visited i.o.

Note: This proposition is unsatisfying since it does not imply convergence to J∗. To guarantee convergence
to J∗ using the previous result, we would generally need to ensure each state is updated infinitely often.
However, it’s not clear the goal should be to find J∗, at all. Instead, it may be sufficient that eventually the
action’s chosen by the agent are optimal.

Fix 1: We may add randomness to action selection in an effort to ensure that every state is visited infinitely
often. If each state is reachable from any other state, this will work, and is enough to ensure asymptotic
convergence of Jk to J∗. However, it may take an exceptionally long time to reach visit certain states. One
reason is that random exploration can be very inefficient, and may take such a strategy time exponential in
the size of the state space to reach a state that could be reached efficiently under a particular policy. But it
may also be the case that some states are almost impossible to reach under any policy. It seems that these
states are essentially irrelevant to minimizing discounted costs.

Fix 2: Start optimistic. Assume J0 6 TJ0. This can be ensure by picking a J0 that has very small values
(e.g. if expected costs are non-negative, it suffices to take J0 = 0)
From the above we have J0 6 J1 6 J2 6 ... and so on. (This means we always believe expected costs are
lower than is possible, and updates always consist of raising our expectations about expected costs.)

Proposition 3. If J0 6 TJ0, there exists a (random) time K after which all actions are optimal. That is
uk = µ∗(xk) for any K > k.

Note Jk 6 Jk+1 6 ... 6 J∗, so Jk → J∞. (bounded monotone sequences converge.) This implies the policy
also converges, µk → µ∞:
The following argument holds for any sample path, (omitting a set of measure zero).

• Let V be the set of states visited i.o. (this exists and is nonempty for any sample path).

• The agent’s eventual policy µ∞ must have zero probability of leaving V . (Precisely, P (x, µ∞(x), x′) = 0
for all x′ ∈ V c). Otherwise, with probability 1 the agent would eventually leave V .

– It is as if the agent plays on a sub-MDP where all sates in V c have been deleted, and all actions
that might reach V c are deleted.

– As a result, the estimates J∞(x) are accurate for all x ∈ V . That is J∞(x) = Jµ∞(x), the agent’s
true expected cost-to-go under the current policy.

• How do we conclude the actions chosen by µ∞ on V are optimal?

– Consider some action u 6= µ∞(x). Since u is not chosen, it must be that

g(x, µ∞(x)) + γ
∑
x′∈X

P (x, µ∞∞, x′)J∞(x′) ≤ g(x, u) + γ
∑
x′∈X

P (x, u, x′)J∞(x′)

But by he discussion above, the left hand side equals Jµ(x), and so the true cost of following µ is
less than estimated cost of playing u with cost-to-go under J∞.

– From here, the key is that J∞(x) ≤ J∗(x) for all x ∈ V c. The agent may not have an accurate
estimate of the value function, but is optimistic, in sense that she underestimates costs at V c.

– In particular, for x ∈ V , and u 6= µ∞(x)

g(x, u) + γ
∑
x′∈X

P (x, u, x′)J∞(x′) ≤ g(x, u) + γ
∑
x′∈X

P (x, u, x′)J∗(x′)

Therefore, the cost of playing u with cost-to-go estimate J∞ underestimates the real cost from
playing u, even if actions thereafter are chosen optimally. If Jµ(x) is below this under-estimate,
u cannot be optimal.
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3 Reinforcement Learning

Now we don’t know the transition probabilities of the the MDP, and must use sample data to reason about
cost-to-go functions and learn effective policies.

3.1 Challenges

Reinforcement learning requires overcoming several substantial challenges:

1. Curse of Dimensionality

2. Learning from Interaction

3. Learning with Delayed Consequences

Challenge 1. Curse of Dimensionality Suppose a state is a vector of 10 state variables, This appears
to be a relatively compact representation, but if each variable takes on a finite number of possible values,
say 100, then the there are 10010 states in the MDP. Another simple example is the game of tetris. (Such
episodic game will end.) Suppose we have a 10*10 grid, then we instantly have a state space with 2100 states.

In the second example, how do we model such MDP? A person watching a someone play tetris is unlikely to
have every seen a tetris game with that exact configuration of pieces. Nevertheless, they can probably tell
quickly if the player is in a good shape by looking at the current board. This is because the observer is able
to recognize abstract features of the screen configurations that are relevant to predicting future payouts, and
this lets them generalize from previously seen states to reason about the current state.
We might think about approximating value to go as a linear combination of basis functions. For example,
suppose J∗(x) ≈ φ(x)T θ, then the state Φ(x) ∈ R20 is defined as
φ1, ..., φ10 column heights,
φ11, ..., φ19 absolute inter-column height differences φ20 max height.

It is true that (φ11, . . . , φ20) are functions of the first ten features, but they are not linear combinations of
them. Including them allows for a richer set of functions to be approximated as linear combination of the
features

As another example, let us reconsider the inventory control example considered in the first lecture. Suppose
now that order arrive after a lead time of L periods from when they are placed. During interim, customers
arrive and purchase inventories, and the firm may wish to place another order before the already ordered
inventory arrives. Holding and ordering inventory is costly, but there is also a shortage cost the inven-
tory/seller is charged when a customer demand is unmet due to a stockout. How do we describe the system?
The system is not Markovian if the state only encodes how much inventory is on hand and how much has
yet to be delivered. Instead, we need to know how inventory is on hand, how much is arriving tomorrow,
how much is arriving the next day, the day after that, and so on. Therefore we describe the state with L+ 1
components. Then the total states is exponential in L again. And we can never solve this!

The problem is: how do you derive an effective policy, or construct value function estimates, without having
to perform computation at all all possible states?

Challenge 2. Learning from Interaction This part is about how to gather data effectively and will be
taught during the final part of the class.
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Return to the Tetris example. Now we have a simulator that allows us to evaluate the reward accumulated
and state dynamics under any policy. We could presumably learn from the data generated by such a sim-
ulator, but can only learn from the scenarios our algorithm actually generates. How should we select actions?

The classic RL example of river swim highlights some of subtelties in designing exploration schemes. Suppose
the swimmer starts at state 1 and across the lake there’s an island. There are n − 1 states along the river
2, 3, ..., n and the island is labeled as n + 1. The swimmer can either go right (advance the state) or left
(decrease the state) by one step in each period, but of course reaching the island requires going right n
consecutive times.
In reality, the swimmer can stick around at starting point or the first several states, unless he/she decides
to go to island purposefully. But in most of the time, we don’t know about if there’s a purpose.

Challenge 3: Learning with Delayed Consequences This is what we are going to learn during the
next few classes. It is difficult to use historical data to evaluate whether a particular action is effective in
a particular state, since the action influence not just the reward in the current period, but indirectly, the
rewards in future periods through impacting the next state.

3.2 Policy Evaluation

First challenge: Given a policy µ, we sample data from µ. How do we estimate Jµ?
we can still start simple by considering the following setup :

• A look-up table representation of Jµ,

• We observe repeated episodes of an episodic (or indefinite horizon) MDP

– State space x ∪ {t},
– The terminal state t is costless and absorbing: when it’s over it’s over.

– Assume t is reached with probability 1 under µ.

Since Jµ(t) = 0, it’s easier to work with (Jµ(x))x∈X . The Bellman equation is as follows, (notice there’s no
discount factor here .)

(TµJ)(x) = gµ(x) + Σx′∈XPµ(x, x′)J(x′).

Suppose we have a data set generated by applying µ for N independent episodes. After one episode termi-
nates, the MDP resets either to a deterministic state or to a state drawn independently from some probability

distribution. At episode n ∈ {1, . . . , N}, we observe (x
(n)
0 , c

(n)
0 , x

(n)
1 , c

(n)
1 , ...x

(n)
τn , c

(n)
τn ). Here c is the instanta-

neous cost/reward - the one step accumulation. τn is the termination time of episode n.

How should we estimate Jµ(x)? This remains a open question, but two the RL literature generally considers
two types of methods: Monte Carlo and Temporal Difference. We introduce MC now.

Monte Carlo
The essential idea is to evaluate Jµ(x) by taking a sample average of the returns after visiting x over all such
episodes that visit x. In particular, first-visit Monte carlo works as follows: if x is visited in episode n, and
k is the first period in which x is visited, then calculate Στni=kc

n
i . By the strong Markov property, Στni=kc

n
i has

expected value Jµ(x). Averaging over all such episodes produces an unbiased estimate.

Consider another example from [SB2017]. There is a MDP with 2 states A and B. Each episode starts
with random initialization, so some episodes begin at A and others begin at B. You observe 8 data points
{(A, 0, B, 0), (B, 1), (B, 1), (B, 1), (B, 1),
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(B, 1), (B, 1), (B, 0)}. Using MC to calculate Ĵµ(A) and Ĵµ(B): Ĵµ(B) = 3
4 , Ĵµ(A) = 0.

The state A is only visited in one epsiode, and the fact that the subsequent state B generated a reward of
0 in this state may be spurious.
Another way to approach the problem is to think that from A the agent often incurs zero immediate cost
and then transitions to B. Borrowing from Bellman’s equation, we calculate Ĵµ(A) = 0 + Ĵµ(B) = 3

4 .

Note: Some literature considers MC unbiased but with higher variance, and TD to be biased but have
higher variance. In this case, TD is also unbiased. More analysis and comparisons are coming.
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