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Lecture 5
Lecturer: Daniel Russo Scribe: Sharon Huang, Wenjun Wang, Jalaj Bhandari

1 Change of notation

We introduce some change of notation with respect to the previous lectures:

• Maximizing reward instead of minimizing costs.

• Let (sk, ak, rk) denote the (State, Action, Reward) at step k

• Work with the value function, V (·), instead of the cost-to-go function J(·)

2 Batch methods for Policy Evaluation

Consider the set-up where we fix a policy, µ, and generate data following µ (episodes or otherwise). Given
this data, we want to estimate the value function for every state. We introduce two methods for policy
evaluation:

1. Look up table: where we store an estimate of the value to go for each individual state. Typically, the
amount of data required scales at least linearly with the number of states.

2. Value function approximation: motivated by practical application where the state space is large (think
exponentially large), and we don’t want to store such large value functions. Typically the amount of
data required to estimate e.g. a linearly parameterized value function scales with the dimension of the
approximation rather than the number of states.

2.1 Look up table:

Let us consider an episodic MDP with state space: S ∪ {t}, where {t} is terminal state and is costless,
absorbing. We assume the terminal state, t, can be reached with probability 1 under policy µ, implying that
Vµ(t) = 0; and that the initial states are drawn from some (unknown) distribution α(s). We have a batch of

data organized by episodes n ∈ {1, 2, . . . , N}; for each episode n, we observe:
[
s

(n)
0 , r

(n)
0 , s

(n)
1 , . . . , s

(n)
τn , r

(n)
τn , t

]
with τn being the number of periods in episode n. Our goal is to estimate Vµ(s), the value function under
policy µ for any state s.

2.1.1 (First Visit) Monte Carlo Value Prediction:

Suppose that state s is visited in episode n for the first time in period k. Then, by definition of value
function, we have:

Vµ(s) = E
[ τn∑
i=k

r
(n)
i

]
We can use a noisy estimate of this expectation to approximate Vµ. Algorithm (1) provides a summary. We
can similarly define an every visit Monte Carlo, where we can take into account the accumulated rewards
for every visit to state s. However, this approach will be biased.
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Algorithm 1 (First visit) Monte Carlo value prediction:

1: for n ∈ {1, 2, . . . , N} do
2: for every state s visited in episode n do
3: Let k be the first time state s is visited in episode n

4: Gn(s) =
∑τn
i=k r

(n)
i . noisy sample of Vµ(s)

5: end for
6: end for
7: return V̂µ(s) = 1

N

∑N
n=1G

n(s) ∀ s

2.1.2 Sutton & Barto: Example 6.4

Suppose we have observed the following 8 episodes:

(A, 0, B, 0) (B, 1) (B, 1) (B, 1) (B, 0) (B, 1) (B, 1) (B, 1)

We have the Monte Carlo estimates of A and B as: V̂mc(B) = 6
8 = 3

4 , V̂mc(A) = 0. However, since we only
visited state A once, it makes sense to have the value function of A to be

V̂TD(A) = 0 + V̂ (B)

if we assume Markovian transitions. To get some intuition, we can think of this estimate in terms of data
augmentation/bootstrapping: we expand our data with trajectories we didn’t observe but believe have equal
probability of occurring. For instance, we can expand the data of the above example to be:

(A, 0, B) followed by (B, 0, t)
(A, 0, B) followed by (B, 1, t)
(A, 0, B) followed by (B, 1, t)
(A, 0, B) followed by (B, 1, t)
(A, 0, B) followed by (B, 1, t)
(A, 0, B) followed by (B, 1, t)
(A, 0, B) followed by (B, 1, t)
(A, 0, B) followed by (B, 0, t)

The Monte Carlo estimate under this bootstrapped dataset matches V̂TD.

2.1.3 Temporal difference and Fitted Value Iteration:

For the Temporal difference method, we split our dataset
[
s

(n)
0 , r

(n)
0 , s

(n)
1 , . . . , s

(n)
τn , r

(n)
τn , t

]
into tuples:

[
(s

(n)
0 , r

(n)
0 , s

(n)
1 ),

(s
(n)
1 , r

(n)
1 , s

(n)
2 ), . . . , (s

(n)
τn , r

(n)
τn , t)

]
. Let H be the set of all tuples and Hs be the set of tuples originating

from s:

H =
{

(s
(n)
k , r

(n)
k , s

(n)
(k+1)) | n ≤ N, k ≤ τn

}
Hs =

{
(s, r

(n)
k , s

(n)
(k+1)) | n ≤ N, k ≤ τn

}
We solve an empirical Bellman Equation by letting:

V (s) =

{
0 if s = t

1
|Hs|

∑
(s,r,s′)∈Hs

(r + V (s′)) ∀ s 6= t

It’s worth thinking about cases when Temporal difference (TD) method would be useful: TD method uses
the Markovian assumption and can therefore leverage on past experiences when we see a completely new
state. In that sense it is a lot more data efficient and can help to reduce variance. Below, we look at three
examples where this is the case.
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Figure 1: Display advertisement set-up

Driving home - Excercise 6.2 of Sutton&Barto: Suppose you have lots of experience driving home
from work. Then you move to a new building and a new parking lot (but you still enter the highway at the
same place). Now you are starting to learn predictions for the new building. Can you see why TD updates
are likely to be much better, at least initially, in this case?

Basketball: Suppose the Warriors (a basketball team) are trying to evaluate a new play designed to lead
to a Steph Curry 3-point shot. For simplicity, let us only consider outcomes where every play ends with a
Steph Curry 3-pointer; so there are two outcomes: he either make the shot or misses it. Suppose that we
know from the start all the formations that each team is planning to run and we want to estimate the value
of this play. Also, we observe an intermediate state – the position of Steph Curry and the defenders right
before the shot is taken– along with the outcome (reward): whether he makes or misses the shot.

There are two estimators one can use to evaluate this new play i) a Monte Carlo estimator where we run
this play many times and compute the average number of points scored or ii) a TD estimator which leverages
a huge volume of available data on the on past 3-point shots from differnt positions (by Steph Curry and
others) to estimate the odds of a successful shot as a function of the intermediate state. This is likely to be
a lower variance estimator than the Monte Carlo one.

Display Advertising: In the previous two examples, TD is more data efficient because it is able to
leverage historical data. These examples are not entirely satisfying, however, since the both motivating
stories involve using data that was generated by following different policies (e.g. different routes home, or
different basketball plays). This raises the question: does TD have advantages when all is generated by
following the policy being evaluated. The following example shows it can.

Consider a display advertisement set-up where we have n users and m display ads; with an intermediate
state, “payment checkout”, and two terminal states, “sale” and “no sale”. This is illustrated in Figure 1. We
assume that the users are randomly shown an ad, and every user clicks on an ad uniformly with probability
p = 0.5, in which case they are taken to a checkout page, or the episode ends with no sale (with probability
0.5). From the checkout page, the episode terminates in a sale with a very small probability psale and
otherwise ends in no sale.

Consider the limit n,m→∞ such that m
n → 0 (i.e. the number of users are much larger than the number

of ads) and assume that psale > 0 is extremely small. We want to estimate the value of an initial state, i.e.
the value of showing an ad to a user. Here the TD estimator is intuitively better: for Monte Carlo estimator,
we have to (implicitly) estimate the conversion probability psale separately for every ad (O(n/2m) samples
while for the TD method we pool data for all users that reach the checkout page to estimate the conversion
probability (O(n/2) samples). For any state s ∈ {1, 2, . . . ,m}, the Monte Carlo estimator of the reward is

3



Ĵ(s) = #of sales
#of trials , with the variance of the estimator scaling as√

n

m

(
Ĵ(s)− p/2

p/2

)
≈ N (0,

2

p
) (1)

whereas for the TD estimator, the variance scales as:√
n

m

(
Ĵ(s)− p/2

p/2

)
≈ N (0, 1) (2)

where p = psale. Thus we see that for this simple example, the TD estimator is analytically better. Generally,
even for simple cases, it is hard to evaluate whether TD is better than MC because it is hard to analyze
the TD estimator. The TD estimator involves computing V̂µ which solves the fixed point V = T̂ V where

T̂ is the empirical Bellman operator. It is also not clear whether using a plug-in estimator for the Bellman
operator is the right thing to do. All we can say is that the TD approach is biased but data efficient. One
interesting research question would be to do an asymptotic analysis of the TD estimator or to have simple
examples where we can compute the variance of the TD estimator and compare that with the Monte Carlo
one.

2.2 Value Function Approximation

For working in MDPs with a large state space (for example: think of continuous state space), we need some
approximation of the state value function V (s). Consider a parameterized class of value functions, parame-
terized by a parameter θ such the the true value function Vµ(s), under some policy µ, is well approximated
by Vθ(s). One example we discussed in the previous lecture is that of a linear model:

Vθ(s) = φ(s)>θ, φ(·), θ ∈ Rd (3)

where φ(s) is the feature vector of a state and is assumed to be known and θ is the unknown parameter,
which is shared across all states, that we want to learn. Note two things: i) θ, depends on the current
policy under evaluation, and is sometimes also referred to as the “policy code” and ii) typically some domain
knowledge of the underlying problem is required to construct these feature vectors, for example in the tetris
game we discussed in an earlier class, we had 20 features: the heights of the 10 columns, 9 inter-column
height differences and the maximum height among all the columns.

Notation: Let Vµ ∈ R|S| be some (exponentially) large value function vector that we don’t want to
store/work with. We want to find a point, Vθ, within the span of some low dimensional features that well
approximates Vµ:

Vµ ≈ Vθ =

 φ(s1)>

...
φk(sn)>

 θ = Φθ

Some of the very recent successful methods which make up “Deep Reinforcement Learning” use neural
networks as function approximators: Vθ(s) = fθ(s), where f(·) is a neural network parameterized by θ. One
advantage of linear models are convergence results when used with Monte Carlo or TD methods; such results
do not yet exist of neural network based models and is an area of active research. Below, we outline Monte
Carlo and TD method with linear function approximation.

2.2.1 (Every Visit) Monte Carlo with Function Approximation:

We can easily extend the Monte Carlo method with function approximation as follows:
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Algorithm 2 (Every visit) Monte Carlo value prediction:

1: for n ∈ {1, 2, . . . , N} do

2: Observe (s
(n)
0 , r

(n)
0 , s

(n)
1 , . . . , s

(n)
τn , r

(n)
τn , t)

3: for k = 0, . . . , τn do

4: G
(n)
k =

∑τn
i=k r

(n)
i . G

(n)
k is an unbiased estimator of Vµ(s

(n)
k )

5: Append (s
(n)
k , G

(n)
k ) to D

6: end for
7: end for

8: return θ̂ = arg minθ
1
|D|
∑

(s,G)∈D

(
Vθ(s)−G

)2

. Minimize the mean square error

Note: For the Monte Carlo approach, the linear architecture for approximation is not crucial. As G
(n)
k is a

noisy estimate of Vµ(s
(n)
k ), the above algorithm can be reinterpreted as:

θ̂ = arg min
θ

1

|D|
∑

(s,·)∈D

(
Vθ(s)− Vµ(s) + noise

)2

(4)

Define π(s) = E(
∑τ
k=0 I{sk=s})/E(τ), then as N → ∞, the distribution of states in the dataset D is

approximately equal to the long run state visitation frequencies π(s) and θ̂ → θ:

θ̂ → θ = arg min
θ

Es∼π(s)

(
Vθ(s)− Vµ(s)

)2

= arg min
θ
‖Vθ − Vµ‖2π

where ‖V ‖π :=
√∑

s π(s)V (s)2. For the class of linear function approximators, we can say a bit more:
define Π to be the projection operator, i.e. ΠVµ = arg min

V ∈span(Φ)

‖ V − Vµ ‖2π. We can say that the Monte Carlo

approximation V̂MC = Φθ̂ converges to ΠVµ as N →∞.

2.2.2 Fitted Value Iteration:

Let’s consider the discounted case as the analysis turns out to be simpler in this case. Suppose we observe a

single stream of data
[
s0, r0, s1, . . . , rN , sN+1

]
or equivalently the set of all tuples H =

[
(sn, rn, sn+1) | n =

1, 2, . . . , N
]
. Assume that the Markov chain is ergodic under the policy µ, say π(s) = lim

n→∞
(
∑n
k=0 I{sk=s})/n.

Realistically, we need P (sn = s, sn+i = s′) ≈ π(s)× π(s′) for n, i large enough. We can find the estimate of
θ by starting with some initial θ0 and iterating over:

θk+1 = arg min
θ

1

|H|
∑

(s,r,s′)∈H

(
Vθ(s)− (r + γVθk(s′))

)2

until convergence. But is the following map a contraction (to reason about the convergence of this algorithm)?

V 7→ arg min
V ′∈span(Φ)

1

|H|
∑

(s,r,s′)∈H

(
V ′(s)− (r + γV (s′))

)2
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It’s unclear for finite sample cases, but we can claim the following as N →∞:

arg min
V ′∈span(Φ)

1

|H|
∑

(s,r,s′)∈H

(
V ′(s)− (r + γV (s′))

)2

≈ arg min
V ′∈span(Φ)

1

|H|
∑

(s,·,·)∈H

(
V ′(s)− TµV (s) + noise

)2

≈ arg min
V ′∈span(Φ)

Es∼π(s)

(
V ′(s)− TµV (s)

)2

= arg min
V ′∈span(Φ)

‖ V ′ − TµV ‖2π

= ΠTµV

where Π is the projection operator. Hence, the algorithm approximately does
the following: start with some initial θ0 and V0 = Φθ0 and repeat Vk+1 =
ΠTµVk. Next time, we will prove the convergence of the this algorithm, which
is sometimes called projected Value iteration.
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