
B9140 Dynamic Programming & Reinforcement Learning Lecture 7 - 10/30/17

Introduction to Reinforcement Learning
Lecturer: Daniel Russo Scribe: Nikhil Kotecha, Ryan McNellis, Min-hwan Oh

0 From Previous Lecture

Last time, we discussed least-squares value iteration with stochastic gradient descent given the history of
data H = {(sn, rn, sn+1)|n ≤ N}

Algorithm 1: Least-squares VI with SGD

Input: θ, (αt: t ∈ N)
for k = 0, 1, 2, ... do

θ = θk
repeat

Sample (s, r, s′) ∼ H
y = r + γVθk(s′)
θ = θ − αt∇(Vθ(s)− y)2

t = t+ 1
until convergence;
θk+1 = θ

end

In this lecture, we will be bridging the gap between this and DeepMind’s DQN. Note that in summary
there are three main differences:

1. Incremental training: θk’s are updated frequently (perhaps every period) rather than waiting for
convergence

2. Learning a state-action value function (Q-function)

3. Adapting the policy as data is collected (changes how future data is collected)

1 Incremental Training

1.1 Temporal Difference Learning

A fully-online analogue of least-squares value iteration.

Algorithm 2: Temporal Difference Learning

Input: µ, θ, (αt: t ∈ N) (step-wise sequence)
for n = 0, 1, 2, ... do

Observe sn, play an = µ(sn) (See state, play action that policy tells to play in state.)
Observe (rn, sn+1) (Outcome: instantaneous reveal, next state.)
y = rn + γVθ(sn+1) (Under current parameter, one-step look ahead value.)
θ = θ − αn∇(Vθ(sn)− y)2 (Gradient step.)

end

1

This mechanism is biologically plausible: instantaneous outcomes can be labeled good or bad with the goal
of trying to predict if outcomes are good or bad. The realized y depends on the parameter, akin to trying
to predict a moving target.

Temporal Difference (TD) with linear function approximation converges to θ∗ solving:

Φθ∗ = ΠTµΦθ∗ (1)

Result: (Tsitsiklis & Van Roy, 19971)
-Fixed point of:

Vθk+1
= ΠTµVθk (2)

This relies on the theory of stochastic approximation and fact that ΠTµ is a contraction (recall proof from
previous class).

Essence of the result in 3 steps:

Step 1, Calculate gradient:

∂

∂θ

(Vθ(Sn)− y)2

2
=
[
φ(Sn)>θ − (rn + γφ(Sn+1)>θ)

]
φ(Sn) = gn(θ) (3)

In words, the gradient of the loss is equal to the predicted value less the reward and discounted predicted
value with the feature value in the next state. This can also be expressed in the following equation, in which
gn(θ) is a random variable that depends on the state and the realized reward and state.

∂

∂θ

(Vθ(Sn)− y)2

2
= gn(θ) (4)

Step 2, Denoise:
E0[(gn(θ)] = Φ>Dπ (TµΦθ − Φθ) (5)

Here, the expectation is taken over the steady state. In the RHS, Φ represents the features, Dπ is a diagonal
matrix with the steady state probabilites on the diagonal. Inside the parenthetical looks like the average
Bellman error in prediction as measured in features.

Step 3, Solution to fixed point equation:

(θ − θ∗)>E0[gn(θ)] > 0 (6)

Above is the essence of the result: looking at the convergence point, which is the solution to the fixed point
equation.

1Tsitsiklis, J. and Van Roy, B. (1997). An Analysis of Temporal-Difference Learning with Function Approximation. IEEE
Transactions on Automatic Control, 42(5): 674- 690.

2

1.2 Stochastic Approximation

History: Robbins and Monro, 1951 wrote a paper entitled “A Stochastic Approximation Method.”2 These
ideas are widely used in control systems, signal processing, stochastic simulation, time series, and Machine
Learning (today).

Incremental Mean: observe X1, X2, ...i.i.d with mean θ

θ̂n =
1

n

n∑
i

Xi =
1

n

(
n−1∑
i

Xi +Xn

)
= θ̂n−1 −

1

n

(
θ̂n−1 −Xn

)
= θ̂n−1 − αn(gn) (7)

Here time is represented by n. In the first step the empirical average is taken, then rewritten to exactly
compute the mean. This results in the new mean being equal to the last mean less the difference of the mean
estimate and the observation.

Some key observations:

Observation 1, the sum of squares is finite:

∞∑
n=1

αn =∞,
∞∑
n=1

α2
n <∞ (8)

Observation 2, average updates go in the right direction:

E[gn|Fn−1] = (θ̂n−1 − θ) (9)

To put these observations together, use the Martingale Convergence Theorem to show θ̂n → θ.
As it turns out, the above procedure is equivalent to applying Stochastic Gradient Descent (SGD) to the

objective function E[(θ−X)2/2] using step size αn = 1/n. More generally, SGD is used to find the parameter
θ which minimizes the nonnegative loss function `(θ) = Eξ[f(θ, ξ)] for some f(·, ·). It is assumed that this
expectation cannot be computed directly. However, we can use SGD to optimize over the loss function with
respect to i.i.d. samples of the random variable ξ. The SGD algorithm is as follows:

Algorithm 3: Stochastic Gradient Descent (SGD)

Input: step size αt, starting parameter θ1
for t = 1, 2, ... do

Sample ξt (i.i.d.)
Compute gt = ∇θf(θ, ξt)|θ=θt
θt+1 = θt − αtgt

end

Let ∇`(θt) be shorthand notation for ∇`(θ)|θ=θt . If the step size αt is chosen appropriately, then SGD
converges to a locally-optimal solution:

Theorem 1. ||∇`(θt)|| → 0 as t→∞ if the following conditions are satisfied:

1.
∑∞
t=1 αt =∞

2.
∑∞
t=1 α

2
t <∞

2Robbins, H., & Monro, S. (1951). A stochastic approximation method. The annals of mathematical statistics, 400-407.

3

Proof (sketch): Let Ft = {ξs : s ≤ t}. Then, E[gt|Ft−1] = ∇`(θt): given the entire history of data Ft−1,
the expected value of the noisy gradient gt is equal to the true gradient ∇`(θ)|θ=θt . One can also show that:

`(θt+1) = `(θt)− αt∇`(θt)>gt +O(α2
t)

Combining these two observations,

E[`(θt)− `(θt+1)|Ft−1] = αt||∇`(θt)||2 +O(α2
t)

Assume by contradiction that lim inft→∞ ||∇`(θt)||2 = c > 0. Then, for large t, E[`(θt)] decreases
by αtc + O(α2

t) each iteration. This implies that E[`(θt)] approaches −∞, given the theorem conditions∑
t αt = ∞ and

∑
t α

2
t < ∞. However, this violates the non-negativity of `(θ). Thus, it must be the case

that lim inft→∞ ||∇`(θt)||2 = 0.

2 Using State-Action Value Functions

Up to this point in class, we have focused on on the estimation of the value functions V ∗(s) corresponding
to the optimal policy. However, the reinforcement-learning literature instead focuses on estimating the “Q-
functions” Q∗(s, a), which can be thought of as the “value” of a state-action pair. This shift in focus is due
to the fact that reinforcement-learning algorithms need to do more than simply evaluate a fixed policy – they
also need to control the data-collection process through the actions they take (this will be emphasized in the
next section). However, as we will show, the methodology we have studied for estimating value functions
extends easily to estimating Q-functions.

First, note that the value function V ∗(s) can be computed from the Q-function Q∗(s, a) in the following
way:

V ∗(s) = max
a∈A

Q∗(s, a) (10)

The Q-functions obey the following system of equations:

Q∗(s, a) = R(s, a) + γ
∑
s′

P (s, a, s′)V ∗(s′) (11)

In words, Q∗(s, a) represents the reward from taking action a in state s plus the expected cost-to-go
from taking actions according to the optimal policy. As it turns out, the optimal policy can be derived from
knowing Q∗:

µ∗(s) = arg max
a∈A

Q∗(s, a)

Thus, if we can estimate Q∗, then we can simply read off the optimal policy. Note that we can define a
Q-function with respect to any policy µ, rather than simply the optimal policy:

Qµ(s, a) = R(s, a) + γ
∑
s′

P (s, a, s′)Vµ(s′) ,

or, in words, the reward from taking action a in state s plus the expected cost-to-go from taking actions
according to the policy µ.

As mentioned previously, much of the theory about value functions extends to Q-functions. For example,
Q∗ obeys its own Bellman equations:

Q∗(s, a) = R(s, a) + γ
∑
s′

P (s, a, s′) max
a∈A

Q∗(s′, a)

4

Note that the above equation was obtained from simply plugging equation (10) into equation (11).

Another slight change from our usual formulation is to consider stochastic policies. When we studied
dynamic programming theory, we did not consider such policies because they are never optimal for Markov
Decision Processes. However, in reinforcement learning, stochastic policies are useful for exploration – for
allowing the algorithm to see new states. We define the stochastic policy µ as follows:

µ(s, a) = probability of choosing action a when in state s

Note in particular that
∑
a µ(s, a) = 1. The “Bellman equations” for Qµ with respect to a stochastic µ are

as follows:

Qµ(s, a) = R(s, a) + γ
∑
s′

P (s, a, s′)

[
max
a′∈A

µ(s′, a′)Qµ(s′, a′)

]
(12)

We can define a “Bellman operator” Fµ with respect to the above equation. Using Fµ, we can express
equation (12) using the shorthand notation Qµ = FµQµ.

Given the Bellman equations above, we can apply similar techniques to learning Q-functions as we used
when learning value functions. For example, below is a policy-iteration algorithm for learning Q-functions:

Algorithm 4: Policy Iteration (for estimating Q*)

Input: starting policy µ0

for k = 0, 1, 2, ... do
Evaluate Qµk

from solving the Bellman equation Qµk
= Fµk

Qµk

Improve the policy: µk+1(s) = arg maxaQµk
(s, a)

end

In settings where the state-action space is large, we can approximate Qµ through a linear function
Qθ = Φθ, where Qθ(s, a) = φ(s, a)>θ. To learn the best value of θ, one can apply an algorithm called
SARSA, which is very similar to temporal difference learning:

Algorithm 5: SARSA

Input: starting parameter θ, policy µ, step sizes αt
for n = 0, 1, 2, ... do

Observe sn and sample an ∼ µ(sn, ·)
Observe (rn, sn+1) and sample an+1 ∼ µ(sn+1, ·)
y = rn + γQθ(sn+1, an+1)
θ = θ − αt∇(Qθ(sn, an)− y)2

end

Note that in temporal difference learning, we perform updates with respect to the tuple (sn, an, rn). In
SARSA, we now perform updates with respect to the vector (sn, an, rn, sn+1, an+1).

The convergence theory is identical when considering linear approximations of Qθ. In the limit,

Φθ∗ = ΠFµ
(
Φθ∗

)
.

5

3 Adaptive Control with Value Function Approximation

We are now going to look at adaptive control with value function approximation or Q-function approximation.
Where does policy µ come from? If we are given a Q-function, we can provide a policy that we think is
better with respect to the given Q-function. We can gather data using this policy. Then we can re-evaluate
our Q-function, and then get a better policy and so on.

Algorithm 6: Approximate Policy Iteration

Input: starting policy µ0

for k = 0, 1, 2, ... do
Approximate Qµk

= Qθk (Run SARSA until convergence to θk with Φθk = ΠFµk

(
Φθk

)
)

Improve the policy: µk+1(s) = arg maxaQµk
(s, a)

end

This is very similar to policy iteration. But it is not going to behave very well in general due to the
nature of the approximation. Note that by following µk, we evaluate Qµk

. We approximate Q-functions by
minimizing the predictive loss on the states we visit under the current policy. So we prioritize being accurate
on those states and actions that we visit. And we might accidentally introduce errors in the evaluations of
states and actions that we don’t visit under current policy.

Policy “chattering” in approximate polity iteration

Example: Suppose we have 1 state with 2 actions. So we write Q(a) = Q(s, a) for a = 1, 2, i.e. we get rid
of s since there is only 1 state. We approximate Q(a) ≈ Qθ(a) = Φ(a)θ, θ ∈ R.

Suppose we have Q = (Q(1), Q(2)) = (−1, 1) i.e. if we play action 1, we get a reward of -1. If we play
action 2, we get a reward of 1. Obviously, we want to play action 2. Now, suppose we have Φ = (2, 1), i.e.
if θ > 0, we think we should play action 1. And if θ < 0, we think we should play action 2.

Let’s look at what approximate policy iteration algorithm does.

Algorithm 7: Approximate Policy Iteration with Linear Approximation and 1 state

Input: θ0, a0 = arg maxa(Φθ0)(a)
for k = 0, 1, 2, ... do

θk+1 = arg minθ ((Φθ)(ak)−Q(ak))
2

ak+1 = arg maxa(Φθk)(a)
end

So what happens with (θ0 = − 1
2)?

θ0 = −1

2
⇒ Qθ0 = (−1,−1

2
)⇒ a0 = 2

Φ(2)θ1 = Q(2)⇒ θ1 = 1⇒ a1 = arg max
a

Qθ1(a) = 1

Φ(1)θ2 = Q(1)⇒ θ2 = −1

2
⇒ a2 = 2

We can’t represent the true value function well everywhere, i.e. fail to globally approximate the value
function. When we gather data from the current policy, we fit the experience/episode well but end up fitting
wrong on the states we are not currently visiting. When we go visit those states that we did poorly on now
we may forget what we have fitted well previously. This goes in a loop as what happens in the example
above. Policy chattering really happens!

6

4 A High Level View of DQN

• Action: 18 button / joystick control

• State: Stack of four 84×84 pixel frames (most recent 4 frames)

• Qθ: Convolutional neural network with 4 hidden layers

• Clip reward: map to (−1, 0, 1)

• In training: ε-greedy action selection → 5 million frames of training data (38 days)

Two changes to Q-learning

1. Fixed target network and update every 10k frames (looks more like approximate policy iteration)

2. Experience replay (buffer of 1 million frames) → breaks correlation

7

