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Outline: Part I

1. Briefly discuss classical bandit problems
2. Use the shortest path problem to teach TS

– Emphasize flexible modeling of problem features
– Discuss a range of issues like

• Prior distribution specification
• Approximate posterior sampling
• Non-stationarity
• Constraints, caution, and context

3. Discuss shortcomings and alternatives

Material drawn from 
A Tutorial on Thompson Sampling - Russo, Van Roy, Kazerouni, Osband, and Wen.

Learning to optimize via information-directed sampling – Russo and Van Roy.



Outline: Part 2
(Next week)

• Introduction to regret analysis.

• Focus on the case of a online linear optimization with 
“bandit feedback” and Gaussian  observation noise. 

• Give a regret analysis that applies to TS and UCB.

Material drawn from

• Russo and Van Roy: Learning to optimize via posterior sampling

• Dani, Hayes and Kakade: Stochastic Linear Optimization under Bandit 
Feedback

• Rusmevichientong and Tsitsiklis: Linearly parameterized bandits



Environment

Action

Outcome

Reward

Interactive Machine Learning:
Intelligent information gathering



The Multi-armed Bandit Problem

• A sequential learning and experimentation problem
• Crystalizes the exploration/exploitation tradeoff



The Multi-armed Bandit Problem

• A sequential learning and experimentation problem
• Crystalizes the exploration/exploitation tradeoff
• Initial motivation:  clinical trials



Website Optimization

• Choose ad to show to User 1
• Observe click?
• Choose ad to show to User 2
• Observe click?
• …..



Broad Motivation

• The information revolution is spawning systems that:

– Make rapid decisions

– Generate huge volumes of data

• Allows for small scale, adaptive, experiments



Website Optimization: 
A Simple MAB problem 

• 3 advertisements

• Unknown click probability: 𝜃1, … , 𝜃3 ∈ [0,1]

• Choose adaptive algorithm displaying ads 

• Goal: Maximize cumulative number of clicks. 



Greedy Algorithms

• Always play the arm with highest estimated 
success rate.

What is wrong with this?

This algorithm requires point estimation

– a procedure for predicting the mean reward of an 
action given past data. 



𝜖-Greedy Algorithm

• With probability 1 − 𝜖 play the arm with highest 
estimated success rate.

• With Probability 𝜖, pick an arm uniformly at 
random. 

Why is this wasteful?

This algorithm requires point estimation
– a procedure for predicting the mean reward of an 

action given past data. 



An example

• Historical data on 3 actions

– Played (1000,1000, 5) times respectively

– Observed (600,400, 2) successes respectively. 

• Synthesize observations with an independent 
uniform prior on each arm. 



Posterior Beliefs



Comments

• Greedy is likely to play action 1 forever, even 
though there is a reasonable chance action 3 
is better. 

• 𝜖—Greedy fails to write off bad actions

– Effectively wastes effort measuring action 2, and 
regardless of how convincing evidence against arm 
to is. 



Improved algorithmic design principles

• Continue to play actions that are plausibly 
optimal.

• Gradually write off actions as that are very 
unlikely to be optimal. 

This requires inference
– procedures assessing the uncertainty in estimated 

mean rewards. 



Beta-Bernoulli Bandit

• A 𝑘 armed bandit with binary rewards

• Success probabilities 𝜃 = (𝜃1, … 𝜃𝑘) are unknown but 
fixed over time. 

𝑝 𝑟𝑡 = 1 𝑥𝑡 = 𝑖, 𝜃 = 𝜃𝑖

• Begin with a Beta prior with parameters 𝛼 =
(𝛼1, … , 𝛼𝑘) and 𝛽 = (𝛽1, … 𝛽𝑘). 

𝑝 𝜃𝑘 =
Γ 𝛼𝑘 + 𝛽𝑘
Γ 𝛼𝑘 Γ 𝛽𝑘

𝜃𝑘
𝛼𝑘−1 1 − 𝜃𝑘

𝛽𝑘−1



Beta-Bernoulli Bandit

• Note, Beta(1,1)=Uniform(0,1)

• Posterior distributions are also Beta 
distributed, with simple update rule

(𝛼𝑘 , 𝛽𝑘) =  
(𝛼𝑘 , 𝛽𝑘) 𝑖𝑓 𝑥𝑡 ≠ 𝑘

(𝛼𝑘 , 𝛽𝑘) + 𝑟𝑡, 1 − 𝑟𝑡 𝑖𝑓 𝑥𝑡 = 𝑘

• Posterior mean is 𝛼𝑘/(𝛼𝑘 + 𝛽𝑘).



Greedy

• For every period 

– Compute posterior means (𝜇1, … , 𝜇𝐾)

– 𝜇𝑘 = 𝛼𝑘/(𝛼𝑘 + 𝛽𝑘)

– Play 𝑥 = argmaxk 𝜇𝑘
– Observe reward and update (𝛼𝑥 , 𝛽𝑥)



Bayesian UCB

• For every period 

– Compute upper confidence bounds (𝑈1, … , 𝑈𝐾)

• 𝑃𝜃𝑘∼𝐵𝑒𝑡𝑎(𝛼𝑘,𝛽𝑘) 𝜃𝑘 ≥ 𝑈𝑘 ≤ threshold

– Play 𝑥 = argmaxk U𝑘

– Observe reward and update (𝛼𝑥 , 𝛽𝑥)



Thompson Sampling

• For every period 

– Draw random samples (  𝜃1, … ,  𝜃𝐾)

• 𝜃𝑘 ∼ 𝐵𝑒𝑡𝑎(𝛼𝑘 , 𝛽𝑘)

– Play 𝑥 = argmaxk  𝜃𝑘
– Observe reward and update (𝛼𝑥 , 𝛽𝑥)



What do TS and UCB do here?



A simulation of TS
• Fixed problem instance 𝜃 = (.9, . 8, . 7)



A simulation of TS
• Fixed problem instance 𝜃 = (.9, . 8, . 7)



A simulation of TS
• Random instance 𝜃𝑖 ∼ Beta(1,1)



Prior Distribution Specification

How I think about this:

• No algorithm minimizes 𝔼[Total_regret|𝜃] for 
all possible instances 𝜃.  
– E.g. an algorithm that always plays arm 1 is optimal 

when 𝜃1 ≥ 𝜃2, … , 𝜃1 ≥ 𝜃𝑘 but is terrible otherwise. 

• A prior directs the algorithm that certain 
instances are more likely than others, and to 
prioritize good performance on those instances.



Empirical Prior Distribution 
Specification

• We want to identify the best of 𝐾 banner ads

• Have historical data from previous products

• For each ad 𝑘 we can identify the past 
products with similar stylistic features, and 
use that to construct an informed prior. 



Empirical Prior Distribution 
Specification



The value of a thoughtful prior

• Mispecified TS has prior 𝛼 = 1,1,1 & 𝛽 = 100,100,100

• Correct_TS has prior 𝛼 = 1,1,1 & 𝛽 = 50,100,200



Prior Robustness and Optimistic Priors

• The effect of the prior distribution usually washes out once 
a lot of data has been collected. 

• The impact in bandit problems is more subtle

• An agent who believes an action is very likely to be bad is, 
naturally, unlikely to try that action.

• Overly “optimistic” priors usually lead to fairly efficient 
learning.

• There is still limited theory establishing this. 



Prior Robustness and Optimistic Priors

• correct_ts has prior 𝛼 = 1,1,1 & 𝛽 = 1,1,1

• optimistic_ts has prior 𝛼 = 10,10,10 & 𝛽 = 1,1,1
• pessimistic_ts has prior 𝛼 = 1,1,1 & 𝛽 = 10,10,10



Recap so far

• Looked at a simple bandit problem.

• Introduces TS+UCB

• Understood their potential advantage over 𝜖-
greedy

• Discusses priors specification. 



Classical Bandit Problems

• Small number of actions

• Informationally decoupled actions

• Observations = rewards

• No long run influence. (no credit assignment)

• How to address more complicated settings?



Example: personalizing movie 
recommendations for a new user

• Action space is large and complex.

• Complex link between actions/observations.

• Substantial prior knowledge:

– Which movies are similar?

– Which movies are popular?

• Delayed consequences.



Summary on TS

• Optimize a perturbed estimate of the objective 

• Add noise in proportion to uncertainty

• Often generates sophisticated exploration. 

• A general paradigm

General Thompson Sampling



Summary on TS
• Optimize a perturbed estimate of the objective 

• Add noise in proportion to uncertainty
• Often generates sophisticated exploration. 
• A general paradigm

Misleading view in the literature: TS is “optimal,” is the best algorithm 
empirically, and performs much better than UCB. 

My view: TS is a simple way to generate fairly sophisticated exploration while 
still enabling rich and flexible modeling. 

General Thompson Sampling



Part I:Thompson Sampling

• Use the online shortest path problem to 
understand the Thompson sampling algorithm. 

1. Why is the problem challenging?

2. How TS works in this setting.

3. Touch on a theoretical guarantee . 

• Thompson (1933), Scott (2010), Chappelle and Li (2011), Agrawal 
and Goyal (2012)



Online Shortest Path Problem



The number of paths can be exponential in the number of edges.

Associated Challenges

1. Computational 
– Natural algorithms optimize a surrogate objective in each time-step. 

– Optimizing this surrogate objective may be intractable. 

2. Statistical 
– Many natural algorithms only explore locally.

– Time to learn may scale with the number of paths. 

Shortest Path Problem



• Short back-roads, marked blue. 
• Two long highways, marked green and orange.
• We think green might be much faster than orange 

Dithering (i.e. 𝜖 −greedy )
for Shortest Path



• Time to learn scales with the number of paths
(exponential in number of edges)

Dithering (i.e. 𝜖 −greedy )
for Shortest Path



Bayesian Shortest Path

• Begin with a prior over mean travel times 𝜽.

• Observe realized travel times on traversed edges.

• Track posterior beliefs. 

– (Require posterior-samples)



Conjugate Example

Log-Normal Distribution

• 𝑙𝑜𝑔 𝜃𝑒 ∼ 𝑁 𝜇𝑒 , 𝜎𝑒
2

• Conditioned on 𝜃𝑒, realized travel times along edge 𝑒
have mean 𝜃𝑒 and are lognormally distributed. 

• Simple update rule for posterior parameters



Conjugate Example

Log-Normal Distribution

• 𝑙𝑜𝑔 𝜃𝑒 ∼ 𝑁 𝜇𝑒 , 𝜎𝑒
2

• Conditioned on 𝜃𝑒, realized travel times along edge 𝑒
have mean 𝜃𝑒 and are lognormally distributed. 

• Simple update rule for posterior parameters

An Informed Prior
• With known travel distances for each edge, one can pick 

(𝜇𝑒 , 𝜎𝑒
2) so

– 𝔼 𝜃𝑒 = 𝑑𝑒
– 𝑉𝑎𝑟 𝜃𝑒 ∝ 𝑑𝑒

2



Greedy for Shortest Path

V1 V4

V5

V6

V3

V2

V8

V7

V9

V10

V11

V12
𝜇4,8

𝜇3,7

𝜇5,9

𝜇2,7

𝜇6,9

𝜇1,4

𝜇1,3

𝜇1,2

𝜇1,5

𝜇1,5

𝜇8,10

𝜇8,11

𝜇9,11

𝜇7,10

𝜇11,12

𝜇10,12

1. Set: 𝝁 to be the posterior mean of 𝜽



Greedy for Shortest Path

V1 V4

V5

V6

V3

V2

V8

V7

V9

V10

V11

V12
𝜇4,8

𝜇3,7

𝜇5,9

𝜇2,7

𝜇6,9

𝜇1,4

𝜇1,3

𝜇1,2

𝜇1,5

𝜇1,5

𝜇8,10

𝜇8,11

𝜇9,11

𝜇7,10

𝜇11,12

𝜇10,12

1. Set: 𝝁 to be the posterior mean of 𝜽
2. Follow the shortest path under 𝝁



Greedy for Shortest Path

V1 V4

V5

V6

V3

V2

V8

V7

V9

V10

V11

V12
𝜇4,8

𝜇3,7

𝜇5,9

𝜇2,7

𝜇6,9

𝜇1,4

𝜇1,3

𝜇1,2

𝜇1,5

𝜇1,5

𝜇8,10

𝜇8,11

𝜇9,11

𝜇7,10

𝜇11,12

𝜇10,12

1. Set: 𝝁 to be the posterior mean of 𝜽
2. Follow the shortest path under 𝝁
3. Update beliefs



Thompson Sampling for Shortest Path

V1 V4

V5

V6

V3

V2

V8

V7

V9

V10

V11

V12
 𝜃4,8

 𝜃3,7

 𝜃5,9

 𝜃2,7

 𝜃6,9

 𝜃1,4

 𝜃1,3

 𝜃1,2

 𝜃1,5

 𝜃1,5

 𝜃8,10

 𝜃8,11

 𝜃9,11

 𝜃7,10

 𝜃11,12

 𝜃10,12

1. Sample from posterior:  𝜽 ∼ 𝜋𝑡(𝑑𝜽)



Thompson Sampling for Shortest Path

V1 V4

V5

V6

V3

V2

V8

V7

V9

V10

V11

V12
 𝜃4,8

 𝜃3,7

 𝜃5,9

 𝜃2,7

 𝜃6,9

 𝜃1,4

 𝜃1,3

 𝜃1,2

 𝜃1,5

 𝜃1,5

 𝜃8,10

 𝜃8,11

 𝜃9,11

 𝜃7,10

 𝜃11,12

 𝜃10,12

1. Sample from posterior:  𝜽 ∼ 𝜋𝑡(𝑑𝜽)
2. Follow shortest path under sampled weights



Thompson Sampling for Shortest Path

V1 V4

V5

V6

V3

V2

V8

V7

V9

V10

V11

V12
 𝜃4,8

 𝜃3,7

 𝜃5,9

 𝜃2,7

 𝜃6,9

 𝜃1,4

 𝜃1,3

 𝜃1,2

 𝜃1,5

 𝜃1,5

 𝜃8,10

 𝜃8,11

 𝜃9,11

 𝜃7,10

 𝜃11,12

 𝜃10,12

1. Sample from posterior:  𝜽 ∼ 𝜋𝑡(𝑑𝜽)
2. Follow shortest path under sampled weights
3. Update beliefs



Thompson Sampling for Shortest Path

V1 V4

V5

V6

V3

V2

V8

V7

V9

V10

V11

V12
 𝜃4,8

 𝜃3,7

 𝜃5,9

 𝜃2,7

 𝜃6,9

 𝜃1,4

 𝜃1,3

 𝜃1,2

 𝜃1,5

 𝜃1,5

 𝜃8,10

 𝜃8,11

 𝜃9,11

 𝜃7,10

 𝜃11,12

 𝜃10,12

1. Sample from posterior:  𝜽 ∼ 𝜋𝑡+1(𝑑𝜽)



Thompson Sampling for Shortest Path

V1 V4

V5

V6

V3

V2

V8

V7

V9

V10

V11

V12
 𝜃4,8

 𝜃3,7

 𝜃5,9

 𝜃2,7

 𝜃6,9

 𝜃1,4

 𝜃1,3

 𝜃1,2

 𝜃1,5

 𝜃1,5

 𝜃8,10

 𝜃8,11

 𝜃9,11

 𝜃7,10

 𝜃11,12

 𝜃10,12

1. Sample from posterior:  𝜽 ∼ 𝜋𝑡+1(𝑑𝜽)
2. Follow shortest path under sampled weights
3. Update beliefs



Binomial Bridge

• Twenty rather than six stages
• 184,757 paths



Shortest Path Simulation



Let 𝑥∗ 𝜽 ∈ 𝒳 denote the shortest path under 𝜽

Posterior sampling definition: 

– Sample  𝜽𝑡 ∼ 𝜋𝑡 𝑑𝜽

– Play 𝑥∗  𝜽𝑡

Probability matching definition: 

– Play 𝑥 with probability ℙ𝜽∼𝜋𝑡
(𝑥∗ 𝜃 = 𝑎)

Why does this work?



Sample a path according to the posterior 
probability it’s the shortest path. 

1. Continue to explore all edges that could plausibly 
be in the shortest path. 

2. Don’t waste effort exploring edges that are very 
unlikely to be in the shortest path. 

Why does this work?



• Short back-roads, marked blue. 
• Two long highways, marked green and orange.
• We think green might be much faster than orange 

Thompson Sampling vs Dithering



• Short back-roads, marked blue. 
• Two long highways, marked green and orange.
• We think green might be much faster than orange

TS navigates to, and samples, the green edge

Thompson Sampling vs Dithering



• Short back-roads, marked blue. 
• Two long highways, marked green and orange.
• We think green might be much faster than orange

TS navigates to, and samples, the green edge
Performs “Deep exploration”

Thompson Sampling vs Dithering



• A richer model of edge delays

• Posterior approximations

• Non-stationary environments

• Constraints, caution, and context

The practice of TS



• Graph can be broken up into regions

– For simplicity, uptown and downtown

• Delays on an edge are influenced by

– Shocks associated with that edge

– Shocks to the whole system

– Shocks to the region containing the current edge

Extension: Correlated Travel Times



• For each edge e

𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 = 𝑖𝑑𝑜𝑠𝑦𝑛𝑐𝑟𝑎𝑡𝑖𝑐 𝑠ℎ𝑜𝑐𝑘 ×
𝑟𝑒𝑔𝑖𝑜𝑛 𝑠ℎ𝑜𝑐𝑘 × 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠ℎ𝑜𝑐𝑘 ×
𝑚𝑒𝑎𝑛 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒

• Shocks are lognormal with known parameters.

• Simple update rule for posterior parameters  

Simulation trial



Benefits of modeling correlation 



• Route recommendation service suggests paths

• Users give binary ratings

• Probabilities reflect quality of path

A Path Recommendation Problem:  
(A non-conjugate example)



• Computing MAP estimates is straightforward

• No closed form posterior. 

• How do we apply Thompson sampling?

A Path Recommendation Problem 



1. Gibbs Sampling / Metropolis Hastings

2. Laplace Approximation

3. Langevin Monte Carlo

4. Bootstrap Sampling

5. Ensemble methods 

Posterior Approximations / Sampling



Approximate the posterior by a Gaussian 
centered at its mode

Laplace Approximation



Approximate the posterior by a Gaussian centered at its mode

The log posterior density 

g(θ) ∝ log π0 (θ) + 
1

n

log p(yi|θ)

is concave. 

• Taylor expansion around mode  θ:

g θ ∝ g  θ −  θ − θ
T  𝐶  θ − θ + o( θ −  θ

2
)

where  C is the Hessian of g at  θ. 

• Leads to approximate posterior N( θ,  C)

Laplace Approximation



Construct a Markov chain by running gradient ascent + noise

The log posterior density 

g(θ) ∝ log π0 (θ) + 
1

n

log p(yi|θ)

is concave. 

Under some technical conditions, 𝜋𝑛 𝜃 ∝ 𝑒𝑔 𝜃 is the unique 
stationary distribution of the Langevin diffusion 

𝑑𝜃𝑡 = 𝛻𝑔 𝜃𝑡 + 2𝑑𝐵𝑡
where 𝐵𝑡 is standard Brownian motion. 

Langevin MCMC



Construct a Markov chain by running gradient ascent + noise

Simulate a Euler discretaton of the Langevin Diffusion 

𝜃𝑡+1 = 𝜃𝑡 + 𝜖𝛻𝑔 𝜃𝑡 + 2𝜖𝑑𝐵𝑡

There is theory showing this mixes rapidly 

• (e.g. when 𝛻2𝑔 𝜃 ≼ −𝐿𝐼)

I have found it is helpful to initialize at the MAP estimate, and 
‘precondition’ by the inverse Hessian at the MAP estimate. 

Langevin MCMC



Subsample training data with 
replacement. Train as usual.

Standard bootstrap

1. 𝐻𝑛 = { 𝑥1, 𝑦1 … 𝑥𝑛, 𝑦𝑛 }

2. Sample hypothetical history with replacement 

–
 𝐻𝑛 = {  𝑥1,  𝑦1 , … , (  𝑥𝑛,  𝑦𝑛)}

3. Construct MAP estimate on  𝐻𝑛.

Bootstrap Sampling



Subsample training data with 
replacement. Train as usual.

The tutorial covers a nonstandard bootstrap.

• Injects some additional uncertainty by 
sampling from prior.   

Bootstrap Sampling



Simulating Path Recommendation



First observation: 

• If the environment changes very rapidly, it is not worth 
exploring. 

Second observation:

• Slowly changing environments can be addressed by 
running TS while gradually “forgetting” the past
1. w/ a sliding window.

2. w/ geometric down-weighting of the past.

3. w/ more sophisticated Bayesian filtering techniques.

Non-stationarity



Beyond the shortest path problem, can be 
written the form

1. Sample  𝜽𝑡 ∼ 𝜋𝑡 𝑑𝜽

2. Play max
𝑥∈𝒳𝑡

𝔼[𝑟𝑡|𝑥𝑡 = 𝑥,  𝜃𝑡]

Here 𝑟𝑡 denotes the reward at time 𝑡, and 𝑥𝑡
denotes the action.    

Constraints, Caution, and Context



Observation: 

It is easy to apply TS in a problem with arbitrary 
changing action sets: 𝒳1, 𝒳2, 𝒳3…

1. Observe 𝒳𝑡

2. Sample  𝜽𝑡 ∼ 𝜋𝑡 𝑑𝜽

3. Play max
𝑥∈𝒳𝑡

𝔼[𝑟𝑡|𝑥𝑡 = 𝑥,  𝜃𝑡]

Constraints, Caution, and Context



Constrained action sets provide substantial modeling flexibility. 

1. Routes are inherently constrained by announced road closures.

2. We enforce impose constraints to provide caution against very 
poor performance. 
– 𝒳𝑡 = {𝑥| 𝔼 𝑟𝑡 𝑥𝑡 = 𝑥,ℱ𝑡−1 ≥ 𝑟}
– The set of actions with posterior mean above 𝑟

3. We observe contextual information before acting. 
– e.g. a weather report

Constraints, Caution, and Context



3. We observe contextual information before acting. 
– e.g. a weather report

• Let 𝑧𝑡 be the weather report at time 𝑡.

• Write 𝑥𝑡 = (𝑐ℎ𝑜𝑠𝑒𝑛 𝑝𝑎𝑡ℎ, 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 𝑟𝑒𝑝𝑜𝑟𝑡)

• 𝒳𝑡 is the set of paths with weather report 𝑧𝑡

• max
𝑥∈𝒳𝑡

𝔼[𝑟𝑡|𝑥𝑡 = 𝑥, 𝜃] gives the best path givne the weather 

report 𝑧𝑡 and parameter 𝜃. 

Constraints, Caution, and Context



Theoretical Guarantees?

• I’ve emphasized the ability of TS to accommodate 
general modeling and rich forms of prior knowledge. 

• I’ve argued  prior knowledge improves performance. 

• Can we say something formal?



Example of a Theoretical Guarantee

• Normalize so travel times are in 0,1 .

• Let 𝑥∗ 𝜃 ∈ 𝒳 denote the shortest path under 𝜃

Russo and Van Roy, A Information Theoretic Analysis of 
Thompson Sampling, JMLR 2016



Example of a Theoretical Guarantee

• Normalize so travel times are in 0,1 .

• Let 𝑥∗ 𝜃 ∈ 𝒜 denote the shortest path under 𝜃

𝔼 Regret 𝑇 ≤
1

2
Entropy 𝑥∗ 𝜃 #𝑒𝑑𝑔𝑒𝑠 𝑇

• Note that Entropy 𝑥∗ 𝜃 ≤ log |𝒳|.

Russo and Van Roy, A Information Theoretic Analysis of Thompson 
Sampling, JMLR 2016



Information-Theoretic Analysis

Proof idea:

• Posterior-entropy of 𝑥∗ quantifies uncertainty

• Show that in every period

𝔼 regret 2 ≤ .5 (#𝑒𝑑𝑔𝑒𝑠)𝔼[entropy reduction]

Russo and Van Roy, A Information Theoretic Analysis of Thompson 
Sampling, JMLR 2016

We’ll cover a different analysis in class. 



Recap so far

• Understood TS in the context of the shortest 
path problem. 

• Discussed a range of practical issues
– Correlated feedback

– Approximate posterior sampling

– Prior specification. 

– Non-stationarity

– Constraints and context

• Made note of one theoretical guarantee. 



Summary on TS

• Optimize a perturbed estimate of the objective

• Add noise in proportion to uncertainty

• Often generates sophisticated exploration. 

• A general paradigm

Thompson Sampling


