Exploration in Online Decision Making (A whirlwind tour w/ everything but MDPs)

Daniel Russo

Columbia University

Dan.Joseph.Russo@gmail.com

Outline: Part I

- 1. Briefly discuss classical bandit problems
- 2. Use the shortest path problem to teach TS
 - Emphasize flexible modeling of problem features
 - Discuss a range of issues like
 - Prior distribution specification
 - Approximate posterior sampling
 - Non-stationarity
 - Constraints, caution, and context
- 3. Discuss shortcomings and alternatives

Material drawn from

A Tutorial on Thompson Sampling - Russo, Van Roy, Kazerouni, Osband, and Wen.

Learning to optimize via information-directed sampling – Russo and Van Roy.

Outline: Part 2 (Next week)

- Introduction to regret analysis.
- Focus on the case of a online linear optimization with "bandit feedback" and Gaussian observation noise.
- Give a regret analysis that applies to TS and UCB.

Material drawn from

- Russo and Van Roy: Learning to optimize via posterior sampling
- Dani, Hayes and Kakade: Stochastic Linear Optimization under Bandit Feedback
- Rusmevichientong and Tsitsiklis: Linearly parameterized bandits

Interactive Machine Learning: Intelligent information gathering

The Multi-armed Bandit Problem

- A sequential learning and experimentation problem
- Crystalizes the **exploration/exploitation** tradeoff

The Multi-armed Bandit Problem

- A sequential learning and experimentation problem
- Crystalizes the exploration/exploitation tradeoff
- Initial motivation: clinical trials

Website Optimization

PLAY ANIMATION

PLAY ANIMATION

- Choose ad to show to User 1
- Observe click?
- Choose ad to show to User 2
- Observe click?

•

Broad Motivation

- The information revolution is spawning systems that:
 - Make rapid decisions
 - Generate huge volumes of data
- Allows for small scale, adaptive, experiments

Website Optimization: A Simple MAB problem

- 3 advertisements
- Unknown click probability: $\theta_1, \dots, \theta_3 \in [0,1]$
- Choose adaptive algorithm displaying ads
- Goal: Maximize cumulative number of clicks.

Greedy Algorithms

• Always play the arm with highest estimated success rate.

What is wrong with this?

This algorithm requires point estimation

a procedure for predicting the mean reward of an action given past data.

ϵ -Greedy Algorithm

- With probability 1ϵ play the arm with highest estimated success rate.
- With Probability *ε*, pick an arm uniformly at random.

Why is this wasteful?

This algorithm requires point estimation

a procedure for predicting the mean reward of an action given past data.

An example

- Historical data on 3 actions
 - Played (1000,1000, 5) times respectively
 - Observed (600,400, 2) successes respectively.
- Synthesize observations with an independent uniform prior on each arm.

Posterior Beliefs

Comments

- Greedy is likely to play action 1 forever, even though there is a reasonable chance action 3 is better.
- ϵ —Greedy fails to write off bad actions
 - Effectively wastes effort measuring action 2, and regardless of how convincing evidence against arm to is.

Improved algorithmic design principles

- Continue to play actions that are plausibly optimal.
- Gradually write off actions as that are very unlikely to be optimal.

This requires inference

 procedures assessing the uncertainty in estimated mean rewards.

Beta-Bernoulli Bandit

- A k armed bandit with binary rewards
- Success probabilities $\theta = (\theta_1, \dots, \theta_k)$ are unknown but fixed over time.

$$p(r_t = 1 | x_t = i, \theta) = \theta_i$$

• Begin with a Beta prior with parameters $\alpha = (\alpha_1, ..., \alpha_k)$ and $\beta = (\beta_1, ..., \beta_k)$.

$$p(\theta_k) = \frac{\Gamma(\alpha_k + \beta_k)}{\Gamma(\alpha_k)\Gamma(\beta_k)} \theta_k^{\alpha_k - 1} (1 - \theta_k)^{\beta_k - 1}$$

Beta-Bernoulli Bandit

- Note, Beta(1,1)=Uniform(0,1)
- Posterior distributions are also Beta distributed, with simple update rule

$$(\alpha_k, \beta_k) = \begin{cases} (\alpha_k, \beta_k) & \text{if } x_t \neq k \\ (\alpha_k, \beta_k) + (r_t, 1 - r_t) & \text{if } x_t = k \end{cases}$$

• Posterior mean is $\alpha_k/(\alpha_k + \beta_k)$.

Greedy

- For every period
 - Compute posterior means $(\mu_1, ..., \mu_K)$
 - $\mu_k = \alpha_k / (\alpha_k + \beta_k)$
 - Play $x = \operatorname{argmax}_k \mu_k$
 - Observe reward and update (α_x, β_x)

Bayesian UCB

- For every period
 - Compute upper confidence bounds $(U_1, ..., U_K)$
 - $P_{\theta_k \sim Beta(\alpha_k, \beta_k)}(\theta_k \ge U_k) \le \text{threshold}$
 - Play $x = \operatorname{argmax}_k U_k$
 - Observe reward and update (α_x, β_x)

Thompson Sampling

- For every period
 - Draw random samples $(\hat{\theta}_1, \dots, \hat{\theta}_K)$
 - $\theta_k \sim Beta(\alpha_k, \beta_k)$
 - Play $x = \operatorname{argmax}_k \hat{\theta}_k$
 - Observe reward and update (α_x, β_x)

What do TS and UCB do here?

A simulation of TS

• Fixed problem instance $\theta = (.9, .8, .7)$

A simulation of TS

• Fixed problem instance $\theta = (.9, .8, .7)$

A simulation of TS

• Random instance $\theta_i \sim \text{Beta}(1,1)$

Prior Distribution Specification

How I think about this:

- No algorithm minimizes $\mathbb{E}[\text{Total}_{\text{regret}}|\theta]$ for all possible instances θ .
 - E.g. an algorithm that always plays arm 1 is optimal when $\theta_1 \ge \theta_2, \dots, \theta_1 \ge \theta_k$ but is terrible otherwise.
- A prior directs the algorithm that certain instances are more likely than others, and to prioritize good performance on those instances.

Empirical Prior Distribution Specification

- We want to identify the best of *K* banner ads
- Have historical data from previous products
- For each ad k we can identify the past products with similar stylistic features, and use that to construct an informed prior.

Empirical Prior Distribution Specification

The value of a thoughtful prior

- Mispecified TS has prior $\alpha = (1,1,1) \& \beta = (100,100,100)$
- Correct_TS has prior $\alpha = (1,1,1) \& \beta = (50,100,200)$

Prior Robustness and Optimistic Priors

- The effect of the prior distribution usually washes out once a lot of data has been collected.
- The impact in bandit problems is more subtle
- An agent who believes an action is very likely to be bad is, naturally, unlikely to try that action.
- Overly "optimistic" priors usually lead to fairly efficient learning.
- There is still limited theory establishing this.

Prior Robustness and Optimistic Priors

- correct_ts has prior $\alpha = (1,1,1) \& \beta = (1,1,1)$
- optimistic_ts has prior $\alpha = (10, 10, 10) \& \beta = (1, 1, 1)$
- pessimistic_ts has prior $\alpha = (1,1,1) \& \beta = (10,10,10)$

Recap so far

- Looked at a simple bandit problem.
- Introduces TS+UCB
- Understood their potential advantage over εgreedy
- Discusses priors specification.

Classical Bandit Problems

- Small number of actions
- Informationally decoupled actions
- Observations = rewards
- No long run influence. (no credit assignment)

How to address more complicated settings?

Example: personalizing movie recommendations for a new user

- Action space is large and complex.
- Complex link between actions/observations.
- Substantial prior knowledge:
 - Which movies are similar?
 - Which movies are popular?
- Delayed consequences.

General Thompson Sampling

Summary on TS

- Optimize a *perturbed estimate of the objective*
 - Add noise in proportion to uncertainty
- Often generates sophisticated exploration.
- A general paradigm

General Thompson Sampling

Summary on TS

- Optimize a *perturbed estimate of the objective*
 - Add noise in proportion to uncertainty
- Often generates sophisticated exploration.
- A general paradigm

Misleading view in the literature: TS is "optimal," is the best algorithm empirically, and performs much better than UCB.

My view: TS is a simple way to generate fairly sophisticated exploration while still enabling rich and flexible modeling.

Part I: Thompson Sampling

- Use the online shortest path problem to understand the Thompson sampling algorithm.
 - 1. Why is the problem challenging?
 - 2. How TS works in this setting.
 - 3. Touch on a theoretical guarantee.

• Thompson (1933), Scott (2010), Chappelle and Li (2011), Agrawal and Goyal (2012)
Online Shortest Path Problem

Shortest Path Problem

The number of paths can be exponential in the number of edges.

Associated Challenges

- 1. Computational
 - Natural algorithms optimize a surrogate objective in each time-step.
 - Optimizing this surrogate objective may be intractable.
- 2. Statistical
 - Many natural algorithms only explore locally.
 - Time to learn may scale with the number of paths.

Dithering (i.e. ϵ —greedy) for Shortest Path

- Short back-roads, marked blue.
- Two long highways, marked green and orange.
- We think green *might* be much faster than orange

Dithering (i.e. ϵ —greedy) for Shortest Path

• Time to learn scales with the **number of paths** (exponential in number of edges)

Bayesian Shortest Path

- Begin with a prior over mean travel times $\boldsymbol{\theta}$.
- Observe realized travel times on traversed edges.
- Track posterior beliefs.
 - (Require posterior-samples)

Conjugate Example

Log-Normal Distribution

- $log(\theta_e) \sim N(\mu_e, \sigma_e^2)$
- Conditioned on θ_e , realized travel times along edge e have mean θ_e and are lognormally distributed.
- Simple update rule for posterior parameters

Conjugate Example

Log-Normal Distribution

- $log(\theta_e) \sim N(\mu_e, \sigma_e^2)$
- Conditioned on θ_e , realized travel times along edge e have mean θ_e and are lognormally distributed.
- Simple update rule for posterior parameters

An Informed Prior

- With known travel distances for each edge, one can pick (μ_e,σ_e^2) so

$$- \mathbb{E}[\theta_e] = d_e$$

 $- Var(\theta_e) \propto d_e^2$

Greedy for Shortest Path

1. Set: μ to be the posterior mean of θ

Greedy for Shortest Path

- 1. Set: $\boldsymbol{\mu}$ to be the posterior mean of $\boldsymbol{\theta}$
- 2. Follow the shortest path under μ

Greedy for Shortest Path

- 1. Set: $\boldsymbol{\mu}$ to be the posterior mean of $\boldsymbol{\theta}$
- 2. Follow the shortest path under μ
- 3. Update beliefs

1. Sample from posterior: $\hat{\boldsymbol{\theta}} \sim \pi_t(d\boldsymbol{\theta})$

- 1. Sample from posterior: $\hat{\theta} \sim \pi_t(d\theta)$
- 2. Follow shortest path under sampled weights

- 1. Sample from posterior: $\hat{\boldsymbol{\theta}} \sim \pi_t(d\boldsymbol{\theta})$
- 2. Follow shortest path under sampled weights
- 3. Update beliefs

1. Sample from posterior: $\hat{\boldsymbol{\theta}} \sim \pi_{t+1}(d\boldsymbol{\theta})$

- 1. Sample from posterior: $\hat{\theta} \sim \pi_{t+1}(d\theta)$
- 2. Follow shortest path under sampled weights
- 3. Update beliefs

Binomial Bridge

- Twenty rather than six stages
- 184,757 paths

Shortest Path Simulation

Why does this work?

Let $x^*(\theta) \in \mathcal{X}$ denote the shortest path under θ

Posterior sampling definition:

- Sample
$$\widehat{\boldsymbol{\theta}}_t \sim \pi_t(d\boldsymbol{\theta})$$

- Play $x^*(\widehat{\boldsymbol{\theta}}_t)$

Probability matching definition:

- Play x with probability $\mathbb{P}_{\theta \sim \pi_t}(x^*(\theta) = a)$

Why does this work?

Sample a path according to the posterior probability it's the shortest path.

- 1. Continue to explore all edges that could plausibly be in the shortest path.
- 2. Don't waste effort exploring edges that are very unlikely to be in the shortest path.

Thompson Sampling vs Dithering

- Short back-roads, marked blue.
- Two long highways, marked green and orange.
- We think green might be much faster than orange

Thompson Sampling vs Dithering

- Short back-roads, marked blue.
- Two long highways, marked green and orange.
- We think green might be much faster than orange
 TS navigates to, and samples, the green edge

Thompson Sampling vs Dithering

- Short back-roads, marked blue.
- Two long highways, marked green and orange.
- We think green might be much faster than orange TS navigates to, and samples, the green edge Performs "Deep exploration"

The practice of TS

- A richer model of edge delays
- Posterior approximations
- Non-stationary environments
- Constraints, caution, and context

Extension: Correlated Travel Times

Graph can be broken up into regions
 – For simplicity, uptown and downtown

- Delays on an edge are influenced by
 - Shocks associated with that edge
 - Shocks to the whole system
 - Shocks to the region containing the current edge

Simulation trial

• For each edge e

>travel time = (idosyncratic shock) ×
(region shock) × (system shock) ×
(mean travel time)

- Shocks are lognormal with known parameters.
- Simple update rule for posterior parameters

Benefits of modeling correlation

A Path Recommendation Problem: (A non-conjugate example)

- Route recommendation service suggests paths
- Users give binary ratings
- Probabilities reflect quality of path

$$y_t | \theta \sim \begin{cases} 1 & \text{with probability } \frac{1}{1 + \exp\left(\sum_{e \in x_t} \theta_e - M\right)} \\ 0 & \text{otherwise.} \end{cases}$$

A Path Recommendation Problem

- Computing MAP estimates is straightforward
- No closed form posterior.
- How do we apply Thompson sampling?

Posterior Approximations / Sampling

- 1. Gibbs Sampling / Metropolis Hastings
- 2. Laplace Approximation
- 3. Langevin Monte Carlo
- 4. Bootstrap Sampling
- 5. Ensemble methods

Laplace Approximation

Approximate the posterior by a Gaussian centered at its mode

Laplace approximation of posterior for Binomial

Laplace Approximation

Approximate the posterior by a Gaussian centered at its mode

The log posterior density

$$g(\theta) \propto \log \pi_0(\theta) + \sum_{i=1}^{n} \log(p(y_i|\theta))$$

is concave.

- Taylor expansion around mode $\hat{\theta}$: $g(\theta) \propto g(\hat{\theta}) - (\hat{\theta} - \theta)^{T} \hat{C}(\hat{\theta} - \theta) + o(\|\theta - \hat{\theta}\|^{2})$ where \hat{C} is the Hessian of g at $\hat{\theta}$.
- Leads to approximate posterior $N(\hat{\theta}, \hat{C})$

Langevin MCMC

Construct a Markov chain by running gradient ascent + noise

The log posterior density

$$g(\theta) \propto \log \pi_0(\theta) + \sum_{i=1}^{n} \log(p(y_i|\theta))$$

is concave.

Under some technical conditions, $\pi_n(\theta) \propto e^{g(\theta)}$ is the unique stationary distribution of the Langevin diffusion

 $d\theta_t = \nabla g(\theta_t) + \sqrt{2}dB_t$

where B_t is standard Brownian motion.

Langevin MCMC

Construct a Markov chain by running gradient ascent + noise

Simulate a Euler discretaton of the Langevin Diffusion $\theta_{t+1} = \theta_t + \epsilon \nabla g(\theta_t) + \sqrt{2\epsilon} dB_t$

There is theory showing this mixes rapidly

• (e.g. when $\nabla^2 g(\theta) \leq -LI$)

I have found it is helpful to initialize at the MAP estimate, and 'precondition' by the inverse Hessian at the MAP estimate.

Bootstrap Sampling

Subsample training data with replacement. Train as usual.

Standard bootstrap

1.
$$H_n = \{(x_1, y_1) \dots (x_n, y_n)\}$$

2. Sample hypothetical history with replacement

$$- \ \widehat{H}_n = \{ (\hat{x}_1, \hat{y}_1), \dots, (\hat{x}_n, \hat{y}_n) \}$$

3. Construct MAP estimate on \hat{H}_n .

Bootstrap Sampling

Subsample training data with replacement. Train as usual.

The tutorial covers a nonstandard bootstrap.

 Injects some additional uncertainty by sampling from prior.

Simulating Path Recommendation

Non-stationarity

First observation:

• If the environment changes very rapidly, it is not worth exploring.

Second observation:

- Slowly changing environments can be addressed by running TS while gradually "forgetting" the past
 - 1. w/ a sliding window.
 - 2. w/ geometric down-weighting of the past.
 - 3. w/ more sophisticated Bayesian filtering techniques.

Beyond the shortest path problem, can be written the form

1. Sample
$$\widehat{\boldsymbol{\theta}}_t \sim \pi_t(d\boldsymbol{\theta})$$

2. Play
$$\max_{x \in \mathcal{X}_t} \mathbb{E}[r_t | x_t = x, \hat{\theta}_t]$$

Here r_t denotes the reward at time t, and x_t denotes the action.

Observation:

It is easy to apply TS in a problem with arbitrary changing action sets: X_1, X_2, X_3 ...

- 1. Observe \mathcal{X}_t
- 2. Sample $\widehat{\boldsymbol{\theta}}_t \sim \pi_t(d\boldsymbol{\theta})$

3. Play
$$\max_{x \in \mathcal{X}_t} \mathbb{E}[r_t | x_t = x, \hat{\theta}_t]$$

Constrained action sets provide substantial modeling flexibility.

- 1. Routes are inherently constrained by announced road closures.
- 2. We enforce impose constraints to provide caution against very poor performance.
 - $\quad \mathcal{X}_t = \{ x \mid \mathbb{E}[r_t | x_t = x, \mathcal{F}_{t-1}] \ge \underline{r} \}$
 - The set of actions with posterior mean above \underline{r}
- 3. We observe contextual information before acting.
 - e.g. a weather report

- 3. We observe contextual information before acting.
 - e.g. a weather report
- Let z_t be the weather report at time t.
- Write $x_t = (chosen path, weather report)$
- X_t is the set of paths with weather report z_t
- $\max_{x \in \mathcal{X}_t} \mathbb{E}[r_t | x_t = x, \theta]$ gives the best path givne the weather report z_t and parameter θ .

Theoretical Guarantees?

- I've emphasized the ability of TS to accommodate general modeling and rich forms of prior knowledge.
- I've argued prior knowledge improves performance.
- Can we say something formal?

Example of a Theoretical Guarantee

- Normalize so travel times are in [0,1].
- Let $x^*(\theta) \in \mathcal{X}$ denote the shortest path under θ

Russo and Van Roy, A Information Theoretic Analysis of Thompson Sampling, JMLR 2016

Example of a Theoretical Guarantee

- Normalize so travel times are in [0,1].
- Let $x^*(\theta) \in \mathcal{A}$ denote the shortest path under θ

$$\mathbb{E}[\operatorname{Regret}(T)] \leq \sqrt{\frac{1}{2}} \operatorname{Entropy}(x^*(\theta))(\#edges)T$$

• Note that $\operatorname{Entropy}(x^*(\theta)) \leq \log |\mathcal{X}|$.

Russo and Van Roy, A Information Theoretic Analysis of Thompson Sampling, JMLR 2016

Information-Theoretic Analysis

Proof idea:

- Posterior-entropy of x^* quantifies uncertainty
- Show that in *every* period

 $\mathbb{E}[\text{regret}]^2 \leq .5 \ (\#edges)\mathbb{E}[\text{entropy reduction}]$

Russo and Van Roy, A Information Theoretic Analysis of Thompson Sampling, JMLR 2016

We'll cover a different analysis in class.

Recap so far

- Understood TS in the context of the shortest path problem.
- Discussed a range of practical issues
 - Correlated feedback
 - Approximate posterior sampling
 - Prior specification.
 - Non-stationarity
 - Constraints and context
- Made note of one theoretical guarantee.

Thompson Sampling

Summary on TS

- Optimize a *perturbed estimate of the objective*
 - Add noise in proportion to uncertainty
- Often generates sophisticated exploration.
- A general paradigm