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Abstract

This paper considers the sample complexity of the multi-armed bandit with depen-
dencies among the arms. Some of the most successful algorithms for this problem
use the principle of optimism in the face of uncertainty to guide exploration. The
clearest example of this is the class of upper confidence bound (UCB) algorithms,
but recent work has shown that a simple posterior sampling algorithm, sometimes
called Thompson sampling, can be analyzed in the same manner as optimistic ap-
proaches. In this paper, we develop a regret bound that holds for both classes of
algorithms. This bound applies broadly and can be specialized to many model
classes. It depends on a new notion we refer to as the eluder dimension, which
measures the degree of dependence among action rewards. Compared to UCB
algorithm regret bounds for specific model classes, our general bound matches the
best available for linear models and is stronger than the best available for general-
ized linear models.

1 Introduction

Consider a politician trying to elude a group of reporters. She hopes to keep her true position hidden
from the reporters, but each piece of information she provides must be new, in the sense that it’s not
a clear consequence of what she has already told them. How long can she continue before her true
position is pinned down? This is the essence of what we call the eluder dimension. We show this
notion controls the rate at which algorithms using optimistic exploration converge to optimality.

We consider an optimization problem faced by an agent who is uncertain about how her actions
influence performance. The agent selects actions sequentially, and upon each action observes a
reward. A reward function governs the mean reward of each action. As rewards are observed the
agent learns about the reward function, and this allows her to improve behavior. Good performance
requires adaptively sampling actions in a way that strikes an effective balance between exploring
poorly understood actions and exploiting previously acquired knowledge to attain high rewards.

Unless the agent has prior knowledge of the structure of the mean payoff function, she can only learn
to attain near optimal performance by exhaustively sampling each possible action. In this paper, we
focus on problems where there is a known relationship among the rewards generated by different
actions, potentially allowing the agent to learn without exploring every action. Problems of this form
are often referred to as multi-armed bandit (MAB) problems with dependent arms.

A notable example is the “linear bandit” problem, where actions are described by a finite number
of features and the reward function is linear in these features. Several researchers have studied
algorithms for such problems and establishes theoretical guarantees that have no dependence on the
number of actions [1, 2, 3]. Instead, their bounds depend on the linear dimension of the class of
reward functions. In this paper, we assume that the reward function lies in a known but otherwise
arbitrary class of uniformly bounded real-valued functions, and provide theoretical guarantees that
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depend on more general measures of the complexity of the class of functions. Our analysis of
this abstract framework yields a result that applies broadly, beyond the scope of specific problems
that have been studied in the literature, and also identifies fundamental insights that unify more
specialized prior results.

The guarantees we provide apply to two popular classes of algorithms for the stochastic MAB:
upper confidence bound (UCB) algorithms and Thompson sampling. Each algorithm is described
in Section 3. The aforementioned papers on the linear bandit problem study UCB algorithms [1,
2, 3]. Other authors have studied UCB algorithms in cases where the reward function is Lipschitz
continuous [4? ], sampled from a Gaussian process [5], or takes the form of a generalized [6] or
sparse [7] linear model. More generally, there is an immense literature on this approach to balancing
between exploration and exploitation, including work on bandits with independent arms [8, 9, 10,
11], reinforcement learning [12, 13], and Monte Carlo Tree Search [14].

Recently, a simple posterior sampling algorithm called Thompson sampling was shown to share a
close connection with UCB algorithms [15]. This connection enables us to study both types of
algorithms in a unified manner. Though it was first proposed in 1933 [16], Thompson sampling
has until recently received relatively little attention. Interest in the algorithm grew after empirical
studies [17, 18] demonstrated performance exceeding state-of the-art methods. Strong theoretical
guarantees are now available for an important class of problems with independent arms [19, 20, 21].
A recent paper considers the application of this algorithm to a linear contextual bandit problem [22].

To our knowledge, few other papers have studied MAB problems in a general framework like the
one we consider. There is work that provides general bounds for contextual bandit problems where
the context space is allowed to be infinite, but the action space is small (see e.g., [23]). Our model
captures contextual bandits as a special case, but we emphasize problem instances with large or
infinite action sets, and where the goal is to learn without sampling every possible action. The closest
related work to ours is that of Amin et al. [24], who consider the problem of learning the optimum
of a function that lies in a known, but otherwise arbitrary set of functions. They provide bounds
based on a new notion of dimension, but unfortunately this notion does not provide a guarantee for
the algorithms we consider.

We provide bounds on expected regret over a time horizon T that are, up to a logarithmic factor, of
order √√√√dimE

(
F , T−2

)︸ ︷︷ ︸
Eluder dimension

log
(
N
(
F , T−2, ‖·‖∞

))︸ ︷︷ ︸
log–covering number

T .

This quantity depends on the class of reward functionsF through two measures of complexity. Each
captures the approximate structure of the class of functions at a scale T−2 that depends on the time
horizon. The first measures the growth rate of the covering numbers of F , and is closely related to
measures of complexity that are common in the supervised learning literature. This quantity roughly
captures the sensitivity of F to statistical over-fitting. The second measure, the eluder dimension,
is a new notion we introduce. This captures how effectively the value of unobserved actions can be
inferred from observed samples. We highlight in Section 4.1 why notions of dimension common to
the supervised learning literature are insufficient for our purposes. Finally, we show that our more
general result when specialized to linear models recovers the strongest known regret bound and in
the case of generalized linear models yields a bound stronger than that established in prior literature.

2 Problem Formulation

We consider a model involving a set of actions A and a set of real-valued functions F =
{fρ : A 7→ R| ρ ∈ Θ}, indexed by a parameter that takes values from an index set Θ. We will
define random variables with respect to a probability space (Ω,F,P). A random variable θ indexes
the true reward function fθ. At each time t, the agent is presented with a possibly random subset
At ⊆ A and selects an action At ∈ At, after which she observes a reward Rt.

We denote by Ht the history (A1, A1, R1, . . . ,At−1, At−1, Rt−1,At) of observations available to
the agent when choosing an action At. The agent employs a policy π = {πt|t ∈ N}, which is a
deterministic sequence of functions, each mapping the history Ht to a probability distribution over
actionsA. For each realization ofHt, πt(Ht) is a distribution overAwith supportAt. The actionAt
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is selected by sampling from the distribution πt(·), so that P(At ∈ ·|Ht) = πt(Ht). We assume that
E[Rt|Ht, θ, At] = fθ(At). In other words, the realized reward is the mean-reward value corrupted
by zero-mean noise. We will also assume that for each f ∈ F and t ∈ N, arg maxa∈At f(a) is
nonempty with probability one, though algorithms and results can be generalized to handle cases
where this assumption does not hold. We fix constants C > 0 and η > 0 and impose two further
simplifying assumptions. The first concerns boundedness of reward functions.
Assumption 1. For all f ∈ F and a ∈ A, f(a) ∈ [0, C].

Our second assumption ensures that observation noise is light-tailed. We say a random variable X
is η-sub-Gaussian if E[exp(λX)] ≤ exp(λ2η2/2) almost surely for all λ.
Assumption 2. For all t ∈ N, Rt − fθ(At) conditioned on (Ht, θ, At) is η-sub-Gaussian.

We let A∗t ∈ arg maxa∈Atfθ(a) denote the optimal action at time t. The T period regret is the
random variable

R(T, π) =

T∑
t=1

[fθ(A
∗
t )− fθ (At)] ,

where the actions {At : t ∈ N} are selected according to π. We sometimes study expected regret
E[R(T, π)], where the expectation is taken over the prior distribution of θ, the reward noise, and
the algorithm’s internal randomization. This quantity is sometimes called Bayes risk or Bayesian
regret. Similarly, we study conditional expected regret E [R(T, π) | θ], which integrates over all
randomness in the system except for θ.
Example 1. Contextual Models. The contextual multi-armed bandit model is a special case of
the formulation presented above. In such a model, an exogenous Markov process Xt taking values
in a set X influences rewards. In particular, the expected reward at time t is given by fθ(a,Xt).
However, this is mathematically equivalent to a problem with stochastic time-varying decision
sets At. In particular, one can define the set of actions to be the set of state-action pairs A :=
{(x, a) : x ∈ A, a ∈ A(x)}, and the set of available actions to be At = {(Xt, a) : a ∈ A(Xt)}.

3 Algorithms

We will establish performance bounds for two classes of algorithms: Thompson sampling and UCB
algorithms. As background, we discuss the algorithms in this section. We also provide an example
of each type of algorithm that is designed to address the “linear bandit” problem.

UCB Algorithms: UCB algorithms have received a great deal of attention in the MAB literature.
Here we describe a very broad class of UCB algorithms. We say that a confidence set is a random
subset Ft ⊂ F that is measurable with respect to σ(Ht). Typically, Ft is constructed so that
it contains fθ with high probability. We denote by πF1:∞ a UCB algorithm that makes use of a
sequence of confidence sets {Ft : t ∈ N}. At each time t, such an algorithm selects the action

At ∈ arg max
a∈At

sup
f∈Ft

f(a),

where sup
f∈Ft

f(a) is an optimistic estimate of fθ(a) representing the greatest value that is statistically

plausible at time t. Optimism encourages selection of poorly-understood actions, which leads to
informative observations. As data accumulates, optimistic estimates are adapted, and this process of
exploration and learning converges toward optimal behavior.

In this paper, we will assume for simplicity that the maximum definingAt is attained. Results can be
generalized to handle cases when this technical condition does not hold. Unfortunately, for natural
choices of Ft, it may be exceptionally difficult to solve for such an action. Thankfully, all results in
this paper also apply to a posterior sampling algorithm that avoids this hard optimization problem.

Thompson sampling: The Thompson sampling algorithm simply samples each action according
to the probability it is optimal. In particular, the algorithm applies action sampling distributions
πTS
t (Ht) = P (A∗t ∈ · | Ht), where A∗t is a random variable that satisfies A∗t ∈ arg maxa∈At fθ(a).

Practical implementations typically operate by at each time t sampling an index θ̂t ∈ Θ from the
distribution P (θ ∈ · | Ht) and then generating an action At ∈ arg maxa∈At fθ̂t(a).
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Algorithm 1 Linear UCB
1: Initialize: Select d linearly independent ac-

tions
2: Update Statistics:
θ̂t ← OLS estimate of θ
Φt ←

∑t−1
k=1 φ(Āk)φ(Āk)T

Θt ←
{
ρ :
∥∥∥ρ− θ̂t∥∥∥

Φt
≤ β
√
d log t

}
3: Select Action:
At ∈ arg maxa∈A {maxρ∈Θt 〈φ(a), ρ〉}

4: Increment t and Goto Step 2

Algorithm 2
Linear Thompson sampling

1: Sample Model:
θ̂t ∼ N(µt,Σt)

2: Select Action:
At ∈ arg maxa∈A〈φ(a), θ̂t〉

3: Update Statistics:
µt+1 ← E[θ|Ht+1]
Σt+1 ← E[(θ − µt+1)(θ − µt+1)>|Ht+1]

4: Increment t and Goto Step 1

Algorithms for Linear Bandits: Here we provide an example of a Thompson sampling and a
UCB algorithm, each of which addresses a problem in which the reward function is linear in a d-
dimensional vector θ. In particular, there is a known feature mapping φ : A → Rd such that an
action a yields expected reward fθ(a) = 〈φ(a), θ〉. Algorithm 1 is a variation of one proposed by
Rusmevichientong and Tsitsiklis [3] to address such problems. Given past observations, the algo-
rithm constructs a confidence ellipsoid Θt centered around a least squares estimate θ̂t and employs
the upper confidence bound Ut(a) := maxθ∈Θt

〈
φ(a), θ

〉
=
〈
φ(a), θ̂t

〉
+β
√
d log(t) ‖φ(a)‖Φ−1

t
.

The term ‖φ(a)‖Φ−1
t

captures the amount of previous exploration in the direction φ(a), and causes

the “uncertainty bonus” β
√
d log(t) ‖φ(a)‖Φ−1

t
to diminish as the number of observations increases.

Now, consider Algorithm 2. Here we assume θ is drawn from a normal distribution N(µ1,Σ1). We
consider a linear reward function fθ(a) = 〈φ(a), θ〉 and assume the reward noise Rt − fθ(At) is
normally distributed and independent from (Ht, At, θ). It is easy to show that, conditioned on the
history Ht, θ remains normally distributed. Algorithm 2 presents an implementation of Thompson
sampling for this problem. The expectations can be computed efficiently via Kalman filtering.

4 Notions of Dimension

Recently, there has been a great deal of interest in the development of regret bounds for linear UCB
algorithms [25, 1, 3, 2]. These papers show that for a broad class of problems, a variant π∗ of
Algorithm 1 satisfies the upper bounds E [R(T, π∗)] = Õ(d

√
T ) and E [R(T, π∗) | θ] = Õ(d

√
T ).

An interesting feature of these bounds is that they have no dependence on the number actions in A,
and instead depend only on the linear dimension of the set of functions F . Our goal is to provide
bounds that depend on more general measures of the complexity of the class of functions. This
section introduces a new notion, the eluder dimension, on which our bounds will depend. First,
we highlight why common notions from statistical learning theory do not suffice when it comes to
multi–armed bandit problems.

4.1 Vapnik-Chervonenkis Dimension

We begin with an example that illustrates how a class of functions that is learnable in constant time
in a supervised learning context may require an arbitrarily long duration when learning to optimize.
Example 2. Consider a finite class of binary-valued functions F =
{fρ : A 7→ {0, 1} | ρ ∈ {1, . . . , n}} over a finite action setA = {1, . . . , n}. Let fρ(a) = 1(ρ = a),
so that each function is an indicator for an action. To keep things simple, assume that Rt = fθ(At),
so that there is no noise. If θ is uniformly distributed over {1, . . . , n}, it is easy to see that the regret
of any algorithm grows linearly with n. For large n, until θ is discovered, each sampled action is
unlikely to reveal much about θ and learning therefore takes very long.

Consider the closely related supervised learning problem in which at each time an action Ãt is
sampled uniformly from A and the mean–reward value fθ(Ãt) is observed. For large n, the time it
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takes to effectively learn to predict fθ(Ãt) given Ãt does not depend on t. In particular, prediction
error converges to 1/n in constant time. Note that predicting 0 at every time already achieves this
low level of error.

In the preceding example, the Vapnik-Chervonenkis (VC) dimension, which characterizes the sam-
ple complexity of supervised learning, is 1. On the other hand, the eluder-dimension, which will
we define below, is n. To highlight conceptual differences between the eluder dimension and the
VC dimension, we will now define VC dimension in a way analogous to how will define eluder
dimension. We begin with a notion of independence.

Definition 1. An action a is VC-independent of Ã ⊆ A if for any f, f̃ ∈ F there exists some f̄ ∈ F
which agrees with f on a and with f̃ on Ã; that is, f̄(a) = f(a) and f̄(ã) = f̃(ã) for all ã ∈ Ã.
Otherwise, a is VC-dependent on Ã.

By this definition, an action a is said to be VC-dependent on Ã if knowing the values f ∈ F takes
on Ã could restrict the set of possible values at a. This notion of independence is intimately related
to the VC dimension of a class of functions. In fact, it can be used to define VC dimension.

Definition 2. The VC dimension of a class of binary-valued functions with domain A is the largest
cardinality of a set Ã ⊆ A such that every a ∈ Ã is VC-independent of Ã\ {a}.

In the above example, any two actions are VC-dependent because knowing the label fθ(a) of one
action could completely determine the value of the other action. However, this only happens if the
sampled action has label 1. If it has label 0, one cannot infer anything about the value of the other
action. Instead of capturing the fact that one could gain useful information through exploration, we
need a stronger requirement that guarantees one will gain useful information.

4.2 Defining Eluder Dimension

Here we define the eluder dimension of a class of functions, which plays a key role in our results.

Definition 3. An action a ∈ A is ε-dependent on actions {a1, ..., an} ⊆ A with respect to F if any

pair of functions f, f̃ ∈ F satisfying
√∑n

i=1(f(ai)− f̃(ai))2 ≤ ε also satisfies f(a)− f̃(a) ≤ ε.
Further, a is ε-independent of {a1, .., an} with respect to F if a is not ε-dependent on {a1, .., an}.

Intuitively, an action a is independent of {a1, ..., an} if two functions that make similar predictions
at {a1, ..., an} can nevertheless differ significantly in their predictions at a. The above definition
measures the “similarity” of predictions at ε-scale, and measures whether two functions make similar

predictions at {a1, ..., an} based on the cumulative discrepancy
√∑n

i=1(f(ai)− f̃(ai))2. This
measure of dependence suggests using the following notion of dimension.

Definition 4. The ε-eluder dimension dimE(F , ε) is the length d of the longest sequence of elements
in A such that, for some ε′ ≥ ε, every element is ε′-independent of its predecessors.

Recall that a vector space has dimension d if and only if d is the length of the longest sequence of
elements such that each element is linearly independent or equivalently, 0-independent of its pre-
decessors. Definition 4 replaces the requirement of linear independence with ε-independence. This
extension is advantageous as it captures both nonlinear dependence and approximate dependence.

5 Confidence Bounds and Regret Decompositions

A key to our analysis is recent observation [15] that the regret of both Thompson sampling and a
UCB algorithm can be decomposed in terms of confidence sets. Define the width of a subset F̃ ⊂ F
at an action a ∈ A by

wF̃ (a) = sup
f,f∈F̃

(
f(a)− f(a)

)
. (1)

This is a worst–case measure of the uncertainty about the payoff fθ(a) at a given that fθ ∈ F̃ .
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Proposition 1. Fix any sequence {Ft : t ∈ N}, where Ft ⊂ F is measurable with respect to σ(Ht).
Then for any T ∈ N, with probability 1,

R(T, πF1:∞) ≤
T∑
t=1

[wFt(At) + C1(fθ /∈ Ft)] (2)

E
[
R(T, πTS)

]
≤ E

T∑
t=1

[wFt(At) + C1(fθ /∈ Ft)] . (3)

If the confidence sets Ft are constructed to contain fθ with high probability, this proposition essen-
tially bounds regret in terms of the sum of widths

∑T
t=1 wFt(At). In this sense, the decomposition

bounds regret only in terms of uncertainty about the actions A1,..,At that the algorithm has actually
sampled. As actions are sampled, the value of fθ(·) at those actions is learned accurately, and hence
we expect that the width wFt(·) of the confidence sets should diminish over time.

It is worth noting that the regret bound of the UCB algorithm πF1:∞ depends on the specific confi-
dence sets {Ft : t ∈ N} used by the algorithm whereas the bound of πTS applies for any sequence
of confidence sets. However, the decomposition (3) holds only in expectation under the prior distri-
bution. The implications of these decompositions are discussed further in earlier work [15].

In the next section, we design abstract confidence sets Ft that are shown to contain the true function
fθ with high probability. Then, in Section 7 we give a worst case bound on the sum

∑T
t=1 wFt(At)

in terms of the eluder dimension of the class of functions F . When combined with Proposition 1,
this analysis provides regret bounds for both Thompson sampling and for a UCB algorithm.

6 Construction of confidence sets

The abstract confidence sets we construct are centered around least squares estimates f̂LSt ∈
arg minf∈F L2,t(f) where L2,t(f) =

∑t−1
1 (f(At) − Rt)

2 is the cumulative squared predic-
tion error.1 The sets take the form Ft := {f ∈ F : ‖f − f̂LSt ‖2,Et ≤

√
βt} where βt is

an appropriately chosen confidence parameter, and the empirical 2-norm ‖·‖2,Et is defined by
‖g‖22,Et =

∑t−1
1 g2(Ak). Hence ‖f − fθ‖22,Et measures the cumulative discrepancy between the

previous predictions of f and fθ.

The following lemma is the key to constructing strong confidence sets (Ft : t ∈ N). For an arbitrary
function f , it bounds the squared error of f from below in terms of the empirical loss of the true
function fθ and the aggregate empirical discrepancy ‖f − fθ‖22,Et between f and fθ. It establishes
that for any function f , with high probability, the random process (L2,t(f) : t ∈ N) never falls
below the process (L2,t(fθ) + 1

2‖f − fθ‖
2
2,Et

: t ∈ N) by more than a fixed constant. A proof of
the lemma is provided in the appendix. Recall that η is a constant given in Assumption 2.

Lemma 1. For any δ > 0 and f : A 7→ R,

P
(
L2,t(f) ≥ L2,t(fθ) +

1

2
‖f − fθ‖22,Et − 4η2 log (1/δ) ∀t ∈ N

∣∣∣∣ θ) ≥ 1− δ.

By Lemma 1, with high probability, f can enjoy lower squared error than fθ only if its empirical
deviation ‖f − fθ‖22,Et from fθ is less than 8η2 log(1/δ). Through a union bound, this property
holds uniformly for all functions in a finite subset of F . To extend this result to infinite classes of
functions, we measure the function class at some discretization scale α. Let N(F , α, ‖·‖∞) denote
the α-covering number of F in the sup-norm ‖ · ‖∞, and let

β∗t (F , δ, α) := 8η2 log (N(F , α, ‖·‖∞)/δ) + 2αt
(

8C +
√

8η2 ln(4t2/δ)
)
. (4)

1The results can be extended to the case where the infimum ofL2,t(f) is unattainable by selecting a function
with squared prediction error sufficiently close to the infimum.
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Proposition 2. For all δ > 0 and α > 0, if

Ft =

{
f ∈ F :

∥∥∥f − f̂LSt ∥∥∥
2,Et
≤
√
β∗t (F , δ, α)

}
for all t ∈ N, then

P

(
fθ ∈

∞⋂
t=1

Ft
∣∣∣∣ θ
)
≥ 1− 2δ.

Example 3. Suppose Θ ⊂ [0, 1]d and for each a ∈ A, fθ(a) is an L–Lipschitz function of θ. Then
N(F , α, ‖ · ‖∞) ≤ (1 + L/ε)d and hence logN(F , α, ‖ · ‖∞) ≤ d log(1 + L/ε).

7 Measuring the rate at which confidence sets shrink

Our remaining task is to provide a worst case bound on the sum
∑T

1 wFt(At). First consider the
case of a linearly parameterized model where fρ(a) := 〈φ(a), ρ〉 for each ρ ∈ Θ ⊂ Rd. Then,
it can be shown that our confidence set takes the form Ft := {fρ : ρ ∈ Θt} where Θt ⊂ Rd is
an ellipsoid. When an action At is sampled, the ellipsoid shrinks in the direction φ(At). Here
the explicit geometric structure of the confidence set implies that the width wFt shrinks not only
at At but also at any other action whose feature vector is not orthogonal to φ(At). Some linear
algebra leads to a worst case bound on

∑T
1 wFt(At). For a general class of functions, the situation

is much subtler, and we need to measure the way in which the width at each action can be reduced
by sampling other actions.

The following result uses our new notion of dimension to bound the number of times the width of
the confidence interval for a selected action At can exceed a threshold.

Proposition 3. If (βt ≥ 0|t ∈ N) is a nondecreasing sequence and Ft := {f ∈ F : ‖f −
f̂LSt ‖2,Et ≤

√
βt} then with probability 1

T∑
t=1

1(wFt(At) > ε) ≤
(

4βT
ε2

+ 1

)
dimE(F , ε)

for all T ∈ N and ε > 0.

Using Proposition 3, one can bound the sum
∑T
t=1 wFt(At), as established by the following lemma.

To extend our analysis to infinite classes of functions, we consider the αFT –eluder dimension of F ,
where

αFt = max

{
1

t2
, inf {‖f1 − f2‖∞ : f1, f2 ∈ F , f1 6= f2}

}
. (5)

Lemma 2. If (βt ≥ 0|t ∈ N) is a nondecreasing sequence and Ft := {f ∈ F : ‖f − f̂LSt ‖2,Et ≤√
βt} then with probability 1, for all T ∈ N,

T∑
t=1

wFt(At) ≤
1

T
+ min

{
dimE

(
F , αFT

)
, T
}
C + 4

√
dimE

(
F , αFT

)
βTT . (6)

8 Main Result

Our analysis provides a new guarantee both for Thompson sampling, and for a UCB algorithm
πF
∗
1:∞ executed with appropriate confidence sets {F∗t : t ∈ N}. Recall, for a sequence of con-

fidence sets {Ft : t ∈ N} we denote by πF1:∞ the UCB algorithm that chooses an action Āt ∈
arg maxa∈A

{
supf∈Ft fθ(a)

}
at each time t. We establish bounds that are, up to a logarithmic

factor, of order √√√√dimE

(
F , T−2

)︸ ︷︷ ︸
Eluder dimension

log
(
N
(
F , T−2, ‖·‖∞

))︸ ︷︷ ︸
log–covering number

T .
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This term depends on two measures of the complexity of the function class F . The first, which
controls for statistical over–fitting, grows logarithmically in the cover numbers of the function class.
This is a common feature of notions of dimension from statistical learning theory. The second
measure of complexity, the eluder dimension, measures the extent to which the reward value at one
action can be inferred by sampling other actions.

The next two propositions, which provide finite time bounds for a particular UCB algorithm and for
Thompson sampling, follow by combining Proposition 1, Propsition 2, and Lemma 2. Define,

B(F , T, δ) =
1

T
+
[
min

{
dimE

(
F , αFT

)
, T
}]
C + 4

√
dimE

(
F , αFT

)
β∗T
(
F , αFT , δ

)
T .

Notice that B(F , T, δ) is the right hand side of the bound (6) with βT taken to be β∗T (F , αFT , δ).
Proposition 4. Fix any δ > 0 and T ∈ N, and define for each t ∈ N, F∗t ={
f ∈ F :

∥∥∥f − f̂LSt ∥∥∥
2,Et
≤
√
β∗t (F , αT , δ)

}
. Then,

P
{
R(T, πF

∗
1:∞) ≤ B(F , T, δ) | θ

}
≥ 1− 2δ

E
[
R(T, πF

∗
1:∞) | θ

]
≤ B(F , T, δ) + 2δTC

Proposition 5. For any T ∈ N,
E
[
R(T, πTS)

]
≤ B(F , T, T−1) + 2C

The next two examples show how the regret bounds of Proposition 4 and 5 specialize to d-
dimensional linear and generalized linear models. For each of these examples Θ ⊂ Rd and each
action is associated with a known feature vector φ(a). Throughout these two examples, we fix posi-
tive constants γ and s and assume that γ ≥ supa∈A ‖φ(a)‖ and s ≥ supρ∈Θ ‖ρ‖. For each of these
examples, a bound on dimE (F , ε) is provided in the supplementary material.
Example 4. Linear Models: Consider the case of a d-dimensional linear model fρ(a) :=
〈φ(a), ρ〉. Then, dimE(F , ε) = O(d log(1/ε)) and logN(F , ε, ‖·‖∞) = O(d log(1/ε)). Proposi-
tions 4 and 5 therefore yield O(d log(1/αFT )

√
T ) regret bounds. Since αFT ≥ T−2, This is tight to

within a factor of log T [3], and matches the best available bound for a linear UCB algorithm [2].
Example 5. Generalized Linear Models: Consider the case of a d-dimensional general-
ized linear model fθ(a) := g (〈φ(a), θ〉) where g is an increasing Lipschitz continuous func-
tion. Set h = supθ̃,a g

′(〈φ(a), θ̃〉), h = inf θ̃,a g
′(〈φ(a), θ̃〉) and r = h/h. Then,

logN(F , ε, ‖·‖∞) = O(d log(h/ε)) and dimE(F , ε) = O(dr2 log(h/ε)), and Propositions 4 and
5 yield O(rd log(h/αFT )

√
T ) regret bounds. To our knowledge, this bound is a slight improvement

over the strongest regret bound available for any algorithm in this setting. The regret bound of
Filippi et al. [6] is of order rd log3/2(T )

√
T .

9 Conclusion

In this paper, we have analyzed two algorithms, Thompson sampling and a UCB algorithm, in a
very general framework, and developed regret bounds that depend on a new notion of dimension.
In constructing these bounds, we have identified two factors that control the hardness of a particular
multi-armed bandit problem. First, an agent’s ability to quickly attain near-optimal performance
depends on the extent to which the reward value at one action can be inferred by sampling other
actions. However, in order to select an action the agent must make inferences about many possible
actions, and an error in its evaluation of any one could result in large regret. Our second measure
of complexity controls for the difficulty of maintaining appropriate confidence sets simultaneously
at every action. While our bounds are nearly tight in some cases, further analysis is likely to yield
stronger results in other cases. We hope, however, that our work provides a conceptual foundation
for the study of such problems, and inspires further investigation.
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A Proof of Regret Decompositions

Proposition 1. Fix any sequence {Ft : t ∈ N}, where Ft ⊂ F is measurable with respect to σ(Ht). Then for
any T ∈ N, with probability 1,

R(T, πF1:∞) ≤
T∑
t=1

[wFt(At) + C1(fθ /∈ Ft)] (7)

E
[
R(T, πTS)

]
≤ E

T∑
t=1

[wFt(At) + C1(fθ /∈ Ft)] . (8)

Proof. To reduce notation, define the upper and lower bounds Ut(a) = sup{f(a) : f ∈ Ft} and Lt(a) =
inf{f(a) : f ∈ Ft}. Whenever fθ ∈ Ft, the bounds Lt(a) ≤ fθ(a) ≤ Ut(a) hold for all actions. This
implies

fθ(A
∗
t )− fθ(At) ≤ Ut(A

∗
t )− Lt(At) + C1(fθ /∈ Ft) (9)

= wFt(At) + C1(fθ /∈ Ft) + [Ut(A
∗
t )− Ut(At)]. (10)

Equation (7) follows almost immediately, since the policy πF1:∞ chooses an action At that maximizes Ut(a).
This implies Ut(At) ≥ Ut(A

∗
t ) by definition, and the last term in (10) is negative. The result (7) follows by

summing over t.

Now consider equation (8). Summing equation (10) over t shows,

R(T, πTS) ≤
T∑
t=1

[wFt(At) + C1(fθ /∈ Ft)] +MT (11)

where MT :=
∑T
t=1[Ut(A

∗
t ) − Ut(At)]. Now, by the definition of Thompson sampling P(At ∈ ·|Ht) =

P(A∗t ∈ ·|Ht). That is At and A∗t are identically distributed under the posterior. In addition, since the
confidence set Ft is σ(Ht)–measurable, so is the induced upper confidence bound Ut(·). This implies
E[Ut(At)|Ht] = E[Ut(A

∗
t )|Ht], and therefore that E[MT ] = 0.

B Proof of Confidence bound

B.1 Preliminaries: Martingale Exponential Inequalities

Consider random variables (Zn|n ∈ N) adapted to the filtration (Hn : n = 0, 1, ...). Assume E [exp {λZi}]
is finite for all λ. Define the conditional mean µi = E [Zi | Hi−1]. We define the conditional cumulant
generating function of the centered random variable [Zi − µi] by ψi (λ) = logE [exp (λ [Zi − µi]) | Hi−1].
Let

Mn(λ) = exp

{
n∑
i=1

λ [Zi − µi]− ψi (λ)

}
.

Lemma 3. (Mn(λ)|n ∈ N) is a Martinagale, and E [Mn(λ)] = 1.

Proof. By definition

E[M1(λ)|H0] = E[exp {λ [Z1 − µ1]− ψ1 (λ) |H0}] = E[exp {λ [Z1 − µ1]} |H0]/ exp {ψ1 (λ)} = 1.

Then, for any n ≥ 2,

E [Mn(λ) | Hn−1] = E

[
exp

{
n−1∑
i=1

λ [Zi − µi]− ψi (λ)

}
exp {λ [Zn − µn]− ψn (λ)} | Hn−1

]

= exp

{
n−1∑
i=1

λ [Zi − µi]− ψi (λ)

}
E [exp {λ [Zn − µn]− ψn (λ)} | Hn−1]

= exp

{
n−1∑
i=1

λ [Zi − µi]− ψi (λ)

}
= Mn−1(λ).

Lemma 4. For all x ≥ 0 and λ ≥ 0, P
(∑n

1 λZi ≤ x+
∑n

1 [λµi + ψi (λ)] ∀n ∈ N
)
≥ 1− e−x.
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Proof. For any λ, Mn(λ) is a martingale with EMn (λ) = 1. Therefore, for any stopping time τ ,
E[Mτ∧n (λ)] = 1. For arbitrary x ≥ 0, define τx = inf {n ≥ 0 |Mn (λ) ≥ x} and note that τx is a stopping
time corresponding to the first time Mn crosses the boundary at x. Then, E[Mτx∧n(λ)] = 1 and by Markov’s
inequality:

xP (Mτx∧n (λ) ≥ x) ≤ EMτx∧n(λ) = 1.

We note that the event {Mτx∧n (λ) ≥ x} =
⋃n
k=1 {Mk(λ) ≥ x}. So we have shown that for all x ≥ 0 and

n ≥ 1

P

(
n⋃
k=1

{Mk(λ) ≥ x}

)
≤ 1

x
.

Taking the limit as n → ∞, and applying the monotone convergence theorem shows
P
(⋃∞

k=1 {Mk(λ) ≥ x}
)
≤ 1

x
, Or, P

(⋃∞
k=1 {Mk(λ) ≥ ex}

)
≤ e−x. This then shows, using the

definition of Mk(λ), that

P

(
∞⋃
n=1

{
n∑
i=1

λ [Zi − µi]− ψi (λ) ≥ x

})
≤ e−x.

B.2 Proof of Lemma 1

Lemma 1. For any δ > 0 and f : A 7→ R,

P
(
L2,t(f) ≥ L2,t(fθ) +

1

2
‖f − fθ‖22,Et − 4η2 log (1/δ) ∀t ∈ N

∣∣∣∣ θ) ≥ 1− δ.

We will transform our problem in order to apply the general exponential martingale result shown above. since
we work conditionally on θ, to reduce notation we denote the conditional probability and expectation operators
Pθ(·) = P(·|θ) and Eθ(·) = E(·|θ). We set Ht−1 to be the σ-algebra generated by (Ht, At) and set H0 =
σ(∅,Ω). By previous assumptions, εt := Rt−fθ(At) satisfies Eθ[εt|Ht−1] = 0 and Eθ [exp {λεt} | Ht−1] ≤
exp

{
λ2η2

2

}
a.s. for all λ. Define Zt = (fθ (At)−Rt)2 − (f (Ai)−Rt)2 .

Proof. By definition
∑T

1 Zt = L2,T+1(fθ) − L2,T+1(f). Some calculation shows that Zt =

− (f(At)− fθ(At))2 + 2 (f (At)− fθ (At)) εt. Therefore, the conditional mean and conditional cumulant
generating function satisfy:

µt = Eθ [Zt | Ht−1] = − (f (At)− fθ (At))
2

ψt(λ) = logEθ [exp (λ [Zt − µt]) | Ht−1]

= logEθ [exp (2λ (f (At)− fθ (At)) εt) | Ht−1] ≤ (2λ [f (At)− fθ (At)])
2η2

2

Applying Lemma 4 shows that for all x ≥ 0, λ ≥ 0

Pθ

(
t∑

k=1

λZk ≤ x− λ
t∑

k=1

(f (Ak)− fθ (Ak))2 +
λ2

2
(2f (Ak)− 2fθ (Ak))2 η2 ∀t ∈ N

)
≥ 1− e−x.

Or, rearranging terms

Pθ

(
t∑

k=1

Zk ≤
x

λ
+

t∑
k=1

(f (Ak)− fθ (Ak))2
(
2λη2 − 1

)
∀t ∈ N

)
≥ 1− e−x.

Choosing λ = 1
4η2

, x = log 1
δ

, and using the definition of
∑t

1 Zk implies

Pθ
(
L2,t(f) ≥ L2,t(fθ) +

1

2
‖f − fθ‖22,Et − 4η2 log (1/δ) ∀t ∈ N

)
≥ 1− δ.
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B.3 Least Squares Bound - Proof of Proposition 2

Proposition 2. For all δ > 0 and α > 0, if Ft =

{
f ∈ F :

∥∥∥f − f̂LSt ∥∥∥
2,Et
≤
√
β∗t (F , δ, α)

}
for all

t ∈ N, then

Pθ

(
fθ ∈

∞⋂
t=1

Ft

)
≥ 1− 2δ.

Proof. Let Fα ⊂ F be an α–cover of F in the sup-norm in the sense that for any f ∈ F there exists fα ∈ Fα
such that ‖fα − f‖∞ ≤ ε. By a union bound, conditional on θ, with probability at least 1− δ,

L2,t(f
α)− L2,t(fθ) ≥

1

2
‖fα − fθ‖2,Et − 4η2 log (|Fα| /δ) ∀t ∈ N, f ∈ Fα.

Therefore, with probability at least 1− δ, for all t ∈ N and f ∈ F :

L2,t(f)− L2,t(fθ) ≥ 1

2
‖f − fθ‖22,Et − 4η2 log (|Fα| /δ)

+ min
fα∈Fα

{
1

2
‖fα − fθ‖22,Et −

1

2
‖f − fθ‖22,Et + L2,t(f)− L2,t(f

α)

}
︸ ︷︷ ︸

Discretization Error

.

Lemma 5, which we establish in the next section, asserts that with probability at least 1 − δ the discretization
error is bounded for all t by αDt where Dt := t

[
8C +

√
8η2 ln(4t2/δ)

]
. Since the least squares estimate

f̂LSt has lower squared error than fθ by definition, we find with probability at least 1− 2δ

1

2

∥∥∥f̂LS
t − fθ

∥∥∥2
2,Et
≤ 4η2 log (|Fα| /δ) + αDt.

Taking the infimum over the size of α covers implies:∥∥∥f̂LSt − fθ
∥∥∥
2,Et
≤
√

8η2 log
(
N(F , α, ‖·‖∞)/δ

)
+ 2αDt

def
=
√
β∗t (F , δ, α).

B.4 Discretization Error

Lemma 5. If fα satisfies ‖f − fα‖∞ ≤ α, then, conditional on θ, with probability at least 1− δ,∣∣∣∣12 ‖fα − fθ‖22,Et − 1

2
‖f − fθ‖22,Et + L2,t(f)− L2,t(f

α)

∣∣∣∣ ≤ αt [8C +
√

8η2 ln(4t2/δ)
]
∀t ∈ N (12)

Proof. Since any two functions in f, fα ∈ F satisfy ‖f − fα‖∞ ≤ C, it is enough to consider α ≤ C. We
find ∣∣∣(fα)2 (a)− (f)2 (a)

∣∣∣ ≤ max
−α≤y≤α

∣∣(f(a) + y)2 − f(a)2
∣∣ = 2f(a)α+ α2 ≤ 2Cα+ α2

which implies∣∣∣(fα(a)− fθ(a))2 − (f(a)− fθ(a))2
∣∣∣ =

∣∣[(fα) (a)2 − f(a)2
]

+ 2fθ(a) (f(a)− fα(a))
∣∣ ≤ 4Cα+ α2∣∣∣(Rt − f(a))2 − (Rt − fα(a))2

∣∣∣ =
∣∣2Rt (fα(a)− f(a)) + f(a)2 − fα(a)2

∣∣ ≤ 2α |Rt|+ 2Cα+ α2

Summing over t, we find that the left hand side of (12) is bounded by

t−1∑
k=1

(
1

2

[
4Cα+ α2]+

[
2α |Rk|+ 2Cα+ α2]) ≤ α t−1∑

k=1

(6C + 2 |Rk|)

Because εk is sub-Gaussian, Pθ
(
|εk| >

√
2η2 ln(2/δ)

)
≤ δ. By a union bound,

Pθ
(
∃k s.t. |εk| >

√
2η2 ln(4k2/δ)

)
≤ δ

2

∑∞
1

1
k2
≤ δ. Since |Rk| ≤ C + |εk| this shows

that with probability at least 1 − δ the discretization error is bounded for all t by αDt where
Dt := t

[
8C + 2

√
2η2 ln(4t2/δ)

]
.
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C Bounding the sum of widths

Proposition 3. If (βt ≥ 0|t ∈ N) is a nondecreasing sequence and Ft := {f ∈ F : ‖f − f̂LSt ‖2,Et ≤
√
βt}

then
T∑
t=1

1(wFt(At) > ε) ≤
(

4βT
ε2

+ 1

)
dimE(F , ε)

for all T ∈ N and ε > 0.

Proof. We begin by showing that, for t ≤ T , if wt(At) > ε then At is ε-dependent on fewer than 4βT /ε
2

disjoint subsequences of (A1, .., At−1). To see this, note that if wFt(At) > ε there are f̄ , f ∈ Ft such
that f(At) − f(At) > ε. By definition, since f(At) − f(At) > ε, if At is ε-dependent on a subsequence
(Ai1 , .., Aik ) of (A1, .., At−1) then

∑k
j=1(f(Aij )− f(Aij ))

2 > ε2. It follows that, if At is ε-dependent on
K disjoint subsequences of (A1, .., At−1) then ‖f − f‖22,Et > Kε2. By the triangle inequality, we have∥∥f − f∥∥

2,Et
≤
∥∥∥f − f̂LSt ∥∥∥

2,Et
+
∥∥∥f − f̂LSt ∥∥∥

2,Et
≤ 2
√
βt ≤ 2

√
βT .

and it follows that K < 4βT /ε
2.

Next, we show that in any action sequence (a1, .., aτ ), there is some element aj that is ε-dependent on at least
τ/d − 1 disjoint subsequences of (a1, .., aj−1), where d := dimE(F , ε). To show this, for an integer K
satisfyingKd+1 ≤ τ ≤ Kd+d, we will constructK disjoint subsequencesB1, . . . , BK . First letBi = (ai)
for i = 1, ..,K. If aK+1 is ε-dependent on each subsequence B1, .., BK , our claim is established. Otherwise,
select a subsequence Bi such that aK+1 is ε-independent and append aK+1 to Bi. Repeat this process for
elements with indices j > K + 1 until aj is ε-dependent on each subsequence or j = τ . In the latter scenario∑
|Bi| ≥ Kd, and since each element of a subsequence Bi is ε-independent of its predecessors, |Bi| = d. In

this case, aτ must be ε–dependent on each subsequence, by the definition of dimE(F , ε).

Now consider taking (a1, .., aτ ) to be the subsequence (At1 , . . . , Atτ ) of (A1, . . . , AT ) consisting of ele-
ments At for which wFt(At) > ε. As we have established, each Atj is ε-dependent on fewer than 4βT /ε

2

disjoint subsequences of (A1, .., Atj−1). It follows that each aj is ε-dependent on fewer than 4βT /ε
2 disjoint

subsequences of (a1, .., aj−1). Combining this with the fact we have established that there is some aj that is
ε-dependent on at least τ/d−1 disjoint subsequences of (a1, .., aj−1), we have τ/d−1 ≤ 4βT /ε

2. It follows
that τ ≤ (4βT /ε

2 + 1)d, which is our desired result.

Lemma 2. If (βt ≥ 0|t ∈ N) is a nondecreasing sequence and Ft := {f ∈ F : ‖f − f̂LSt ‖2,Et ≤
√
βt} then

with probability 1,

T∑
t=1

wFt(At) ≤
1

T
+ min

{
dimE

(
F , αFT

)
, T
}
C + 4

√
dimE (F , αFT )βTT (13)

for all T ∈ N.

Proof. To reduce notation, write d = dimE

(
F , αFT

)
and wt = wt(At). Reorder the sequence

(w1, ..., wT )→ (wi1 , ..., wiT ) where wi1 ≥ wi2 ≥ ... ≥ wiT . We have

T∑
t=1

wFt(At) =

T∑
t=1

wit =

T∑
t=1

wit1
{
wit ≤ α

F
T

}
+

T∑
t=1

wit1
{
wit > αFT

}
≤ 1

T
+

T∑
t=1

wit1
{
wit > αFT

}
.

The final step in the above inequality uses that either αFT = T−2 and
∑T
t=1 α

F
T = T−1 or αFT is set below the

smallest possible width and hence 1
{
wit ≤ αFT

}
never occurs.

Now, we know wit ≤ C. In addition, wit > ε ⇐⇒
∑T
k=1 1 (wFk (Ak) > ε) ≥ t. By Proposition 3,

this can only occur if t <
(

4βT
ε2

+ 1
)

dimE(F , ε). For ε ≥ αFT , dimE(F , ε) ≤ dimE(F , αFT ) = d, since

dimE (F , ε′) is nonincreasing in ε′. Therefore, when wit > ε ≥ αFT , t ≤
(

4βT
ε2

+ 1
)
d which implies

ε ≤
√

4βT d
t−d . This shows that if wit > αFT , then wit ≤ min

{
C,
√

4βT d
t−d

}
. Therefore,

T∑
t=1

wit1
{
wit > αFT

}
≤ dC +

T∑
t=d+1

√
4dβT
t− d ≤ dC + 2

√
dβT

T∫
t=0

1√
t
dt = dC + 4

√
dβTT .

13



To complete the proof, we combine this with the fact that the sum of widths is always bounded by CT . This
implies:

T∑
t=1

wFt(At) ≤ min

{
TC,

1

T
+ dimE

(
F , αFT

)
C,+4

√
dimE (F , αFT )βTT

}
≤ 1

T
+ min

{
dimE

(
F , αFT

)
C, TC

}
+ 4
√

dimE (F , αFT )βTT

D Bounds on Eluder Dimension for Common Function Classes

Definition 4, which defines the eluder dimension of a class of functions, can be equivalently written as follows.
The ε-eluder dimension of a class of functions F is the length of the longest sequence a1, .., aτ such that for
some ε′ ≥ ε

wk := sup

(fρ1 − fρ2) (ak) :

√√√√k−1∑
i=1

(fρ1 − fρ2)2 (ai) ≤ ε′ ρ1, ρ2 ∈ Θ

 > ε′ (14)

for each k ≤ τ .

D.1 Finite Action Spaces

Any action is ε′–dependent on itself since sup

{
(fρ1 − fρ1) (a) :

√
(fρ1 − fρ2)2 (a) ≤ ε′ ρ1, ρ2 ∈ Θ

}
≤

ε′. Therefore, for all ε > 0, the ε-eluder dimension of A is bounded by |A|.

D.2 Linear Case

Proposition 6. Suppose Θ ⊂ Rd and fθ(a) = θTφ(a). Assume there exist constants γ, and S, such that for

all a ∈ A and ρ ∈ Θ, ‖ρ‖2 ≤ S, and ‖φ(a)‖2 ≤ γ. Then dimE(F , ε) ≤ 3d e
e−1

ln
{

3 + 3
(
2S
ε

)2}
+ 1.

To simplify the notation, define wk as in (14), φk = φ (ak), ρ = ρ1− ρ2, and Φk =
∑k−1
i=1 φiφ

T
i . In this case,∑k−1

i=1 (fρ1 − fρ2)2 (ai) = ρTΦkρ, and by the triangle inequality ‖ρ‖2 ≤ 2S. The proof follows by bounding
the number of times wk > ε′ can occur.

Step 1: If wk ≥ ε′ then φTk V
−1
k φk ≥ 1

2
where Vk := Φk + λI and λ =

(
ε′

2S

)2
.

Proof. We find wk ≤ max
{
ρTφk : ρTΦkρ ≤ (ε′)2, ρT Iρ ≤ (2S)2

}
≤

max
{
ρTφk : ρTVkρk ≤ 2(ε′)2

}
=
√

2(ε′)2 ‖φk‖V−1
k

. The second inequality follows because any ρ

that is feasible for the first maximization problem must satisfy ρTVkρ ≤ (ε′)2 + λ(2S)2 = 2(ε′)2. By this
result, wk ≥ ε′ implies ‖φk‖2V−1

k
≥ 1/2.

Step 2: If wi ≥ ε′ for each i < k then detVk ≥ λd
(
3
2

)k−1 and detVk ≤
(
γ2(k−1)

d
+ λ

)d
.

Proof. Since Vk = Vk−1 + φkφ
T
k , using the Matrix Determinant Lemma,

detVk = detVk−1

(
1 + φTk V

−1
k φk

)
≥ detVk−1

(
3

2

)
≥ ... ≥ det [λI]

(
3

2

)k−1

= λd
(

3

2

)k−1

.

Recall that detVk is the product of the eigenvalues of Vk, whereas trace [Vk] is the sum. As noted in [1], detVk

is maximized when all eigenvalues are equal. This implies: detVk ≤
(

trace[Vk]
d

)d
≤
(
γ2(t−1)

d
+ λ

)d
.

Step 3: Complete Proof

14



Proof. Manipulating the result of Step 2 shows k must satisfy the inequality:
(
3
2

) k−1
d ≤ α0

[
k−1
d

]
+ 1 where

α0 =
(
γ2

λ

)
=
(
2Sγ
ε′

)2
. Let B(x, α) = max

{
B : (1 + x)B ≤ αB + 1

}
. The number of times wk > ε′ can

occur is bounded by dB(1/2, α0) + 1.

We now derive an explicit bound on B(x, α) for any x ≤ 1. Note that any B ≥ 1 must satisfy the inequality:
ln {1 + x}B ≤ ln {1 + α} + lnB. Since ln {1 + x} ≥ x/(1 + x), using the transformation of variables
y = B [x/(1 + x)] gives:

y ≤ ln {1 + α}+ln
1 + x

x
+ln y ≤ ln {1 + α}+ln

1 + x

x
+
y

e
=⇒ y ≤ e

e− 1

(
ln {1 + α}+ ln

1 + x

x

)
.

This implies B(x, α) ≤ 1+x
x

e
e−1

(
ln {1 + α}+ ln 1+x

x

)
. The claim follows by plugging in α = α0 and

x = 1/2.

D.3 Generalized Linear Models

Proposition 7. Suppose Θ ⊂ Rd and fθ(a) = g(θTφ(a)) where g(·) is a differentiable and strictly increasing
function. Assume there exist constants h, h, γ, and S, such that for all a ∈ A and ρ ∈ Θ, 0 < h ≤

g′(ρTφ(a)) ≤ h, ‖ρ‖2 ≤ S, and ‖φ(a)‖2 ≤ γ. Then dimE(F , ε) ≤ 3dr2 e
e−1

ln

{
3r2 + 3r2

(
2Sh
ε

)2}
+ 1.

The proof follows three steps which closely mirror those used to prove Proposition 6.

Step 1: If wk ≥ ε′ then φTk V
−1
k φk ≥ 1

2r2
where Vk := Φk + λI and λ =

(
ε′

2Sh

)2
.

Proof. By definition wk ≤ max
{
g
(
ρTφk

)
:
∑k−1
i=1 g

(
ρTφ(ai)

)2 ≤ (ε′)2, ρT Iρ ≤ (2S)2
}

. By

the uniform bound on g′(·) this is less than max
{
hρTφk : h2ρTΦkρ ≤ (ε′)2, ρT Iρ ≤ (2S)2

}
≤

max
{
hρTφk : h2ρTVkρ ≤ 2(ε′)2

}
=
√

2(ε′)2/r2 ‖φk‖V−1
k

.

Step 2: If wi ≥ ε′ for each i < k then detVk ≥ λd
(
3
2

)k−1 and detVk ≤
(
γ2(k−1)

d
+ λ

)d
.

Step 3: Complete Proof

Proof. The above inequalities imply kmust satisfy:
(
1 + 1

2r2

) k−1
d ≤ α0

[
k−1
d

]
whereα0 = γ2/λ. Therefore,

as in the linear case, the number of times wk > ε′ can occur is bounded by dB( 1
2r2

, α0) + 1. Plugging these
constants into the earlier bound B(x, α) ≤ 1+x

x
e
e−1

(
ln {1 + α}+ ln 1+x

x

)
and using 1 + x ≤ 3/2 yields the

result.
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