
(More) Efficient Reinforcement Learning via
Posterior Sampling

Ian Osband
Stanford University
Stanford, CA 94305

iosband@stanford.edu

Benjamin Van Roy
Stanford University
Stanford, CA 94305
bvr@stanford.edu

Daniel Russo
Stanford University
Stanford, CA 94305

djrusso@stanford.edu

Abstract

Most provably-efficient reinforcement learning algorithms introduce opti-
mism about poorly-understood states and actions to encourage exploration.
We study an alternative approach for efficient exploration: posterior sam-
pling for reinforcement learning (PSRL). This algorithm proceeds in re-
peated episodes of known duration. At the start of each episode, PSRL
updates a prior distribution over Markov decision processes and takes one
sample from this posterior. PSRL then follows the policy that is optimal
for this sample during the episode. The algorithm is conceptually simple,
computationally efficient and allows an agent to encode prior knowledge
in a natural way. We establish an Õ(τS

√
AT) bound on expected regret,

where T is time, τ is the episode length and S and A are the cardinali-
ties of the state and action spaces. This bound is one of the first for an
algorithm not based on optimism, and close to the state of the art for any
reinforcement learning algorithm. We show through simulation that PSRL
significantly outperforms existing algorithms with similar regret bounds.

1 Introduction

We consider the classical reinforcement learning problem of an agent interacting with its
environment while trying to maximize total reward accumulated over time [1, 2]. The agent’s
environment is modeled as a Markov decision process (MDP), but the agent is uncertain
about the true dynamics of the MDP. As the agent interacts with its environment, it observes
the outcomes that result from previous states and actions, and learns about the system
dynamics. This leads to a fundamental tradeoff: by exploring poorly-understood states
and actions the agent can learn to improve future performance, but it may attain better
short-run performance by exploiting its existing knowledge.
Näıve optimization using point estimates for unknown variables overstates an agent’s knowl-
edge, and can lead to premature and suboptimal exploitation. To offset this, the majority of
provably efficient learning algorithms use a principle known as optimism in the face of uncer-
tainty [3] to encourage exploration. In such an algorithm, each state and action is afforded
some optimism bonus such that their value to the agent is modeled to be as high as is statis-
tically plausible. The agent will then choose a policy that is optimal under this “optimistic”
model of the environment. This incentivizes exploration since poorly-understood states and
actions will receive a higher optimism bonus. As the agent resolves its uncertainty, the ef-
fect of optimism is reduced and the agent’s behavior approaches optimality. Many authors
have provided strong theoretical guarantees for optimistic algorithms [4, 5, 6, 7, 8]. In fact,
almost all reinforcement learning algorithms with polynomial bounds on sample complexity
employ optimism to guide exploration.

1

ar
X

iv
:1

30
6.

09
40

v4
 [

st
at

.M
L

]
 1

3
N

ov
 2

01
3

We study an alternative approach to efficient exploration, posterior sampling, and provide
finite time bounds on regret. We model the agent’s initial uncertainty over the environment
through a prior distribution.1 At the start of each episode, the agent chooses a new pol-
icy, which it follows for the duration of the episode. Posterior sampling for reinforcement
learning (PSRL) selects this policy through two simple steps. First, a single instance of the
environment is sampled from the posterior distribution at the start of an episode. Then,
PSRL solves for and executes the policy that is optimal under the sampled environment over
the episode. PSRL randomly selects policies according to the probability they are optimal;
exploration is guided by the variance of sampled policies as opposed to optimism.
The idea of posterior sampling goes back to 1933 [9] and has been applied successfully to
multi-armed bandits. In that literature, the algorithm is often referred to as Thompson
sampling or as probability matching. Despite its long history, posterior sampling was largely
neglected by the multi-armed bandit literature until empirical studies [10, 11] demonstrated
that the algorithm could produce state of the art performance. This prompted a surge of
interest, and a variety of strong theoretical guarantees are now available [12, 13, 14, 15].
Our results suggest this method has great potential in reinforcement learning as well.
PSRL was originally introduced in the context of reinforcement learning by Strens [16]
under the name “Bayesian Dynamic Programming”,2 where it appeared primarily as a
heuristic method. In reference to PSRL and other “Bayesian RL” algorithms, Kolter and
Ng [17] write “little is known about these algorithms from a theoretical perspective, and
it is unclear, what (if any) formal guarantees can be made for such approaches.” Those
Bayesian algorithms for which performance guarantees exist are guided by optimism. BOSS
[18] introduces a more complicated version of PSRL that samples many MDPs, instead
of just one, and then combines them into an optimistic environment to guide exploration.
BEB [17] adds an exploration bonus to states and actions according to how infrequently
they have been visited. We show it is not always necessary to introduce optimism via a
complicated construction, and that the simple algorithm originally proposed by Strens [16]
satisfies strong bounds itself.
Our work is motivated by several advantages of posterior sampling relative to optimistic
algorithms. First, since PSRL only requires solving for an optimal policy for a single sam-
pled MDP, it is computationally efficient both relative to many optimistic methods, which
require simultaneous optimization across a family of plausible environments [4, 5, 18], and
to computationally intensive approaches that attempt to approximate the Bayes-optimal
solutions directly [18, 19, 20]. Second, the presence of an explicit prior allows an agent to
incorporate known environment structure in a natural way. This is crucial for most prac-
tical applications, as learning without prior knowledge requires exhaustive experimentation
in each possible state. Finally, posterior sampling allows us to separate the algorithm from
the analysis. In any optimistic algorithm, performance is greatly influenced by the manner
in which optimism is implemented. Past works have designed algorithms, at least in part, to
facilitate theoretical analysis for toy problems. Although our analysis of posterior sampling
is closely related to the analysis in [4], this worst-case bound has no impact on the algo-
rithm’s actual performance. In addition, PSRL is naturally suited to more complex settings
where design of an efficiently optimistic algorithm might not be possible. We demonstrate
through a computational study in Section 6 that PSRL outperforms the optimistic algorithm
UCRL2 [4]: a competitor with similar regret bounds over some example MDPs.

2 Problem formulation

We consider the problem of learning to optimize a random finite horizon MDP M =
(S,A, RM , PM , τ, ρ) in repeated finite episodes of interaction. S is the state space, A is
the action space, RMa (s) is a probability distribution over reward realized when selecting
action a while in state s whose support is [0, 1], PMa (s′|s) is the probability of transitioning
to state s′ if action a is selected while at state s, τ is the time horizon, and ρ the initial
state distribution. We define the MDP and all other random variables we will consider with

1For an MDP, this might be a prior over transition dynamics and reward distributions.
2We alter terminology since PSRL is neither Bayes-optimal, nor a direct approximation of this.

2

respect to a probability space (Ω,F ,P). We assume S, A, and τ are deterministic so the
agent need not learn the state and action spaces or the time horizon.
A deterministic policy µ is a function mapping each state s ∈ S and i = 1, . . . , τ to an action
a ∈ A. For each MDP M = (S,A, RM , PM , τ, ρ) and policy µ, we define a value function

VMµ,i(s) := EM,µ

 τ∑
j=i

R
M

aj
(sj)

∣∣∣si = s

 ,
where RMa (s) denotes the expected reward realized when action a is selected while in state
s, and the subscripts of the expectation operator indicate that aj = µ(sj , j), and sj+1 ∼
PMaj

(·|sj) for j = i, . . . , τ . A policy µ is said to be optimal for MDP M if VMµ,i(s) =
maxµ′ VMµ′,i(s) for all s ∈ S and i = 1, . . . , τ . We will associate with each MDP M a policy
µM that is optimal for M .
The reinforcement learning agent interacts with the MDP over episodes that begin at times
tk = (k − 1)τ + 1, k = 1, 2, At each time t, the agent selects an action at, observes
a scalar reward rt, and then transitions to st+1. If an agent follows a policy µ then when
in state s at time t during episode k, it selects an action at = µ(s, t − tk). Let Ht =
(s1, a1, r1, . . . , st−1, at−1, rt−1) denote the history of observations made prior to time t. A
reinforcement learning algorithm is a deterministic sequence {πk|k = 1, 2, . . .} of functions,
each mapping Htk to a probability distribution πk(Htk) over policies. At the start of the kth
episode, the algorithm samples a policy µk from the distribution πk(Htk). The algorithm
then selects actions at = µk(st, t− tk) at times t during the kth episode.
We define the regret incurred by a reinforcement learning algorithm π up to time T to be

Regret(T, π) :=
dT/τe∑
k=1

∆k,

where ∆k denotes regret over the kth episode, defined with respect to the MDP M∗ by
∆k =

∑
s∈S

ρ(s)(VM
∗

µ∗,1(s)− VM
∗

µk,1(s)),

with µ∗ = µM
∗ and µk ∼ πk(Htk). Note that regret is not deterministic since it can

depend on the random MDP M∗, the algorithm’s internal random sampling and, through
the history Htk , on previous random transitions and random rewards. We will assess and
compare algorithm performance in terms of regret and its expectation.

3 Posterior sampling for reinforcement learning

The use of posterior sampling for reinforcement learning (PSRL) was first proposed by
Strens [16]. PSRL begins with a prior distribution over MDPs with states S, actions A and
horizon τ . At the start of each kth episode, PSRL samples an MDP Mk from the posterior
distribution conditioned on the history Htk available at that time. PSRL then computes
and follows the policy µk = µMk over episode k.

Algorithm: Posterior Sampling for Reinforcement Learning (PSRL)

Data: Prior distribution f , t=1
for episodes k = 1, 2, . . . do

sample Mk ∼ f(·|Htk)
compute µk = µMk

for timesteps j = 1, . . . , τ do
sample and apply at = µk(st, j)
observe rt and st+1
t = t+ 1

end
end

3

We show PSRL obeys performance guarantees intimately related to those for learning algo-
rithms based upon OFU, as has been demonstrated for multi-armed bandit problems [15].
We believe that a posterior sampling approach offers some inherent advantages. Optimistic
algorithms require explicit construction of the confidence bounds on VM

∗

µ,1 (s) based on ob-
served data, which is a complicated statistical problem even for simple models. In addition,
even if strong confidence bounds for VM∗µ,1 (s) were known, solving for the best optimistic
policy may be computationally intractable. Algorithms such as UCRL2 [4] are computa-
tionally tractable, but must resort to separately bounding R

M

a (s) and PMa (s) with high
probability for each s, a. These bounds allow a “worst-case” mis-estimation simultaneously
in every state-action pair and consequently give rise to a confidence set which may be far
too conservative.
By contrast, PSRL always selects policies according to the probability they are optimal.
Uncertainty about each policy is quantified in a statistically efficient way through the pos-
terior distribution. The algorithm only requires a single sample from the posterior, which
may be approximated through algorithms such as Metropolis-Hastings if no closed form
exists. As such, we believe PSRL will be simpler to implement, computationally cheaper
and statistically more efficient than existing optimistic methods.

3.1 Main results

The following result establishes regret bounds for PSRL. The bounds have Õ(τS
√
AT)

expected regret, and, to our knowledge, provide the first guarantees for an algorithm not
based upon optimism:
Theorem 1. If f is the distribution of M∗ then,

E
[
Regret(T, πPS

τ)
]

= O
(
τS
√
AT log(SAT)

)
(1)

This result holds for any prior distribution on MDPs, and so applies to an immense class
of models. To accommodate this generality, the result bounds expected regret under the
prior distribution (sometimes called Bayes risk or Bayesian regret). We feel this is a natural
measure of performance, but it should be emphasized that it is more common in the literature
to bound regret under a worst-case MDP instance. The next result provides a link between
these two notions of regret. By applying Markov’s inequality to (1) the growth rate of the
frequentist regret is bounded under any sample path realization of the prior:
Corollary 1. For any α > 1

2 ,
Regret(T, πPS

τ)
Tα

→
p

0.

The most similar state of the art guarantees are satisfied by the algorithms UCRL2 [4] and
REGAL [5] for the case of non-episodic RL. Here UCRL2 gives regret bounds Õ(DS

√
AT)

where D = maxs′ 6=s minπ E[T (s′|M,π, s)] and T (s′|M,π, s) is the first time step where s′
is reached from s under the policy π. REGAL improves this result to Õ(ΨS

√
AT) where

Ψ ≤ D is the span of the of the optimal value function. However, so far there is no
computationally tractable implementation of this algorithm.
In many practical applications we may be interested in episodic learning tasks where the
constants D and Ψ could be improved to take advantage of the episode length τ . Simple
modifications to both UCRL2 and REGAL will produce regret bounds of Õ(τS

√
AT), just

as PSRL. This is close to the theoretical lower bounds of
√
SAT -dependence.

4 True versus sampled MDP

A simple observation, which is central to our analysis, is that, at the start of each kth
episode, M∗ and Mk are identically distributed. This fact allows us to relate quantities that
depend on the true, but unknown, MDP M∗, to those of the sampled MDP Mk, which is
fully observed by the agent. We introduce σ(Htk) as the σ-algebra generated by the history

4

up to tk. Readers unfamiliar with measure theory can think of this as “all information
known just before the start of period tk.” When we say that a random variable X is σ(Htk)-
measurable, this intuitively means that although X is random, it is deterministically known
given the information contained in Htk . The following lemma is an immediate consequence
of this observation [15].
Lemma 1 (Posterior Sampling). If f is the distribution of M∗ then, for any σ(Htk)-
measurable function g,

E[g(M∗)|Htk] = E[g(Mk)|Htk]. (2)

Note that taking the expectation of (2) shows E[g(M∗)] = E[g(Mk)] through the tower
property.
Recall, we have defined ∆k =

∑
s∈S ρ(s)(VM∗µ∗,1(s)−VM∗µk,1(s)) to be the regret over period k.

A significant hurdle in analyzing this equation is its dependence on the optimal policy µ∗,
which we do not observe. For many reinforcement learning algorithms, there is no clean way
to relate the unknown optimal policy to the states and actions the agent actually observes.
The following result shows how we can avoid this issue using Lemma 1. First, define

∆̃k =
∑
s∈S

ρ(s)(VMk
µk,1(s)− VM

∗

µk,1(s)) (3)

as the difference in expected value of the policy µk under the sampled MDP Mk, which is
known, and its performance under the true MDP M∗, which is observed through the agent’s
experience.
Theorem 2 (Regret equivalence).

E

[
m∑
k=1

∆k

]
= E

[
m∑
k=1

∆̃k

]
(4)

and for any δ > 0 with probability at least 1− δ,

Proof. Note, ∆k − ∆̃k =
∑
s∈S ρ(s)(VM∗µ∗,1(s) − VMk

µk,1(s)) ∈ [−τ, τ]. By Lemma 1, E[∆k −
∆̃k|Htk] = 0. Taking expectations of these sums therefore establishes the claim.

This result bounds the agent’s regret in epsiode k by the difference between the agent’s
estimate VMk

µk,1(stk) of the expected reward inMk from the policy it chooses, and the expected
reward VM∗µk,1(stk) in M∗. If the agent has a poor estimate of the MDP M∗, we expect it to
learn as the performance of following µk under M∗ differs from its expectation under Mk.
As more information is gathered, its performance should improve. In the next section, we
formalize these ideas and give a precise bound on the regret of posterior sampling.

5 Analysis

An essential tool in our analysis will be the dynamic programming, or Bellman operator
T Mµ , which for any MDP M = (S,A, RM , PM , τ, ρ), stationary policy µ : S → A and value
function V : S → R, is defined by

T Mµ V (s) := R
M

µ (s, µ) +
∑
s′∈S

PMµ(s)(s′|s)V (s′).

This operation returns the expected value of state s where we follow the policy µ under the
laws of M , for one time step. The following lemma gives a concise form for the dynamic
programming paradigm in terms of the Bellman operator.
Lemma 2 (Dynamic programming equation). For any MDP M = (S,A, RM , PM , τ, ρ)
and policy µ : S × {1, . . . , τ} → A, the value functions VMµ satisfy

VMµ,i = T Mµ(·,i)V
M
µ,i+1 (5)

for i = 1 . . . τ , with VMµ,τ+1 := 0.

5

In order to streamline our notation we will let V ∗µ,i := VM
∗

µ,i , V kµ,i(s) := VMk
µ,i (s), T kµ := T Mk

µ ,
T ∗µ := T M∗µ and P ∗µ(·|s) := PM

∗

µ(s)(·|s).

5.1 Rewriting regret in terms of Bellman error

E
[
∆̃k

∣∣M∗,Mk

]
= E

[
τ∑
i=1

[
(T kµk(·,i) − T

∗
µk(·,i))V kµk,i+1(stk+i)

] ∣∣∣∣M∗,Mk

]
(6)

To see why (6) holds, simply apply the Dynamic programming equation inductively:

(V kµk,1 − V
∗
µk,1)(stk+1) = (T kµk(·,1)V

k
µk,2 − T

∗
µk(·,1)V

∗
µk,2)(stk+1)

= (T kµk(·,1) − T
∗
µk(·,1))V kµk,2(stk+1)

+
∑
s′∈S
{P ∗µk(·,1)(s′|stk+1)(V ∗µk,2 − V

k
µk,2)(s′)}

= (T kµk(·,1) − T
∗
µk(·,1))V kµk,2(stk+1) + (V ∗µk,2 − V

k
µk,2)(stk+1) + dtk+1

= . . .

=
τ∑
i=1

(T kµk(·,i) − T
∗
µk(·,i))V kµk,i+1(stk+i) +

τ∑
i=1

dtk+i,

where dtk+i :=
∑
s′∈S{P ∗µk(·,i)(s′|stk+i)(V ∗µk,i+1 − V kµk,i+1)(s′)} − (V ∗µk,i+1 − V kµk,i+1)(stk+i).

This expresses the regret in terms two factors. The first factor is the one step Bellman
error

[
(T kµk(·,i) − T

∗
µk(·,i))V kµk,i+1(stk+i)

]
under the sampled MDP Mk. Crucially, (6) de-

pends only the Bellman error under the observed policy µk and the states s1, .., sT that are
actually visited over the first T periods. We go on to show the posterior distribution of Mk

concentrates around M∗ as these actions are sampled, and so this term tends to zero.
The second term captures the randomness in the transitions of the true MDP M∗.
In state st under policy µk, the expected value of (V ∗µk,i+1 − V kµk,i+1)(stk+i) is exactly∑
s′∈S{P ∗µk(·,i)(s′|stk+i)(V ∗µk,i+1 − V kµk,i+1)(s′)}. Hence, conditioned on the true MDP M∗

and the sampled MDP Mk, the term
∑τ
i=1 dtk+i has expectation zero.

5.2 Introducing confidence sets

The last section reduced the algorithm’s regret to its expected Bellman error. We will
proceed by arguing that the sampled Bellman operator T kµk(·,i) concentrates around the
true Bellman operatior T ∗µk(·,i). To do this, we introduce high probability confidence sets
similar to those used in [4] and [5]. Let P̂ ta(·|s) denote the emprical distribution up period
t of transitions observed after sampling (s, a), and let R̂ta(s) denote the empirical average
reward. Finally, define Ntk (s, a) =

∑tk−1
t=1 1{(st,at)=(s,a)} to be the number of times (s, a)

was sampled prior to time tk. Define the confidence set for episode k:

Mk :=
{
M :

∥∥∥P̂ ta(·|s)− PMa (·|s)
∥∥∥

1
≤ βk(s, a) & |R̂ta(s)−RMa (s)| ≤ βk(s, a) ∀(s, a)

}
Where βk(s, a) :=

√
14S log(2SAmtk)
max{1,Ntk

(s,a)} is chosen conservatively so that Mk contains both M∗

and Mk with high probability. It’s worth pointing out that we have not tried to optimize
this confidence bound, and it can be improved, at least by a numerical factor, with more
careful analysis. Now, using that ∆̃k ≤ τ we can decompose regret as follows:

m∑
k=1

∆̃k ≤
m∑
k=1

∆̃k1{Mk,M∗∈Mk} + τ

m∑
k=1

[1{Mk /∈Mk} + 1{M∗ /∈Mk}] (7)

6

Now, since Mk is σ(Htk)-measureable, by Lemma 1, E[1{Mk /∈Mk}|Htk] =
E[1{M∗ /∈Mk}|Htk]. Lemma 17 of [4] shows3 P(M∗ /∈Mk) ≤ 1/m for this choice of βk(s, a),
which implies

E

[
m∑
k=1

∆̃k

]
≤ E

[
m∑
k=1

∆̃k1{Mk,M∗∈Mk}

]
+ 2τ

m∑
k=1

P{M∗ /∈Mk}.

≤ E

[
m∑
k=1

E
[
∆̃k|M∗,Mk

]
1{Mk,M∗∈Mk}

]
+ 2τ

≤ E

m∑
k=1

τ∑
i=1
|(T kµk(·,i) − T

∗
µk(·,i))V kµk,i+1(stk+i)|1{Mk,M∗∈Mk} + 2τ

≤ τE

m∑
k=1

τ∑
i=1

min{βk(stk+i, atk+i), 1}+ 2τ. (8)

We also have the worst–case bound
∑m
k=1 ∆̃k ≤ T . In the technical appendix we go on

to provide a worst case bound on min{τ
∑m
k=1

∑τ
i=1 min{βk(stk+i, atk+i), 1}, T} of order

τS
√
AT log(SAT), which completes our analysis.

6 Simulation results

We compare performance of PSRL to UCRL2 [4]: an optimistic algorithm with similar
regret bounds. We use the standard example of RiverSwim [21], as well as several randomly
generated MDPs. We provide results in both the episodic case, where the state is reset
every τ = 20 steps, as well as the setting without episodic reset.

Figure 1: RiverSwim - continuous and dotted arrows represent the MDP under the actions
“right” and “left”.

RiverSwim consists of six states arranged in a chain as shown in Figure 1. The agent begins
at the far left state and at every time step has the choice to swim left or right. Swimming left
(with the current) is always successful, but swimming right (against the current) often fails.
The agent receives a small reward for reaching the leftmost state, but the optimal policy is
to attempt to swim right and receive a much larger reward. This MDP is constructed so
that efficient exploration is required in order to obtain the optimal policy. To generate the
random MDPs, we sampled 10-state, 5-action environments according to the prior.
We express our prior in terms of Dirichlet and normal-gamma distributions over the tran-
sitions and rewards respectively.4 In both environments we perform 20 Monte Carlo sim-
ulations and compute the total regret over 10,000 time steps. We implement UCRL2 with
δ = 0.05 and optimize the algorithm to take account of finite episodes where appropriate.
PSRL outperformed UCRL2 across every environment, as shown in Table 1. In Figure 2,
we show regret through time across 50 Monte Carlo simulations to 100,000 time–steps in
the RiverSwim environment: PSRL’s outperformance is quite extreme.

3Our confidence sets are equivalent to those of [4] when the parameter δ = 1/m.
4These priors are conjugate to the multinomial and normal distribution. We used the values

α = 1/S, µ = σ2 = 1 and pseudocount n = 1 for a diffuse uniform prior.

7

Table 1: Total regret in simulation. PSRL outperforms UCRL2 over different environments.

Random MDP Random MDP RiverSwim RiverSwim
Algorithm τ -episodes ∞-horizon τ -episodes ∞-horizon

PSRL 1.04× 104 7.30× 103 6.88× 101 1.06× 102

UCRL2 5.92× 104 1.13× 105 1.26× 103 3.64× 103

6.1 Learning in MDPs without episodic resets

The majority of practical problems in reinforcement learning can be mapped to repeated
episodic interactions for some length τ . Even in cases where there is no actual reset of
episodes, one can show that PSRL’s regret is bounded against all policies which work over
horizon τ or less [6]. Any setting with discount factor α can be learned for τ ∝ (1− α)−1.
One appealing feature of UCRL2 [4] and REGAL [5] is that they learn this optimal timeframe
τ . Instead of computing a new policy after a fixed number of periods, they begin a new
episode when the total visits to any state-action pair is doubled. We can apply this same
rule for episodes to PSRL in the ∞-horizon case, as shown in Figure 2. Using optimism
with KL-divergence instead of L1 balls has also shown improved performance over UCRL2
[22], but its regret remains orders of magnitude more than PSRL on RiverSwim.

(a) PSRL outperforms UCRL2 by large margins (b) PSRL learns quickly despite misspecified prior

Figure 2: Simulated regret on the ∞-horizon RiverSwim environment.

7 Conclusion

We establish posterior sampling for reinforcement learning not just as a heuristic, but as a
provably efficient learning algorithm. We present Õ(τS

√
AT) Bayesian regret bounds, which

are some of the first for an algorithm not motivated by optimism and are close to state of the
art for any reinforcement learning algorithm. These bounds hold in expectation irrespective
of prior or model structure. PSRL is conceptually simple, computationally efficient and can
easily incorporate prior knowledge. Compared to feasible optimistic algorithms we believe
that PSRL is often more efficient statistically, simpler to implement and computationally
cheaper. We demonstrate that PSRL performs well in simulation over several domains. We
believe there is a strong case for the wider adoption of algorithms based upon posterior
sampling in both theory and practice.

Acknowledgments

Osband and Russo are supported by Stanford Graduate Fellowships courtesy of PACCAR
inc., and Burt and Deedee McMurty, respectively. This work was supported in part by
Award CMMI-0968707 from the National Science Foundation.

8

References
[1] A. N. Burnetas and M. N. Katehakis. Optimal adaptive policies for markov decision processes.

Mathematics of Operations Research, 22(1):222–255, 1997.
[2] P. R. Kumar and P. Varaiya. Stochastic systems: estimation, identification and adaptive

control. Prentice-Hall, Inc., 1986.
[3] T.L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in

applied mathematics, 6(1):4–22, 1985.
[4] T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning.

The Journal of Machine Learning Research, 99:1563–1600, 2010.
[5] P. L. Bartlett and A. Tewari. Regal: A regularization based algorithm for reinforcement

learning in weakly communicating mdps. In Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence, pages 35–42. AUAI Press, 2009.

[6] R. I. Brafman and M. Tennenholtz. R-max-a general polynomial time algorithm for near-
optimal reinforcement learning. The Journal of Machine Learning Research, 3:213–231, 2003.

[7] S. M. Kakade. On the sample complexity of reinforcement learning. PhD thesis, University of
London, 2003.

[8] M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. Machine
Learning, 49(2-3):209–232, 2002.

[9] W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

[10] O. Chapelle and L. Li. An empirical evaluation of Thompson sampling. In Neural Information
Processing Systems (NIPS), 2011.

[11] S.L. Scott. A modern Bayesian look at the multi-armed bandit. Applied Stochastic Models in
Business and Industry, 26(6):639–658, 2010.

[12] S. Agrawal and N. Goyal. Further optimal regret bounds for Thompson sampling. arXiv
preprint arXiv:1209.3353, 2012.

[13] S. Agrawal and N. Goyal. Thompson sampling for contextual bandits with linear payoffs. arXiv
preprint arXiv:1209.3352, 2012.

[14] E. Kauffmann, N. Korda, and R. Munos. Thompson sampling: an asymptotically optimal
finite time analysis. In International Conference on Algorithmic Learning Theory, 2012.

[15] D. Russo and B. Van Roy. Learning to optimize via posterior sampling. CoRR, abs/1301.2609,
2013.

[16] M. Strens. A Bayesian framework for reinforcement learning. In Proceedings of the 17th
International Conference on Machine Learning, pages 943–950, 2000.

[17] J. Z. Kolter and A. Y. Ng. Near-Bayesian exploration in polynomial time. In Proceedings of
the 26th Annual International Conference on Machine Learning, pages 513–520. ACM, 2009.

[18] T. Wang, D. Lizotte, M. Bowling, and D. Schuurmans. Bayesian sparse sampling for on-line
reward optimization. In Proceedings of the 22nd international conference on Machine learning,
pages 956–963. ACM, 2005.

[19] A. Guez, D. Silver, and P. Dayan. Efficient bayes-adaptive reinforcement learning using sample-
based search. arXiv preprint arXiv:1205.3109, 2012.

[20] J. Asmuth and M. L. Littman. Approaching bayes-optimalilty using monte-carlo tree search.
In Proc. 21st Int. Conf. Automat. Plan. Sched., Freiburg, Germany, 2011.

[21] A. L. Strehl and M. L. Littman. An analysis of model-based interval estimation for markov
decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

[22] S. Filippi, O. Cappé, and A. Garivier. Optimism in reinforcement learning based on kullback-
leibler divergence. CoRR, abs/1004.5229, 2010.

9

A Bounding the sum of confidence set widths

We are interested in bounding min{τ
∑m

k=1

∑τ

i=1 min{βkstk+i, atk+i), 1}, T} which we claim is

O(τS
√
AT log(SAT) for βk(s, a) :=

√
14S log(2SAmtk)
max{1,Ntk

(s,a)} .

Proof. In a manner similar to [4] we can say:

m∑
k=1

τ∑
i=1

√
14S log(2SAmtk)
max{1, Ntk (s, a)} ≤

m∑
k=1

τ∑
i=1

1{Ntk
≤τ} +

m∑
k=1

τ∑
i=1

1{Ntk
>τ}

√
14S log(2SAmtk)
max{1, Ntk (s, a)}

Now, the consider the event (st, at) = (s, a) and (Ntk (s, a) ≤ τ). This can happen fewer than
2τ times per state action pair. Therefore,

∑m

k=1

∑τ

i=1 1(Ntk (s, a) ≤ τ) ≤ 2τSA.Now, suppose
Ntk (s, a) > τ . Then for any t ∈ {tk, .., tk+1 − 1}, Nt(s, a) + 1 ≤ Ntk (s, a) + τ ≤ 2Ntk (s, a).
Therefore:

m∑
k=1

tk+1−1∑
t=tk

√
1(Ntk (st, at) > τ)

Ntk (st, at)
≤

m∑
k=1

tk+1−1∑
t=tk

√
2

Nt(st, at) + 1 =
√

2
T∑
t=1

(Nt(st, at) + 1)−1/2

≤
√

2
∑
s,a

NT +1(s,a)∑
j=1

j−1/2 ≤
√

2
∑
s,a

∫ NT +1(s,a)

x=0
x−1/2 dx

≤
√

2SA
∑
s,a

NT+1(s, a) =
√

2SAT

Note that since all rewards and transitions are absolutely constrained ∈ [0, 1] our regret

min{τ
m∑
k=1

τ∑
i=1

min{βk(stk+i, atk+i), 1}, T} ≤ min{2τ2SA+ τ
√

28S2AT log(SAT), T}

≤
√

2τ2SAT + τ
√

28S2AT log(SAT) ≤ τS
√

30AT log(SAT)

Which is our required result.

10

	1 Introduction
	2 Problem formulation
	3 Posterior sampling for reinforcement learning
	3.1 Main results

	4 True versus sampled MDP
	5 Analysis
	5.1 Rewriting regret in terms of Bellman error
	5.2 Introducing confidence sets

	6 Simulation results
	6.1 Learning in MDPs without episodic resets

	7 Conclusion
	A Bounding the sum of confidence set widths

