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Abstract
Policy gradients methods are perhaps the most widely used class of reinforcement learning algo-
rithms. These methods apply to complex, poorly understood, control problems by performing
stochastic gradient descent over a parameterized class of polices. Unfortunately, even for simple
control problems solvable by classical techniques, policy gradient algorithms face non-convex
optimization problems and are widely understood to converge only to local minima. This work
identifies structural properties – shared by finite MDPs and several classic control problems – which
guarantee that policy gradient objective function has no suboptimal local minima despite being
non-convex.

Warning. This is a rough draft that we need to finish polishing. Some sections were written
hastily. We are sharing it now to provide some details with those who have attended one of our talks.

1 Introduction

Many recent successes in reinforcement learning are driven by a class of algorithms called policy gra-
dient methods. These methods search over a parameterized class of polices by performing stochastic
gradient descent on a cost function capturing the cumulative expected cost incurred. Specifically,
for discounted or episodic problems, they treat the scalar cost function `(π) =

∫
Jπ(s)dρ(s), which

averages the total cost-to-go function Jπ over a random initial state distribution ρ. Policy gradi-
ent methods aim to optimize over a smooth, and often stochastic, class of parameterized policies
{πθ}θ∈Rd by perform stochastic gradient descent on `(·), following the iteration

θk+1 = θk − αk (∇θ`(πθk) + noise) .

This approach has several attractive features that have driven their popularity. It is end-to-end,
directly optimizing the true decision objective rather than searching for approximate models or value
functions that minimize prediction error. It appears to offer advantages when the designer has an
inductive bias about the form of policy that might be effective, rather than the form of an approximate
model or value function. Finally, it makes only small changes to the policy in each iteration, so some
believe it is more stable than approximate policy iteration schemes.

Unfortunately, while policy gradient methods can be applied to a very broad class of problems, it
is not clear whether they adequately address even for simple control problems solvable by classical
methods. The challenge is that total cost ` is a non-convex function of the chosen policy. Typical of
results concerning the black-box optimization of non-convex functions, policy gradient methods are
widely understood to converge asymptotically to a stationary point or a local minimum. Important
theory guarantees this under technical conditions [Baxter and Bartlett, 2001, Marbach and Tsitsiklis,
2001, Sutton et al., 2000] and it is widely repeated in textbooks and surveys [Grondman et al., 2012,
Peters and Schaal, 2006, Sutton and Barto, 2018]. But the reinforcement learning literature seems
to provide almost no guarantees into the quality of the points to which policy gradient methods
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(a) Two state MDP (b) Loss `(πθ) is nonconvex with two local minima.

Figure 1: Policy gradient fails with the simple policy class πθ(R|SL) = πθ(R|SL) = θ ∈ [0, 1].

converge. Worse yet, Example 1 shows that policy gradient methods could get stuck in bad local
minima even for very simple examples where the policy class contains the optimal policy.

Example 1 (Failure of policy gradient with a correct policy class). Consider the MDP depicted in
Figure 1. There are two states – left (SL) and right (SR) – and two actions L and R which move
the agent to the desired state in the next period. Staying in the state L incurs a cost g(SL, L) = 1
per period, whereas staying in the right state is costless (g(SR, R) = 0). Moving between states
incurs a per-period cost of 2. As long as the discount factor exceeds 1/2, the optimal policy plays the
action R in either state. This behavior can be encoded by a simple parameterized policy πθ which
plays the action R with probability θ ∈ [0, 1] regardless of the current state. Unfortunately, the total
discounted cost incurred is a nonconvex function of θ. This is depicted in Figure 1. When initialized
with small value of θ, cost is locally increasing as a function of θ, and so a gradient method moves the
policy toward a bad local minimum at θ = 0. At this local minimum, the algorithm always plays left,
and any chance of moving to the right only increases expected costs because the algorithm is likely
to move back to the left immediately thereafter. It is worth noting here that policy gradient methods
also face challenges due to unsophisticated exploration or non-linear policy parameterization. This
example instead highlights the challenges presented by the non-convexity of `.

In marked contrast to the example above, important recent work of Fazel et al. [2018] showed
that policy gradient on the space of linear policies for deterministic linear quadratic control problem
converges to the global optimum, despite the non-convexity of the objective. The authors provided
an intricate analysis in this case, leveraging a variety of closed form expressions available for linear-
quadratic problems. Separate from the RL literature, Kunnumkal and Topaloglu [2008] propose a
stochastic approximation method for setting base-stock levels in inventory control. Surprisingly,
despite non-convexity of the objective, an intricate analysis quite different that from Fazel et al.
[2018] establishes convergence to the global optimum. How do we reconcile these success stories
with the simple counterexample given in Example 1?

1.1 Our Contribution

Our work aims to construct a simple and more general understanding of the global convergence
properties of policy gradient methods. As a consequence of our general framework, we can show
that for several classic dynamic programming problems, policy gradient methods performed with
respect to natural structured policy classes faces no suboptimal local minima. More precisely, despite
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its non-convexity, any stationary point1 of the policy gradient cost function is a global optimum. The
examples we treat include:

1. Finite state and action MDPs combined with the set of all possible stochastic policies.

2. Linear quadratic control problems combined with the set of linear policies.

3. Optimal stopping problems combined with the set of threshold policies.

4. Finite horizon inventory control problems combined with the set of base-stock policies.

Our work aims to understand this phenomenon. Why does gradient descent on a non-convex function
reach the global minimum? Why in these examples but not in Example 1?

These examples share important structural properties. Consider a linear quadratic control problem.
Starting with a linear policy and performing a policy iteration step yields another linear policy. That
is, the policy class is closed under policy improvement. In addition, although the cost-to-go function
is a nasty non-convex function of the policy, the policy iteration update involves just solving a
quadratic minimization problem. Given this insight, strikingly simple proofs show that any stationary
point of the cost function `(πθ) is a global minimum. These same arguments extend beyond linear
quadratic control. In fact, for each of the first three examples, the policy class is closed under policy
improvement and the policy iteration problem is solvable by first-order methods – it is either a
convex optimization problem or is easily seen to have no suboptimal stationary points. (The fourth
example involves a class of non-stationary policies and it is shown in Theorem 2 that slightly weaker
conditions are needed in that case.)

We generalize these results to the case where the policy is closed under approximate policy
improvement — meaning that a certain weighted policy iteration problem can be solved to within a
given tolerance by some policy in the policy class. In that case, our results bounds the optimality gap
of any stationary point of `. We can interpret this closure assumption as a requirement that the policy
class is sufficiently rich. Crucially, however, this assumption is much weaker than the requirement
that the policy class contains (nearly) all possible policies. Instead, the closure property captures
examples like those above, where a strong inductive bias allows us to choose policy classes well
suited to the objective, even if the policy class has limited expressivity. However, the closure property
is stronger than a requirement that the policy class contains (near) optimal policies. Indeed Example
1 shows that is necessary. In that case the policy class contains the optimal policy, but it is not closed
under policy improvement and we saw that policy gradient methods could get stuck in bad local
minima.

Beyond studying the quality of stationary points, we also study stronger properties of the loss
function’s landscape that lead to converge rates. In particular, we study an inequality known either as
gradient dominance or as a Polyak-lojasiewicz condition [Karimi et al., 2016, Nesterov and Polyak,
2006, Polyak, 1963], which is a relaxation of convexity or strong convexity that still guarantees
fast convergence rates for many first-order optimization algorithms. We show that when the the
policy class is closed under policy improvement and the a weighted policy iteration problem satisfies
the gradient dominance condition, then the policy gradient loss function also satisfies this gradient
dominance condition.

1In unconstrained optimization, stationary points of a function f are those satisfying∇f(x) = 0. More generally, in
constrained optimization over a set X they are the points x satisfying the first order necessary conditions for optimality
∇f(x)>(x′ − x) ≥ 0 ∀x′.
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Finally, in Section 9, we give a specialized analysis convergence rates in finite-state and action
MDPs where the policy class contains all stochastic policies. This establishes a geometric conver-
gence rate for several first-order optimization algorithms. We remark that our results also apply to
the case of finite horizon problems with non-stationary policy classes by simply using the fact that
the policy class contains the optimal policy.

Scope of this work. There are many reasons why practitioners may find simple policy gradient
methods, like the classic REINFORCE algorithm Williams [1992], offer poor performance in practice.
In an effort to clarify the scope of our contribution, and its place in the literature, let us briefly review
some of these challenges.

1. Non-convexity of the loss function: Policy gradient methods apply (stochastic) gradient descent on
a non-convex loss function. Such methods are usually expected to converge toward a stationary
point of the objective function. Unfortunately, a general non-convex function could have many
stationary points that are far from optimal.

2. Unnatural policy parameterization: It is possible for parameters that are far apart in Euclidean
distance to describe nearly identical polices. Precisely, this happens when the Jacobian matrix
of the policy πθ(· | s) vanishes or becomes ill conditioned. Researchers have addressed this
challenge through natural gradient algorithms [Amari, 1998, Kakade, 2002], which perform
steepest descent in a different metric. The issue can also be alleviated with regularized policy
gradient algorithms [Schulman et al., 2015a, 2017].

3. Insufficient exploration: Although policy gradients are often applied with stochastic policies,
convergence with this kind of naive random exploration can require a number of iterations that
scales exponentially with the number of states in the MDP. Kakade and Langford [2002] provide
a striking example. Combining efficient exploration methods with policy gradients algorithms is
challenging, but is an active area of research [see e.g. Nachum et al., 2017, Plappert et al., 2017].

4. Large variance of stochastic gradients: The variance of estimated policy gradients generally
increases with the problem’s effective time horizon, usually expressed in terms of a discount factor
or the average length of an episode. Considerable research is aimed at alleviating this problem
through the use of actor-critic methods [Konda and Tsitsiklis, 2000, Marbach and Tsitsiklis, 2001,
Sutton et al., 2000] and appropriate baselines [Mnih et al., 2016, Schulman et al., 2015b].

We emphasize that this paper is focused on the first challenge and on understanding the risks posed by
spurious local minima. Such an investigation is relevant to many strategies for searching locally over
the policy space, including policy gradient methods, natural gradient methods Kakade [2002] , finite
difference methods Riedmiller et al. [2007], random search Mania et al. [2018], and evolutionary
strategies Salimans et al. [2017]. For concreteness, one can mostly have in mind the idealized policy
gradient iteration θk+1 = θk − αk∇`(θk). We imagine applying policy gradient algorithms in
simulation, where an appropriate restart distribution ρ provides sufficient exploration.

2 Further Related Literature

Beyond RL, this work connects to a large body of work on first-order methods in non-convex
optimization. Under broad conditions, these methods are guaranteed to converge asymptotically to
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stationary points of the objective function under a variety of noise models Bertsekas and Tsitsiklis
[1996, 2000]. The ubiquity of non-convex optimization problems in machine learning and especially
deep learning has sparked a slew of recent work [Agarwal et al., 2017, Carmon et al., 2018, Jin
et al., 2017, Lee et al., 2016] giving rates of convergence and ensuring convergence to approximate
local minima rather than saddle points. A complementary line of research studies the optimization
landscape of specific problems to essentially ensure that local minima are global, Bhojanapalli et al.
[2016], Ge et al. [2015, 2016], Kawaguchi [2016], Sun et al. [2017]. Taken together, these results
show interesting non-convex optimization problems can be efficiently solved using gradient descent.
Our work contributes to the second line of research, offering insight into the optimization landscape
of `(·) for classic dynamic programming problems.

Related work along this direction includes the aforementioned work by Kunnumkal and Topaloglu
[2008] and Fazel et al. [2018]. For tabular MDPs with softmax policy parameterization, Thomas
[2014] gives a simple argument that the gradient of the policy gradient cost function is never exactly
equal to zero. Work on conservative policy iteration by Kakade and Langford [2002] laid some
intellectual groundwork for studying policy gradient methods. An under-appreciated paper by
Scherrer [2014] extends the analysis of conservative policy iteration to study the stationary points
of policy gradient methods. Relative to that work, our results regarding the quality of stationary
points in Section 5 are more general as they deal with (1) problems with infinite action spaces and
structured cost functions and (2) problems where the parameterized policy class is not convex (See
the bottom of Subsection 5.3).

Concurrently with this work, Agarwal et al. [2019] provide a detailed study of the rate of
convergence of policy gradient methods. Their work primarily focuses on natural gradient methods
in problems with finite action spaces, both for tabular environments and larger state spaces where a
(sufficiently accurate) function approximation architecture is employed. By contrast, our work gives
a unified treatment of several foundational dynamic programming problems – reaching beyond finite
action settings. This unified analysis, and especially the closure condition we highlight, seems offer
insight into when and why policy gradient methods can succeed despite non-convexity.

3 Problem formulation

Consider a Markov decision process (MDP), which is a six-tupleM := (S,A, g, P, γ, ρ), consisting
of a state space S, action space A, cost function g, transition kernel P , discount factor γ ∈ (0, 1)
and initial distribution ρ. We assume the state space S is at most countably infinite, in which case it
is without loss of generality to index the states as S = {1, · · · , n} where n is possibly infinite. For
each state s ∈ S ,As ⊂ Rk is the set of feasible actions. We takeA = ∪sAs. The transition kernel P
specifies the probability P (s′|s, a) of transitioning to a state s′ upon choosing action a in state s. The
cost function g(s, a) denotes the instantaneous expected cost incurred when selecting action a in state
s. We assume that per-period costs are uniformly bounded, meaning sups∈S,a∈As |g(s, a)| < ∞.
The assumptions that state spaces are at most countably infinite and per-period costs are bounded are
standard and allow for a fully rigorous treatment without excessive technicality. We comment further
in Remark 1.

Cost-to-go-functions and Bellman operators. A stationary policy is a function π : S → A is a
function that prescribes a feasible action π(s) ∈ As for each state s ∈ S . Let Π denote the set of all
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stationary policies. Let J = {J : S → R : ‖J‖∞ < ∞} denote the set of bounded functions on
the state space. This is simply Rn when the state spaces is finite and is the set of bounded infinite
sequences, typically denoted `∞, otherwise. For each stationary policy π ∈ Π, we use the compact
notation gπ ∈ J for the function gπ(s) = g(s, π(s)) for all s ∈ S. Similarly, let Pπ : J → J be
the transition operator defined by (PπJ)(s) =

∑
s′∈S P (s′|s, π(s))J(s′). When the state space is

finite, this is simply the Markov transition matrix Pπ ∈ Rn×n under π whose (i, j)’th entry is equal
to P (j|i, π(i)).

Define the Bellman operator Tπ : J → J under the policy π as TπJ := gπ + γPπJ . The
cost-to-go function Jπ ∈ J under policy π is the unique solution to the Bellman equation Jπ = TπJπ
and can be written out as

Jπ = gπ + γPπJπ = · · · =
∞∑
t=0

γtP tπgπ = (I − γPπ)−1gπ.

A helpful “variational form” the Bellman equation2 [Bertsekas, 1995] is

Jπ − J = (TπJ − J) + (TπJπ − TπJ) = (TπJ − J) + αPπ (Jπ − J)

= · · · = (I − γPπ)−1 (TπJ − J) (1)

for any bounded function J ∈ J . The Bellman optimality operator is denoted by T : J → J and
defined by TJ = minπ∈Π TπJ , where the minimization is performed element-wise. For simplicity
of exposition, we assume throughout that this minimum is exists. The unique fixed point of T ,
denoted by J∗, is called the optimal cost-to-go function and satisfies J∗(s) = minπ Jπ(s) for all
s ∈ S. There is at least one optimal policy, π∗, that attains this minimum for every s ∈ S. It is well
known that T and Tπ are monotone and are contraction operators with respect to the maximum norm
‖ · ‖∞. Additional background is given in Appendix A.

The state-action cost-to-go function corresponding to a policy π ∈ Π,

Qπ(s, a) = g(s, a) + γ
∑
s′∈S

P (s′ | s, a)Jπ(s′), (2)

measures the cumulative expected cost of taking action a in state s and applying π thereafter.
The state-action value function provides an alternative notation for Bellman operators. Define
Q∗(·, ·) = Qπ∗(·, ·) for some optimal policy π∗. This is the same as (2) except the optimal cost-to-go
function J∗ appears on the right hand side. Notice that for any polices π, π′ ∈ Π, we have the
relations

Qπ(s, π(s)) = Jπ(s), Qπ(s, π′(s)) = (Tπ′Jπ)(s), min
a∈As

Qπ(s, a) = (TJπ)(s). (3)

State distributions. We define the discounted state-occupancy measure under any policy π and
initial state distribution ρ as:

ηπ = (1− γ)

∞∑
t=0

γtρP tπ = (1− γ)ρ(I − γPπ)−1. (4)

2A closely related expression is called the performance difference lemma in the reinforcement literature, after Kakade
and Langford [2002].
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When the state space is finite, ηπ and ρ are both row vectors. Recognize that, ρP tπ is the distribution
of the state at time t, and so evaluates the discounted fraction of time the system spends at state s
under policy π.

Scalar loss function. Although classical dynamic programming methods seek a policy that mini-
mizes the expected cost incurred from every state, for policy gradient methods it is more natural to
study a scalar loss function

`(π) = (1− γ)ρJπ = (1− γ)
∑
s∈S

Jπ(s) ρ(s),

in which the states are weighted by their initial probabilities under ρ and we have normalized costs
by (1 − γ) for convenience. We assume throughout that ρ is supported on the entire state space,
meaning that ρ(s) > 0 for all s ∈ S. Absent very strong assumption on the transition kernel, such
an assumption is critical for ensuring the global convergence of policy gradient methods. Since ρ has
full support, note that π ∈ arg minπ̄ `(π̄) if and only if π ∈ arg minπ̄ Jπ̄(s) ∀ s ∈ S.

Parameterized policies. Policy gradient methods search over a parameterized class of policies,
ΠΘ = {πθ(·) : θ ∈ Θ} ⊂ Π which have corresponding cost-to-go functions JΘ = {Jπθ : θ ∈ Θ}.
To indicate that we are referring to a policy in the restricted policy class, rather than an arbitrary
stationary policy π ∈ Π, we typically either write πθ or specify that π ∈ ΠΘ. We assume that
Θ ⊂ Rd is convex and As ⊂ Rk is convex for each s ∈ S. In some cases, like inventory or linear
quadratic control problems, the set of actions is naturally taken to be convex. In others, like MDPs
with a finite set of base actions, the action set is convexified by taking A = ∆k−1 to the probability
simplex over k elements. See Example 3 in Section 5.

We overload notation, writing `(θ) = `(πθ). Policy gradient methods aim to minimize this
loss function using gradient descent or a related first-order method. We next assume appropriate
smoothness conditions on the policy class and on the cost and transition functions to ensure that
g(s, πθ(s)) and P (s′|s, πθ(s)) are differentiable functions of θ.

To deal with infinite state spaces, we need also an assumption that gradient norms are uniformly
bounded. The final regularity condition, involving the sum of the derivatives, comes from consid-
ering forward expectations of the form

∑
s′∈S P (s′|s, πθ(s))J(s′). Assuming the summation and

derivative can be exchanged, the partial derivative is
∑

s′∈S
∂
∂θi
P (s′|s, πθ(s))J(s′). We would like

this derivate be finite for each J ∈ J , which requires
∑

s′∈S

∣∣∣ ∂∂θiP (s′|s, πθ(s))
∣∣∣ <∞. An alternate

view is that this is precisely the condition that the partial derivative is integrable under the counting
measure, which is the condition needed to apply the Leibniz rule justifying the interchange of the
summation and derivative.

Assumption 1. For all s, s′ ∈ S, a 7→ g(s, a) and a 7→ P (s′|s, a) are continuously differentiable
functions on an open set containing As and θ 7→ πθ(s) is continuously differentiable on an open set
containing Θ. In addition, sups∈S,a∈As ‖∇ag(s, a)‖ < ∞, sups∈S,θ∈Θ ‖∇θπθ(s)‖ < ∞, and for

any i ∈ {1, · · · , d}, sups∈S,θ∈Θ

∑
s′∈S

∣∣∣ ∂∂θiP (s′|s, πθ(s))
∣∣∣ <∞.

Norms. For our results, we often consider the weighted 1-norm, ‖J‖1,w =
∑

s |J(s)|w(s) and the
weighted maximum norm ‖J‖∞,w = sups∈S ‖J(s)|w(s) for some w : S → R+. When w(s) = 1
for all s ∈ S, we simplify notation and write ‖J‖1 and ‖J‖∞.
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Interpretation as an average cost problem with restarts. Our discounted problem can be inter-
preted as an un-discounted problem, where, in every period, there is a constant probability 1− γ that
the problem “restarts” in a random state drawn from the initial distribution ρ. In this formulation,
`(π) indicates the long-run average cost incurred by policy π and ηπ(s) indicates the fraction of
time the policy spends in state s. This construction allows one to directly apply policy gradient
results derived for average cost problems and gives a conceptually useful interpretation of ρ as an
exploratory restart distribution. We formalize the claim in the following lemma, but this construction
is standard in dynamic programming.

Lemma 1. Suppose S is a finite and fix π ∈ Π. Consider a Markov chain (s0, s1, · · · ) with transition
probabilities

P (st = s|st−1, · · · , s0) = (1− γ)ρ(s) + γP (s|st−1, π(st−1)) s ∈ S.

Then, at T →∞,

1

T

T−1∑
t=0

gπ(st)
a.s.−→ `(π) and

1

T

T−1∑
t=0

1(st = s)
a.s.−→ ηπ(s) ∀s ∈ S.

Remark 1. Our problem formulation restricts to problems with discrete state spaces and uniformly
bounded cost functions, mirroring the main presentation in textbooks [Bertsekas, 1995, Puterman,
2014]. This choice allows us to clearly formalize the paper’s main insights without excessive
technical burden. It is likely that one can extend our results to problems with general state space, but
there are severe measure-theoretic complications in the foundations of general state space DP and
all result require careful technical qualifications [see Bertsekas and Shreve, 2004]. We will treat one
problem, linear quadratic control, which falls outside our technical scope. Our approach there is
to separately verify our general results and proofs can be essentially repeated for linear quadratic
control.

4 Convergence to stationary points in smooth optimization

Given that the policy gradient objective is almost always non-convex, optimization algorithms
generally will not converge to a global minimum. Instead, classical theory suggests many algorithms
will converge to stationary points of the objective. This motivates our approach of studying the
landscape of the policy gradient objective — and in particular the quality of its (approximate)
stationary points — rather than studying convergence of specific algorithms.

Let us briefly review convergence to stationary points. A much more complete treatment can
be found in nonlinear optimization textbooks [see e.g Bertsekas, 1997]. As made formal by the
following definition, a point is said to be stationary if it satisfies the first-order necessary conditions
for optimality. We say that a function has no-suboptimal stationary points if all such points are global
minima. That is, the first-order necessary conditions are also sufficient conditions. Note that, in
unconstrained problems, where X = Rd, a point x is stationary if∇f(x) = 0.

Definition 1. Consider the optimization problem minx∈X f(x) where X ⊂ Rd is a closed convex
set and f is continuously differentiable on an open set containing X . A point x ∈ X is called a
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stationary point3 if 〈x′ − x,∇f(x)〉 ≥ 0 for all x′ ∈ X . We say f(·) has no suboptimal stationary
points if any stationary point x satisfies f(x) = infx′∈X f(x′).

Under appropriate smoothness and regularity conditions, many optimization algorithms are
guaranteed to converge to first-order stationary points. To make this concrete, consider the projected
gradient descent algorithm. Applied with step-size sequence {αk}k∈N and some initial point x0 ∈ X
the algorithm produces sequence of iterates

xk+1 = ProjX (xk − αt∇f(xk)) = arg min
x∈X

[
f(xt) + 〈∇f(xt), x− xt〉+

1

2αt
‖x− xt‖22

]
.

Here ProjX (y) = arg minx∈D ‖y − x‖
2
2 denotes the euclidean projection onto the closed convex

set X . The second equality is standard [See e.g. Bertsekas, 1997, chapter 3.3] and gives a “proximal”
interpretation of projected gradient descent as minimizing a first order Taylor expansion of f(·)
around xt plus a regularizer that penalizes movement away from xt. If xt is a non-stationary
point, then minx∈X 〈∇f(xt), x − xt〉 < 0 and there is some feasible direction of descent. For a
sufficiently small stepsize choice, this ensures f(xt+1) < f(xt). At a stationary point, we find
minx∈X 〈∇f(xt), x − xt〉 = 0 and projected gradient descent would return xt+1 = xt. With
appropriate stepsize choices, many first order algorithms would continue making progress in this
manner until eventually getting stuck at a stationary point, where progress stalls.

As one might expect from this discussion, under appropriate regularity conditions, projected
gradient descent finds a global minimizer of f(·) when it has no suboptimal stationary points. For
completeness, we formalize this in the following lemma. This result is meant to be illustrative and
can be generalized in numerous ways. One strengthening of this result provides finite time bound on
the rate of convergence to a stationary point, which we will review in Section 8. Recall that a function
f is said to be coercive if f(x)→∞ as ‖x‖ → ∞. In problems where this is not naturally satisfied,
it can sometimes be enforced by adding a small penalty function (e.g. an entropy regularizer) to the
objective.

Lemma 2. Consider the optimization problem minx∈X f(x) where X ⊂ Rd is a closed convex
set. Assume f is bounded below, differentiable on an open set containing X and its gradient∇f is
Lipschitz continuous on X with Lipschitz constant L. Assume as well that either (i) X is compact or
(ii) f(·) is coercive. Consider the sequence xk+1 = ProjX (xk − α∇f(xk)) where α ∈ (0, 1/L]. If
f(·) has no suboptimal stationary points then f(xk)→ minx∈X f(x) as k →∞.

Here we do not treat stochastic noise in the gradient evaluations. However, such extensions are
possible. A rich literature on stochastic approximation shows that, under regularity conditions and
decaying step-sizes, most noisy iterative algorithms converge to the same limit as their deterministic
counterparts. See Borkar [2009] for a very general treatment and Bertsekas and Tsitsiklis [1996]
for a very readable introduction. A rapidly growing literature studies convergence of stochastic first
order methods in non-convex optimization [see e.g. Davis and Grimmer, 2019, Davis et al., 2020,
Defazio et al., 2014, Ghadimi and Lan, 2013, 2016, Reddi et al., 2016a,b,c, Xiao and Zhang, 2014].

3 These points are sometimes called first order stationary points, to distinguish them from points that also satisfy second
order necessary conditions for optimality. Throughout this paper, we refer only to first order stationary points.
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5 Closed policy classes and the optimality of stationary points

We hope for results that suggest local policy search may succeed when the policy class is in some
sense well suited to the decision objective. In the next subsection, we look at the example of linear
quadratic control and identify structural properties that ensure policy gradient methods avoid bad
local minima despite non-convexity of the objective. With this as motivation, we proceed to show
these structural properties ensure the policy iteration loss function has no suboptimal stationary
points much more broadly. Beyond linear quadratic control, we instantiate this theory on finite state
and action MDPs and on stopping problems with threshold policies.

5.1 Motivation from linear quadratic control

Leveraging many of the closed form expressions available for linear quadratic control, recent work
of Fazel et al. [2018] showed that policy gradient methods converge to the globally optimal policy
under some technical conditions. This is true even though the total expected cost incurred is a nasty
non-convex function. The key is that the loss function `(·) has no suboptimal stationary points (and
in fact a stronger gradient dominance property holds). Given the failure of policy gradient methods
in Example 1, there must be some special problem structure driving this, but what? We identify two
key properties. First, as highlighted in Equation (6) below, the class of linear policies is closed under
policy improvement steps. Second, the policy iteration problem in (8) could be solved to optimality
by a gradient method, since it is convex and hence has no suboptimal stationary points.

In this sense, policy iteration objective in (8) – which considers the impact of changing the policy
for only one time step – has a very nice structure. By contrast, the infinite horizon cost function `(·)
is non-convex and difficult to analyze. Our approach will be to show that, despite non-convexity, `(·)
has nice optimization structure as an immediate consequence of the two properties we’ve identified,
leading to a very simple understanding of policy gradient methods. To simplify the presentation, we
consider only deterministic linear quadratic control4. It is easy to extend our ideas to noisy dynamics
of the form st+1 = Ast +Ba + ζt for i.i.d noise ζt with zero mean and finite second moment.

Example 2 (Linear Quadratic Control). For symmetric positive definite matrices R and C, we face
the optimal control problem:

Minimize
∞∑
t=0

γt
(
a>t Rat + s>t Cst

)
Subject to st+1 = Ast +Bat

where st ∈ Rn is a continuous state variable and at ∈ Rk is the action chosen at time t. We assume
finite per-step costs, ‖R‖2, ‖C‖2 <∞. A linear policy πθ(s) = θs is known to be optimal for some
θ ∈ Rk×n, see for example Bertsekas [1995, 2011], Evans [2005]. We consider the search for
optimal θ via a gradient method. Unfortunately, the loss function `(θ) = Es∼ρ [Jπθ(s)] is non-convex
(see Appendix B in Fazel et al. [2018] for a simple example), making it unclear whether or why
gradient descent on `(θ) would reach the global minimum. Precisely, if a policy policy πθ is applied

4This choice has several benefits. First, it gives an easy expression st = (A+Bθ)ts0 for the state evolution helping
readers see the source of non-convexity in Jπθ (s). Second, in the noisy case, the cost-to-go functions have an additional
constant term, Jπθ (s) = s>Kθs+ E

[
ζ>Kθζ

]
, as compared to the noiseless case, simplifying some expressions.
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from a state s0 then from the linear dynamics we have st = (A+ Bθ)st−1 = · · · = (A+ Bθ)ts0.
From this we have

Jπθ(s0) =

∞∑
t=0

γt
(
s>t θ

>Rθst + s>t Cst

)
= s>0

[ ∞∑
t=0

γt
(
(A+Bθ)t

)> (
θ>Rθ + C

)
(A+Bθ)t

]
︸ ︷︷ ︸

:=Kθ

s0

A linear policy πθ, is said to be stable if λmax (A+Bθ) < 1. Formally, let us define the set of stable
policies as

ΘS :=

{
θ ∈ Rk×n | max

x:‖x‖2≤1
‖(A+Bθ)x‖2 < 1

}
For a stable linear policy, Kθ is finite and positive definite ensuirng the cost-to-go is finite. We
assume the system, (A,B), is controllable so there exists at least one stable policy.

Even though the total cost function `(θ) is non-convex, the classical dynamic programming
theory applies to the policy iteration algorithm for LQ control. The study of policy iteration in linear
quadratic control dates back at least to Kleinman [1968], who showed that even in the undiscounted
case, beginning with a stable linear policy it produces a sequence of stable linear policies with strictly
improving cost to go until that converges toward an optimal policy. Essentially, the complexity of `(θ)
is due the multi-period nature of the problem where changes in the control, θ, have a compounding
influence on states visited far out into the future. On the other hand, policy iteration converges to an
optimal policy by solving a sequence of much simpler single period decision problems. Beginning
with a stable linear policy πθ(s) = θs, applying the Bellman operator involves solving a quadratic
optimization problem, making it easy to plan over single period.

TJπθ(s) = min
a∈Rk

[
a>Ra+ s>Cs+ γJπθ(As+Ba)

]
(5)

= min
a∈Rk

[
a>Ra+ s>Cs+ γ(As+Ba)>Kθ(As+Ba)

]
For an arbitrary state s, a minimizing action is a∗ = −γ(R+γB>KθB)−1B>KθAs. Therefore, the
linear feedback policy πθ is a policy iteration update if we choose θ = −γ(R+γB>KθB)−1B>KθA
In terms of Bellman operators, this means

TπθJπθ = TJπθ (6)

where the Bellman operator corresponding to a linear policy is defined by

(TπθJ)(s) := (θs)>R(θs) + s>Cs+ γJ(As+Bθs). (7)

This argument above shows how one can perform policy iteration for LQ control by searching over
the restricted class of linear policies. In other words, for LQ control, the class of linear polices
is closed under policy iteration which is the first key property we identified in the begining of this
section. For a given s, this optimization problem depends on θ only though θs and hence an entire
subspace of optimal solutions. The solution becomes unique either by requiring optimality at a set of
states that span Rn or by solving the weighted policy iteration problem

min
θ

Es∼η
[
Qπθ(s, πθ(s))

]
, (8)
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where the covariance of s under η has full rank. Note that following (3), we can equivalently write
(6) in terms of Q-functions as: Qπθ(s, θs) = minaQπθ(s, a) for all s, where

Qπθ(s, a) =
[
a>Ra+ s>Cs+ γ(As+Ba)>Kθ(As+Ba)

]
Since Qπθ(s, a) is a quadratic function of a, Qπθ(s, θs) is a quadratic function of θ (viewing θ is
a stacked vector) and this property is preserved by taking the expectation over s. This shows the
weighted policy iteration problem in (8) is convex (strongly convex in this case) and hence can be
solved efficiently by a gradient method which is the second key property we identified.

Notice that the LQ control example does not fit within our general problem formulation, which
assumed single period costs to be uniformly bounded. For LQ control, ‖Jπ‖∞ = ∞ for any
policy π, and so we cannot study convergence of algorithms in this norm. As is standard in
dynamic programming, we instead study convergence in the weighted maximum norm ‖Jπ‖∞,w =
sups |Jπ(s)|w(s). Given the cost-to-go functions are quadratic, a natural choice is to take the
weighting to be w(s) = 1/‖s‖22. For any K ∈ Rn×n such that K � 0, let Jq be the set of quadratic
cost-to-go functions

Jq =
{
J : J(s) = s>Ks ∀ s ∈ Rn

}
With our choice of weighting, for any J ∈ Jq, we have ‖J(s)‖∞,w = ‖K‖2 which is the spectral
norm of the matrix K. The follwoing lemma shows that the Bellman operator Tπθ , corresponding to
any stable linear policy θ ∈ ΘS, and the Bellman optimality operator T are monotone contraction
operators with respect to this weighted maximum norm. See Appendix C for a complete proof.

Lemma 3 (Bellman operators for LQ control). Consider the linear quadratic control problem
formulated in Example 2. Fix the state-weighting w(s) = 1/‖s‖22. For J, J̄ ∈ Jq and a stable linear
policy πθ, the following properties hold:

1. (Closure on the set of quadratic cost functions) TπθJ ∈ Jq and TJ ∈ Jq.

2. (Monotonicity) If J � J̄ then TπθJ � Tπθ J̄ and TJ � T J̄ .

3. (Contraction) ‖TJ − T J̄‖∞,w ≤ γ‖J − J̄‖∞,w and ‖TπθJ − Tπθ J̄‖∞,w ≤ γ‖J − J̄‖∞,w.

A simple proof shows that for LQ control, the policy gradient loss function has no suboptimal
stationary points depsite being non-convex. Starting from a suboptimal stable linear policy πθ, the
policy iteration step produces a new stable linear policy πθ with reduced cost. Using the convexity of
the policy iteration objective5 along with standard dynamic programming arguments, we show that
(θ − θ) forms a descent direction for the policy gradient loss `(·), implying that θ is not a stationary
point. The argument here is strongly reminiscent of the standard analysis of policy iteration.

Lemma 4. For the linear quadratic control problem formulated in Example 2, if ρ has a strictly
positive density on Rn, any stable linear policy θ satisfies∇`(θ) = 0 if and only if Jπθ = J∗.

5We showed above that a→ Qπθ (s, a) is convex quadratic in a.
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Proof. Fix a stable linear policy πθ and let πθ be a policy iteration update to πθ. In other words,
θ is a solution to (8) and satisfies TπθJπθ = TJπθ . Set θα = (1 − α)θ + αθ which implies
πθα(s) = (1− α)θs+ αθs as both πθ and πθ are linear policies. For every s ∈ Rn,

TπθαJπθ(s) = Qπθ(s, πθα(s)) = Qπθ(s, (1− α)θs+ αθs) ≤ (1− α)Qπθ(s, θs) + αQπθ(s, θs)

= (1− α)TπθJπθ(s) + αTπθJπθ(s)

= (1− α)Jπθ(s) + αTJπθ(s)

= Jπθ(s)− α (Jπθ(s)− TJπθ(s))

where the inequality uses that a 7→ Qπθ(s, a) is convex as shown before. Repeatedly applying the
Bellman operator and using the monotonicity property, Jπθ � TJπθ , shown above in Lemma 3 gives:

Jπθ � TπθαJπθ � T
2
πθα

Jπθ � · · · � Jπθα .

From this, we have
Jπθα − Jπθ

α
� TπθαJπθ − Jπθ

α
� [TJπθ − Jπθ ] .

Multiplying each side by 1− γ, taking the expectation over s drawn from the initial distribution ρ,
and then taking α→ 0 gives

d

dα
`(θα)

∣∣∣∣
α=0

≤ (1− γ)Es∼ρ [TJπθ(s)− Jπθ(s)] .

Consider the error in Bellman’s equation E(s) , TJπθ(s)− Jπθ(s). We know E(s) ≤ 0 for all s.
Since θ is suboptimal, E(s) < 0 for some state s. But since E(s) is continuous (it is the difference
in quadratic functions), there is an open subset of states on which E(·) is strictly negative. Since ρ
has a positive density on all of Rn, the expectation on the right hand side is strictly negative showing
θ − θ to be a descent direction. Other side of the claim follows using the policy gradient theorem as
shown in Lemma 5 (see Section 5.4).

5.2 General results

Let us generalize (8) by introducing the weighted policy iteration, or “Bellman” objective,

B(π′ | η, Jπ) = Es∼η [(Tπ′Jπ(s))] , (9)

and overload notation to write B(θ | η, Jπ) = B(πθ | η, Jπ). Recall that (Tπ′Jπ)(s) ≡ Qπ(s, π′(s)).
Clearly, when η is supported on all states, minimizing (9) over all policies π′ is equivalent to classical
policy iteration. Policy gradient methods are more closely related to the following weighted policy
iteration scheme:

θt+1 = arg min
θ∈Θ

B(θ | η, Jπθt ), (10)

which preforms policy iteration style updates over the parameterized policy class, ΠΘ. In general,
this scheme may chatter endlessly. But, it is assured to converge to an optimal policy when the policy
class is closed under policy improvement. As explained in the introduction, this condition is stronger
than the requirement that ΠΘ contains an optimal policy. However, this condition is necessary, since
Example 1 shows policy gradient methods can get stuck in bad local minima even in extremely
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simple examples in which ΠΘ contains an optimal policy but is not closed under policy improvement.
Note that Condition 1 is much weaker than requiring the policy class is rich enough to contain nearly
all policies, accommodating examples in which a certain class of policies is naturally aligned with
the decision task, for example linear policies in LQ control or threshold policies in optimal stopping.

Condition 1 (Closure under policy improvement). For each π ∈ ΠΘ and distribution η supported
over the entire S, there is a π+ ∈ ΠΘ such that Tπ+Jπ = TJπ. Equivalently, B(π+|η, Jπ) =
minπ′∈Π B(π′|η, Jπ).

As a first order method, policy gradients require additional local optimization structure to succeed.
The following condition ensures that the weighted policy iteration problem is amenable to first-order
optimization. It is worth emphasizing that the total cost function `(θ) is complicated and non-convex
in all the examples we have considered so far. This is due to the multi-period nature of the decision
problem, in which changes to the policy can have a compounding effect6 over time. Since it considers
only a single period decision problem, the weighted policy iteration objective θ̄ 7→ B(θ̄|ηπθ , Jπθ) is
typically much simpler.

Condition 2 (Stationary points of the policy improvement objective). For each π ∈ ΠΘ and
distribution η supported over S , the function θ 7→ B(θ | η, Jπ) has no sub-optimal stationary points.

Recall, we already proved this condition for optimal stopping problem in Example 4. For finite
MDPs, we showed θ 7→ B(θ | η, Jπ) is linear while for LQ control, it is quadratic. The next theorem
offers a broad generalization of the result for LQ control shown in Lemma 4. After developing some
supporting results in the next subsection, we prove Theorem 1 in Section 5.5.

Theorem 1. Suppose Conditions 1 and 2 hold. Then, θ is a stationary point of `(·) if and only if
Jπθ = J∗.

5.3 Examples beyond LQ control

Having looked at the LQ control example in detail, we describe two other problem settings to which
our results will apply. We show how Conditions 1 and 2 continue to hold for these problems as well.

Example 3 (Finite state action MDPs). Consider a problem with finite number of states, S =
{1, · · · , n}. For notational simplicity, assume the set of feasible actions As is the same for every
state s and denote this by A. We also assume there is a finite set of k deterministic actions to choose
from and take A = ∆k−1 to be the set of all probability distributions over these actions. That is, any
action a ∈ A is a vector of probabilities where each component ai denotes the probability of taking
the ith action. Cost and transition functions can be naturally extended to functions on the probability
simplex by defining:

g(s, a) =

k∑
i=1

g(s, ei) ai P (s′|s, a) =

k∑
i=1

P (s′|s, ei) ai. (11)

where ei is the i-th standard basis vector, representing one of the k possible deterministic actions.
For this tabular setting, a natural paramerization considers the policy πθ(s) = θs ∈ ∆k−1

which associates each state with a probability distribution over actions. Rather than track the policy
6In terms of the distribution of states and actions visited over a trajectory under the updated policy vs the old policy.
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parameter θ = (θs : s = 1, · · ·n) ∈ Rn×k we work directly with a stochastic policy π ∈ Rn×k,
viewed as a matrix whose rows are probability vectors. In this case, the set of all stationary
randomized policies can be written as Π = {π ∈ Rn×k+ :

∑k
i=1 πs,i = 1 ∀s ∈ {1, · · · , n}}

which obviously implies that Π is closed under policy improvement. It is also worth noting that
for any π ∈ Π, s ∈ S and a ∈ ∆k−1, the Q-function is linear in a, as we can write: Qπ(s, a) =∑k

i=1Qπ(s, ei)ai = 〈Qπ(s, ·), a〉. Therefore, the weighted policy iteration objective,

B(π′|η, Jπ) = Es∈η
[
Qπ
(
s, π′(s)

)]
is convex (linear) in π′ and can be solved efficiently by projected gradient method, for example.

Remark 2. For tabular MDPs, it is quite common to use a softmax policy parameterized by
θ ∈ Rn×k where for any state s, the πθ(s) ∈ ∆k−1 is a probability distribution whose components
πθ(s) ≡ (πθ(1|s), · · · , πθ(k|s)) satisfy

πθ(i|s) =
eθs,i∑k
j=1 e

θs,j
i = 1, · · · , k

We simplify the discussion by assuming θs,1 = 1 is fixed. This means that each θ defines a unique
policy. Otherwise, the policy class is over parameterized. It is important to note that our result
about stationary points in Theorem 1 does not apply in a meaningful way to softmax policies. In
non-degenerate cases, any policy πθ corresponding to a given θ is suboptimal, so our result suggests
there are is no θ that is a stationary point of `(θ). Convergence can only occur in the limit as some
components of θ tend to infinity, sending the probability of certain actions to zero. This kind of
convergence is not treated in standard optimization results like Lemma 2.

One way to make our results meaningful for softmax policies is by adding a small regularizer
to the cost function that penalizes near-deterministic actions. To sketch this idea, consider defining
g(s, a) =

∑k
i=1 g(s, ei)ai + R(a) where R(a) → ∞ if ai → 0 for any i. This is a feature, for

example, of the relative entropy function R(a) = DKL(U ||a) where U is the uniform distribution
Ui = 1/k for each i. We have chosen to regularize the single stage cost functions, rather than `(θ)
directly, because this form lies within the scope of our problem formulation. For such a regularizer,
R(πθ(s)) → ∞ if ‖θs‖ → ∞, implying `(θ) is coercive. Continuous and coercive functions are
known to attain a global minimum, so arg minθ `(θ) is non-empty and `(·) has an interior minimizer.
Our general results can be used to show `(θ) has no suboptimal stationary points, so Lemma 2 shows
gradient descent converges to the global optimum.

We now turn to an example with a structured policy class.

Example 4 (Optimal Stopping). The optimal stopping problem is most naturally formulated as a
reward maximization problem where in each round the agent observes a contextual information,
xt ∈ X which evolves according to an uncontrolled Markov chain with transition kernel from x to x′

given by p(x′|x). Conditioned on context xt, the agent receives an offer yt ∈ Y drawn i.i.d from some
distribution qxt(·). If the offer is accepted in round t, the process terminates and the decision maker
accrues a reward of γtyt while rejecting the offer in any round is costless. The agent’s objective is to
maximize ravenue7.We assume the context set, X to be finite and the offer set to Y to be a bounded
subset of R.

7One can imagine costs to be the negative reward to be consistent with our formulation.
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The problem can be formalized as a Markov decision process with the state-space S = SC∪{T},
consisting of a fnite set of continuing states, SC = (X × Y) and a terminal state T that is costless,
g(T, a) = 0 and absorbing, P (T |T, a) = 1. We assume that the initial distribution ρ(s) has a
positive density over SC. There are two actions, A = {0, 1}, action a = 0 corresponds to accepting
the offer and terminating while a = 1 continues the game by transitioning to a new state:

P
[
st+1 = (x′, y′) | st = (x, y), a = 1

]
= p(x′ | x)qx′(y

′).

We consider the class of threshold policies, Πθ := {θ ∈ R|X | : θx ∈ Y}, parametrized by one
threshold per context x such that the policy, πθ(s = (x, y)) = 1 (y < θx), rejects all offers below the
threshold. It is easy to verify that the class of threshold policies is closed under policy improvement.
For any π ∈ Πθ, consider the policy iteration update for any state s = (x, y) ∈ SC:

π+(x, y) = arg max
a∈{0,1}

Qπ((x, y), a) = ay + (1− a)γ
∑

(x′,y′)∈S

p(x′|x)qx(y′)Jπ((x′, y′))

Clearly, π+(x, y) = 1 iff y exceeds the continuation value, cπ(x) := γ
∑

(x′,y′)∈S p(x
′|x)qx(y′)Jπ((x′, y′)).

Thus, π+ is itself a threshold policy. We can also show that the weighted policy iteration objective
has no suboptimal stationary points and can be therefore solved to optimality by a gradient method.
For any πθ, π ∈ Πθ and η with positive density over SC,

∂

∂θx
B(θ|η, Jπ) =

∂

∂θx

∫
y∈Y

η(x, y) ·Qπ ((x, y), πθ(x, y)) dy = (cπ(x)− θx) η(x, θx)

Thus, ∂
∂θx
B(θ|η, Jπ) = 0 ⇐⇒ θx = cπ(x) which corresponds to the optimal policy8.

Descent direction for Examples 3 and 4: Astute readers will observe that the proof of lemma 4
was highly specialized to the setup with linear policy classes and can be extended to convex policy
classes in the sense that policy iteration update still provides a feasible descent direction. So while
that proof does apply to the tabular MDP example, it breaks for the class of threshold policies which
is not convex9. In the next subsection, instead of constructing a descent direction, we develop a more
general approach to argue about the stationary points of `(·) using Conditions 1 and 2 along with the
policy gradient lemma.

5.4 A sharp connection between policy gradient and weighted policy iteration

The key to our approach is a sharp relationship between between policy gradient methods and the
weighted policy iteration scheme

θt+1 = arg min
θ∈Θ

B(θ | η, Jπθt ), (12)

8For an optimal policy, πθ it must be true that θx = cπθ (x). That is, the threshold should equal the continuation value –
if that does not hold, then we can always improve revenue.

9It is easy to see that for any two threshold policies, πθ, πθ′ , their convex combination :απθ + (1 − α)πθ′ is not a
threshold policy. The class of threshold policies is therefore not convex.

16



which performs policy iteration style updates over ΠΘ. In light of the policy gradient theorem below,
when Θ = Rd is unconstrained, gradient descent for `(θ) with a constant stepsize α can be shown to
be equivalent to gradient updates with the weighted policy iteraion objective.

θt+1 = θt − α∇θ B(θ | ηπθt , Jπθt )
∣∣∣∣
θ=θt

Policy gradients and weighted policy iteration differ in two ways. First, policy gradient methods
are incremental, making a parameter update based on a gradient of (9) rather than solving it exactly.
Second, the state-relevance weights η are updated over time to reflect the frequency of states visited
by the current policy. This idea is central to our main results presented subsequently.

The policy gradient theorem below which enables this connection can essentially be derived
from the result of Silver et al. [2014]. While they call this result a deterministic policy gradient
theorem, it actually generalizes the stochastic policy gradient theorem of Sutton et al. [2000] when
πθ(s) ∈ ∆k−1 specifies a probability distribution over k base actions. We provide a short proof
sketch here, since the presentation of the result and the proof differ from Silver et al. [2014] and
Sutton et al. [2000].

Lemma 5 (Policy gradient theorem). `(θ) is differentiable and

∇`(θ) = ∇θ B(θ | ηπθ , Jπθ)
∣∣∣∣
θ=θ

=
∑
s∈S

ηπθ(s)

[
∇θQπθ(s, πθ(s))

∣∣∣∣
θ=θ

]
.

Proof sketch. Put Jθ ≡ Jπθ , Qθ ≡ Qπθ , Pθ ≡ Pπθ and Tθ ≡ Tπθ and ηθ ≡ ηπθ . We leverage the
variational Bellman equation (1) (take π = πθ an J = Jθ in that expression). This gives,

`(θ)− `(θ) = (1− γ)ρ
(
Jθ − Jθ

)
= (1− γ)ρ

(
(I − γPθ)

−1(TθJθ − Jθ)
)

= ηθ
(
TθJθ − Jθ

)
=
(
TθJθ − Jθ

)
+
[
(ηθ − ηθ)

(
TθJθ − TθJθ

)]︸ ︷︷ ︸
O(‖θ−θ‖22)

.

Note that ηθ
(
TθJθ

)
= B(θ | ηθ, Jπθ). Evaluating the derivative with respect to θ at θ = θ yields

the first result. The second equality follows by rewriting B(θ | ηθ, Jπθ) = Es∼ηθ
[
Qθ(s, πθ(s))

]
and

interchanging the expectation and derivative. To make this proof fully rigorous, we need to justify
this interchange and also to show formally that ‖ηθ− ηθ‖∞ = O(‖θ− θ‖2) and ‖TθJθ−TθJθ‖∞ =
O(‖θ − θ‖2). See Appendix E.1 for a detailed proof.

5.5 Proof of Theorem 1

We first give a key lemma, which can be viewed as a Bellman-type equation that holds when the
single period objective θ 7→ B(θ | ηπθ , Jπθ) has no bad stationary points.

Lemma 6. Suppose Condition 2 is satisfied. If θ is a stationary point of ` : Θ→ R, then

E [Jπθ(S)] = min
π∈ΠΘ

E [TπJπθ(S)] ,

where the expectation is over S drawn from ηπθ .

17



Proof. If θ is a stationary point of ` : Θ → R, then by Lemma 5, it is a stationary point of the
function θ 7→ B(θ | ηπθ , Jπθ). Since Condition 2 holds, this means

B(θ | ηπθ , Jπθ) = min
θ∈Θ
B(θ | ηπθ , Jπθ).

Recalling the definition of B(θ | η, Jπ) in (9) lets us rewrite both sides of this equation. To simplify
the expressions, take S to be a random state drawn from ηπθ . Then,

E [Jπθ(S)] = E [TπθJπθ(S)] = B(θ | ηπθ , Jπθ) = min
θ̄∈Θ
B(θ̄ | ηπθ , Jπθ) = min

θ̄∈Θ
E
[
TπθJπθ(S)

]
.

We now state an “average” form of Bellman’s equation in Lemma 7, which holds due to our
assumption that the initial distribution ρ places positive probability on every state, ensuring that
ηπ(s) ≥ (1 − γ)ρ(s) > 0 for all s ∈ S and π ∈ ΠΘ. Using this, the average Bellman equation
reduces to a standard result in dynamic programming which argues that satisfying the Bellman’s
equation is necessary and sufficient for optimaility, i.e. Jπ = J∗ ⇐⇒ Jπ = TJπ. For completeness,
we give a proof in Appendix A.

Lemma 7 (On average Bellman equation). For any π ∈ ΠΘ and S ∼ ηπ,

Jπ = J∗ ⇐⇒ E[Jπ(S)] = E[TJπ(S)]

The proof of Theorem 1 now follows as an immediate consequence of the closure assumption as
stated in Condition 1.

Completing the proof of Theorem 1. Suppose θ is a stationary point of `(·). We have

E [Jπθ(S)] = min
π∈ΠΘ

E [TπJπθ(S)] = E [TJπθ(S)]

where the first equality uses Condition 2 to invoke Lemma 6 and the second equality uses Condition
1. Finally, Lemma 7 shows that satisfying the average Bellman equation implies optimiality.

6 Beyond closed policy classes: the case of nonstationary policy classes

For finite horizon problems with non-stationary policy classes, we can guarantee that there are no
spurious local minima for policy gradient under a much weaker condition. Rather than require
the policy class is closed under improvement, it is sufficient that the policy class contains the
optimal policy10. For this reason, our theory will cover as special cases a broad variety of finite
horizon dynamic programming problems for which structured policy classes are known to be optimal.
Interestingly, this the result relies critically on the use of a non-stationary policy class. In particular,
Example 1 shows that policy gradient performed with respect to stationary policy classes can get
stuck in bad local minima even if the policy class contains an optimal policy.

As motivation, consider the finite-horizon inventory control in Example 5. Kunnumkal and
Topaloglu [2008] have previously showed through a somewhat intricate analysis that a stochastic
approximation algorithm converges to the optimal policy, despite non-convexity of the objective.

10Closure of the policy class implies that it contains the optimal policy.
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Example 5 (Finite horizon inventory control). We consider a multi-period inventory control problem
(also popularly known as the newsvendor problem) with backlogged demands where at time t, we
denote st ∈ R to be the state of the seller’s inventory, at ≥ 0 to be the quantity of inventory ordered
(only non-negative orders are allowed) and wt ∈ [0, wmax] to be the random demand (assumed to be
i.i.d for simplicity). For a problem with horizon H , the seller’s objective is to minimize total expected
cost

E

[
H−1∑
t=1

(cat + bmax{st + at − wt, 0}+ pmax{−st + at − wt, 0})

]
where c, b, p > 0 denote the per unit costs of ordering, holding and backlogging items, respectively.
The inventory level evolves as: st+1 = st + at−wt ∀ t = {0, . . . ,H − 1}. Negative inventory levels
correspond to backlogged demand that is filled when additional inventory becomes available. We
assume that p > c. Otherwise, the optimal policy never orders inventory.

It is well known that a base-stock policy is optimal for this setting [Bertsekas, 1995]. Therefore,
we consider the class of base-stock-policies parameterized as Πθ =

{
θ = (θ0, . . . , θH−1) ∈ RH : θt > 0

}
which orders inventory πθ(st) = max{0, θt − st} at time t. That is, it orders enough inventory to
reach a target level θt, whenever feasible.

We can state our formal result without introducing new notation for the finite horizon setting, by
a well known trick that treats finite-horizon time-inhomogenous MDPs as a special case of infinite
horizon MDPs (see e.g. Osband et al. [2017]). Essentially, one can imagine that the state space
factorizes into H + 1 components, thought of as stages or time periods of the decision problem. For
any policy, a state s ∈ Si transitions to a state in Si+1 until stage H + 1 is reached and the interaction
effectively ends. We also assume the policy class factors into separate components. This structure
allows us to change the policy in stage h without influencing the policy at other stages and essentially
encoding time-inhomogenous policies.

Condition 3. Suppose the state space factors as S = S1∪· · ·∪SH ∪SH+1, where for a state s ∈ Sh
with h ≤ H ,

∑
s′∈Sh+1

P (s′|s, a) = 1 for all a ∈ As. The final subset SH+1 = {τ} contains a
single costless absorbing state, with P (τ |τ, a) = 1 and g(τ, a) = 0 for any action a. The parameter
space is the product set Θ = Θ1 × · · · ×ΘH , where a policy parameter θ = (θ1, . . . , θH) ∈ Θ is
the concatenation of H sub-vectors. For any fixed s ∈ Sh, πθ(s) depends only on θh.

We now state the main result of this subsection, which applies under conditions much weaker
than those for Theorem 1. As opposed to Condition 1, we only require Πθ to contain the optimal
policy. We also need the following which is weaker than Condition 2, since it only treats the weighted
policy iteration objectives corresponding to the optimal cost-to-go function, J∗.

Condition 4. For any distribution η with full supported on S = ∪H+1
h=1 , the problem minθ∈Θ B(θ|η, J∗)

has no suboptimal stationary points.

Recall that Condition 2 considers stationary points of single-period problems, θ → B(θ|η, Jπ),
induced by any suboptimal policy π ∈ Πθ. The full proof is given in Appendix E.2 and proceeds
by backward induction. We first show how all stationary points must play according to an optimal
policy at the final-period states s ∈ SH . From this, we argue that at any stationary point the policy
must act optimally from any state in Sh for h < H .
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Theorem 2. Suppose Conditions 3 and 4 hold. Further assume that ρ is supported over each Sh
for h ≤ H . If the parameterized policy class ΠΘ contains an optimal policy π∗, then any stationary
point θ of ` : Θ→ R satisfies Jπθ = J∗.

For the inventory control problem in Example 5, a simple argument shows that B(θ|η, J∗) has
no suboptimal stationary points for any η supported over S. The result, shown in Appendix E.2,
essentially follows by using that the optimal Q-function, Q∗(s, a) is convex in a (see Chapter 3 in
Bertsekas [1995] for details).

7 The initial distribution and concentrability coefficients

7.1 The role of the initial distribution

Our analysis relies critically on an exploratory initial distribution ρ. This is not an artifact of the
proof technique, as indeed, policy gradient methods will in general have poor convergence properties
otherwise. One counterexample was provided by Kakade and Langford [2002]. Examples of this
form can be assumed away, effectively by imposing certain uniform ergodicity assumptions on the
underlying MDP. Instead, we choose to make transparent that such a ρ will be generally be needed
for robust results. In many real-world learning scenarios, restarting in very different states would be
costly if not impossible. Perhaps for this reason, introductory materials on policy gradient methods
often omit an discussion of an exploratory initial distribution. However, nearly all implementations
of policy gradient methods of which we are aware involve training in simulated environments or
laboratory envirnments. It is common to initial present robots with diverse scenarios or diverse tasks
at training time, with the engineering playing the role of an (adaptive) choice of ρ.

7.2 Concentrability

Our results in Section 5 focussed on characterzing the quality of stationary points by arguing that at
any stationary point, the cost-to-go functions satisfy an average Bellman equation which, crucially,
implies optimality (see Lemma 7). An important concept used to extend our analysis grapples with
connecting errors in the Bellman equation to the optimality gap in terms of cost-to-go functions. As
an example, the Bellman optimality operator T is a contraction in a norm ‖ · ‖ then

‖J − J∗‖ ≤ 1

(1− γ)
‖J − TJ‖ ∀ J ∈ J . (13)

See Bertsekas [1995] or (23) in Appendix A. Here it was critical that T is a contraction in the same
norm used to measure the distance from the optimal cost-to-go function. We define a constant, κρ,
which enables the same inequality as in (13) but instead with the weighted norm, ‖ · ‖1,ρ. Intuitively,
κρ captures how errors in the cost-to-go functions manifest in Bellman errors that are detectable by
sampling from the exploratory initial distribution ρ. Recall that JΘ = {Jπθ : θ ∈ Θ} is the set of
cost-to-go functions induced by the parameterized policy class. It is critical, at least for some of our
results (Lemma 11 for example), that we measure κρ only on this subclass of cost-to-go functions
and not all functions J : S → R.
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Definition 2. Define the effective concentrability coefficient κρ of the class of cost-to-go functions
JΘ to be the smallest scalar such that

‖J − J∗‖1,ρ ≤
κρ

(1− γ)
‖J − TJ‖1,ρ ∀J ∈ JΘ. (14)

If no such scalar exists then we say κρ =∞.

This definition is motivated by two important factors. First, the optimality gap under `(·) can be
written as `(πθ)−minπ∈Π `(π) = (1−γ)‖Jπθ −J∗‖1,ρ, mirroring the left hand side of (14) modulo
a constant factor. Second, due to the policy gradient formula in Lemma 5, our results crucially on
errors Bellman equation weighted under the state occupancy measure ηπ. See Lemma 7, for example.
As ηπ(s) ≥ (1− γ)ρ(s), it makes sense to therefore measure the Bellman errors in ‖ · ‖1,ρ.

We call κρ the effective concentrability coefficient, since it plays a role similar to the concentra-
bility coefficients (Munos [2003, 2007]) that play a key role in the analysis of approximate value
and policy iteration algorithms [Farahmand et al., 2010, Geist et al., 2017, Kakade and Langford,
2002, Munos, 2003, 2007, Munos and Szepesvári, 2008, Scherrer and Geist, 2014]. See Scherrer
[2014] for a detailed comparison on different notions of the concentrability coefficient. Note, instead
of stating a more general regularity assumption on the MDP, our definition of κρ in (14) is precisely
the quantitiy we need in our analysis. We now give various bounds on κρ below.

The first bound depends on the likelihood ratio between the state occupancy measure under the
optimal policy and the initial distribution. This yields the simple bound κρ < mins 1/ρ(s) in any
finite state problem, but it could also be finite in some infinite state problems.

Lemma 8. Let π∗ denote any optimal stationary policy. Then,

κρ ≤ sup
s∈S

ηπ∗(s)

ρ(s)

This result is, essentially, a restatement of a key observation in Kakade and Langford [2002] and
can be derived using the variational form of the Bellman equation (see 25 in Appendix A) or using
the performance difference lemma Kakade and Langford [2002]. For completeness, we give a short
proof in Appendix E.3. Such distributional mismatch terms also appears in the works of Agarwal
et al. [2019], Scherrer and Geist [2014].

An alternative approach to bounding κρ is to relate the weighted 1 norm to a different norm in
which the Bellman operator is a contraction.

Lemma 9 (Concentrability via norm equivalence). If T is a contraction with modulus γ in a norm
‖ · ‖ that satisfies

c‖J‖ ≤ ‖J‖1,ρ ≤ C‖J‖ ∀ J ∈ J , (15)

then κρ ≤ C/c.

Proof. Using that T is contraction with modulus γ in ‖ · ‖ implies that ‖J −J∗‖ ≤ 1
(1−γ)‖J −TJ

∗‖
(see (23) in Appendix A). Then,

‖J − J∗‖1,ρ ≤ C‖J − J∗‖ ≤
C

(1− γ)
‖J − TJ‖ ≤ C

c(1− γ)
‖J − TJ‖1,ρ
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Lemma 9 is potentially useful for many problems where the Bellman operator is a contraction
with respect to a certain weighed norm, as it suggests ρ should be chosen in a manner that aligns
with that norm’s state weighting. Optimal stopping problem is one such special case in which a
very natural choice of ρ is suggested by the contraction properties of T . In particular, if ρ is chosen
to be the stationary distribution of the underlying Markov chain – assuming it is never interrupted
by stopping – then κρ ≤ 1. In practical problems, one could easily sample initial states from ρ by
simulating this Markov process.

Lemma 10 (Concentrability in optimal stopping). Suppose S = SC ∪ {T} consists of a finite
set of continuing states SC and terminal state T that is absorbing (P (T |T, a) = 1) and costless
(g(T, a) = 0). There are two actions A = {0, 1}, stop (a = 0) and continue (a = 1). Consider the
policy that never stops πC(s) = 1 for each s ∈ SC and suppose the induced Markov process has
stationary distribution µ = µPπC . Then, for the choice ρ = µ, κρ ≤ 1.

Proof. The analysis in Tsitsiklis and Van Roy [2001] shows T is a contraction in ‖ · ‖2,µ. Similarly,
one can show T is a contraction with modulus γ in ‖ · ‖1,µ. The result then follows immediately
from Lemma 9. See Appendix E.3 for details.

The definition of κρ only requires that 14 allows for bounds that depend on regularity properties
in the cost-to-go functions of interest. These regularity properties are not captured by the bound 8,
but can sometimes be

is also useful in cases where the bound stated in is potentially pessimistic as it does not capture
any regularity properties in the cost-to-go functions of interest. For example, in linear quadratic
control, cost-to-go functions induced by the class of linear policies are quadratic. As a result, we
need only the initial distribution to explore basis of the state space sufficiently, rather than requiring
it to mimic the steady state distribution of the (unknown) optimal policy. For the LQ control problem
formulated in Example 2, the following lemma shows that kρ is bounded by the dimension of the
basis of S (which is n as S = Rn) as well as the condition number of the (unnormalized) initial state
correlation matrix, Σ = Es∼ρ[ss>], reflecting asymmetry in exploring the different directions.

Lemma 11 (Concentrability in LQ control). Consider the linear quadratic control problem in
Example 2. Suppose Σ = Es∼ρ[ss>] � 0. Then, κρ ≤ n · λmax(Σ)

λmin(Σ) .

8 Convergence rates for policy gradient methods

Our result in Theorem 1 guarantees that any stationary point of the policy gradient objective, `(·) is
globally optimal assuming (i) the policy class is closed in policy improvement and (ii) the weighted
policy iteration objective function, θ 7→ B(θ | η, Jπ) has no sub-optimal stationary points for any
π ∈ ΠΘ and distribution η supported over the entire state space S. This however only implies
an asymptotic result: optimizing the policy gradient objective with first order methods converges
asymptotically to a stationary point which is also globally optimal. From a practitioners perspective
however, we also care about finite time convergence rates which provide bounds the optimality gap
after say a finite number of policy gradient updates.

Our main insight in this section is to identify conditions which guarantee that the policy gradient
objective is gradient dominated. The result follows if the weighted policy iteration objective,
θ 7→ B(θ | η, Jπ) is gradient dominated as well as closure of the policy class (condition 1). We
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use the policy gradient theorem in Lemma 5 to show how these conditions translate to gradient
dominance of `(·). This is useful as under suitable smoothness assumptions, it is well known that
first order methods converge rapidly to the globally optimal solutions if the objective is gradient
dominated [see e.g Nesterov, 2018]. Such gradient dominance conditions also underly the proof of
Fazel et al. [2018] for linear quadratic control.

We remark that assuming the policy improvement objective to be convex is not entirely impracti-
cal. As noted before in Section 5, θ 7→ B(θ | η, Jπ), is linear for finite MDPs and quadratic for LQ
control problem and therefore our results in this section immediately apply to these examples.

8.1 Background on Gradient Dominance

Throughout this section, consider the optimization problem minx∈X f(x) where X ⊂ Rd is a closed
convex set and f is differentiable on an open set containing X . Recall the defining feature of a convex
function is that it lies above its tangents, that is for each x ∈ X , f(x′) ≥ f(x) + 〈∇f(x) , x′ − x〉
for every x′ ∈ X . In analysis of optimization algorithms, this property not only implies that f(·) has
no suboptimal stationary points, it can be used to bound the optimality gap by a measure of distance
from stationarity, as

min
x′∈X

f(x′) ≥ f(x) + min
x′∈X
〈∇f(x)x′ − x〉.

When ‖x− x′‖ ≤ R for all x, x′ ∈ X , one can deduce from this the condition that minx′∈X f(x′) ≥
f(x) +R‖∇f(x)‖, indicating that the gradient norm bounds sub optimality. When f(·) is strongly
convex, this conclusion can be strengthened, leading to faster convergence rates. In particular, if f is
µ–strongly convex, then

min
x′∈X

f(x′) ≥ f(x) + min
x′∈X

[
〈∇f(x), x′ − x〉+

µ

2

∥∥x− x′∥∥2

2

]
.

When X is unconstrained, this says minx′∈X f(x′) ≥ f(x) + µ
2‖∇f(x)‖22, so the optimality gap is

bounded by the squared norm of the gradient in this case.
Below, we introduce a notion called gradient dominance. This definition, essentially, assumes a

critical implication of convexity or strong convexity rather than assuming the properties themselves.
According to the definition below, a convex function is (1, 0)–gradient dominated. A µ–strongly
convex function is (1, µ)–gradient dominated. The definition below is somewhat non-standard
because we discuss constrained optimization. Most authors discuss unconstrained optimization, in
which case the definition reduces to the usual gradient dominance or so-called Polyak condition,
minx′∈X f(x) ≥ f(x)− µ

2c‖∇f(x)‖22.

Definition 3. For a closed convex set X ⊂ Rd and function f that is differentiable on an open set
containing X , we say f is (c, µ)–gradient dominated over X if there exists a constant c > 0 and
µ ≥ 0 such that

min
x′∈X

f(x′) ≥ f(x) + min
x′∈X

[
c 〈∇f(x), x′ − x〉+

µ

2

∥∥x− x′∥∥2

2

]
∀x ∈ X . (16)

The function is said to be gradient dominated with degree 1 if µ = 0 and gradient dominated of
degree two if µ > 0.
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Under gradient dominance conditions, popular first order optimization algorithms are assured
to converge to the global minimum and a simple analysis provides finite time rates of convergence.
For concreteness, we will focus on projected gradient descent, strengthening Lemma 2 by providing
a convergence rate. The first result is obtained by using a well known fact that projected gradient
descent reaches an approximate stationary point rapidly (approximately at O(1/

√
T ) rate), and then

using the definition of gradient dominance to relate approximate stationarity to the optimality gap.
Analysis in the second case is essentially identical to the typical analysis of projected gradient descent
for strongly convex objectives and shows a geometric convergence rate. Recall that a differentiable
function is said to be L-smooth if ∇f(x) is Lipschitz with constant L with respect to the Euclidean
norm.

Lemma 12 (Convergence rates for gradient dominated smooth functions). Let X ⊂ Rd is a closed
convex set and f be L–smooth on X . Consider the sequence xt+1 = ProjX (xt − α∇f(xt)) where
α ≤ 1/L. Set f(x∗) = minx′∈X f(x′). Then,

1. If f is (c, 0)–gradient-dominated and ‖x− x′‖2 ≤ R <∞ for all x, x′ ∈ X , then

min
t≤T
{f(xt)− f(x∗)} ≤

√
2R2c (f(x0)− f(x∗))

αT

2. If f is (c, µ)–gradient-dominated for µ > 0, then,

f(xt)− f(x∗) ≤
(

1− µα

c2

)t
(f(x0)− f(x∗))

Proof. See Appendix B.1 for a detailed proof.

8.2 Gradient dominance of the policy gradient objective

We continue to assume that the policy class is closed under policy improvement, as stated in condition
1. But now, instead of assuming the policy improvement objective has no sub-optimal stationary
points, we impose the stronger property that it is gradient dominated. This condition holds for the
examples in Section 5 and hold whenever the single period objective solved by policy iteration is
convex.

Condition 5 (Gradient dominance of the weighted policy iteration objective). For any π ∈ ΠΘ

and probability distribution η supported over S, the function θ 7→ B(θ | η, Jπ) is (c, µ)–gradient-
dominated over Θ.

This gradient dominance condition ensures the single-period objective optimized by policy
iteration problem could be solved efficiently by first order methods. Our main result in Theorem 3
shows that for closed policy classes, this gradient dominance condition is automatically inherited
by the multi-period objective `(·), implying convergence rates for first-order methods applied to
`(·). Notice that the constants degrade with the horizon and the concentrability coefficient κρ stated
in Definition 14. The Corollary 1 provides a more interpretable statement, which follows because
any convex B(θ|η, Jπ) is (1, 0)–gradient-dominated and any B(θ|η, Jπ) and any µ–strongly–convex
B(θ|η, Jπ) is (1, µ)–gradient-dominated.
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Theorem 3. If conditions 1 and 5 hold, then `(·) is
(

1−γ
κρ
· c , 1−γ

κρ
· µ
)

–gradient dominated.

Corollary 1. Suppose conditions 1 holds. If, for every π ∈ ΠΘ and probability distribution η
supported over S , the function θ 7→ B(θ | η, Jπ) is convex, then `(θ) is gradient dominated of degree
one. If θ 7→ B(θ | η, Jπ) is strongly convex then `(θ) is gradient dominated of degree two.

The proof can be divided into two key steps. First, we use closure of the policy class (condition
1) to upper bound the optimality gap of the policy gradient objective with that of the weighted policy
iteration objective. Essentially, this result shows that the current policy is nearly optimal if the
weighted policy iteration step offers little improvement over the current policy; assuming the policy
iteration step can be performed exactly and sufficient exploration, ρ(s) > 0 ∀ s ∈ S . It is important
to note how optimality here crucially depends on our assumption that the start state distribution ρ is
supported over the entire state space as it ensures that ηπ(s) > 0 ∀ s ∈ S for any π ∈ Π. Second
step of the proof translates gradient dominance of the policy iteration objective to that of `(·) by
using the policy gradient theorem in Lemma 5.

Proof of Theorem 3. We first derive a consequence of the closure condition. Let S denote a random
draw from ηπθ . We have,

`(πθ)−min
π
`(π) = (1− γ)

∑
s∈S

ρ(s) (Jπθ(s)− J
∗(s))

(a)
= (1− γ)‖Jπθ − J

∗‖1,ρ
(b)

≤ κρ‖Jπθ − TJπθ‖1,ρ
≤ κρ

(1− γ)
‖Jπθ − TJπθ‖1,ηπθ

=
κρ

(1− γ)
E [Jπθ(S)− TJπθ(S)]

(c)
=

κρ
(1− γ)

E
[
Jπθ(S)− min

π′∈ΠΘ

Tπ′Jπθ(S)

]
(d)
=

κρ
(1− γ)

(
B(θ | ηπθ , Jπθ)− min

θ′∈Θ
B(θ′ | ηπθ , Jπθ)

)
Here (a) uses that Jπθ � TJπθ , (b) directly applies the definition of κρ in Definition 14, (c) directly
applies the policy closure condition in Condition 1, and (d) uses that ηπθ ≥ (1− γ)ρ (by definition,
see (4)).

As we assume θ 7→ B(θ | η, Jπ) is (c, µ)–gradient dominated for each π ∈ ΠΘ and η supported
over S , we have that ∀ θ ∈ Θ

B(θ | ηπθ , Jπθ)− min
θ′∈Θ
B(θ′ | ηπθ , Jπθ) ≤ −min

v∈Θ

[
c 〈∇θB(θ | ηπθ , Jπθ), v − θ〉+

µ

2
‖v − θ‖22

]
≤ −min

v∈Θ

[
c 〈∇θ`(θ), v − θ〉+

µ

2
‖v − θ‖22

]
,

which gives our desired result. The second inequality above uses the policy gradient theorem in
Lemma 5.
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9 Geometric convergence in finite action problems

While most of this paper was completed simultaneously with Agarwal et al. [2019], this section
is inspired directly by their work. In particular, one contribution of that work is to provide rates
of convergence for policy gradient methods – and in particular, natural policy gradient methods –
with exact gradient evaluations in finite state and action problems with a policy class consisting
of all stochastic policies. Depending on the precise algorithm, their proofs show policy gradient
methods find an ε–optimal policy within either O

(
1
ε

)
or O

(
1
ε2

)
iterations by posing these as smooth

nonlinear optimization problems and suggesting small stepsizes to control for the error due to local
linearization. In this work, we highlight that many first order methods applied to `(·), including
natural policy gradient methods, can work with extremely large stepsizes and attain a linear rate of
convergence, or equivalently, they require only O(log(1/ε)) iterations to reach an ε–optimal policy.

Throughout this paper, we have reduced the analysis of policy gradient methods to that of first
order methods on the weighted policy iteration cost function, B(π̄|η, Jπ). The special feature of the
finite action case is that the policy iteration step reduces to a linear optimization problem over the
probability simplex, a trivial problem which simply selects the best element among a finite set. First
order methods can potentially solve such problems in just a single iteration using a large stepsize.
From this, we are able to deduce a geometric rate of convergence for policy gradient methods, akin
to making exact policy iteration updates.

9.1 Setup

Recall the problem setup for finite state action MDPs as shown in Example 3. There are n state and
k deterministic actions to choose from. We take the set of feasible actions, A = ∆k−1, to be the set
of all probability distributions over these k actions. We consider the following two commonly used
policy parameterizations:

Natural parameterization. Here, π ∈ Rn×k denotes a stochastic policy, viewed as a matrix where
each row is a probability distribution over actions for a given state. The set Π = {π ∈ Rn×k+ :∑k

i=1 πs,i = 1 ∀s ∈ {1, · · · , n}} deontes the set of all stationary randomized policies.

Softmax parameterization. For unconstrained θ ∈ Rn×k, the softmax policy specifies an action-
distribution πθ(s) ∈ ∆k−1 for each s ∈ {1, · · · , n}. The vector πθ(s) ≡ (πθ(1|s), · · · , πθ(k|s))
has components

πθ(i|s) =
eθs,i∑k
j=1 e

θs,j
i = 1, · · · , k.

Policy gradients. Gradient calculations take on a particular transparent form in tabular problems.
Let ei be the i-th standard basis vector, representing one of the k possible deterministic actions. We
can rewrite the policy iteration cost function as

B(π̄|ηπ, Jπ) =
n∑
s=1

ηπ(s)

(
k∑
i=1

π̄s,i ·Qπ(s, ei)

)
= 〈π̄ , Qπ〉ηπ×1 (17)

where 〈v, u〉W =
∑n

s=1

∑k
i=1 v(s, i)u(s, i)W (s, i) denotes the W -weighted inner product and

ηπ × 1 denotes a weighting that places weight ηπ(s) · 1 on any state-action pair (s, i). The policy
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gradient theorem (Lemma 5) shows ∇`(π) = ∇B(π̄|ηπ, Jπ)
∣∣
π̄=π

. Expressed in terms of partial
derivatives, this gives ∂

∂πs,i
`(π) = 1

1−γ ηπ(s)Qπ(s, ei). First order methods use the local linear
approximation to `,

`(π̄) = `(π) + 〈∇`(π) , π̄ − π〉+O(‖π̄ − π‖2)

= `(π) + 〈Qπ , π̄ − π〉ηπ×1 +O(‖π̄ − π‖2).

It is important that ηπ(s) > 0 for all s, since ρ(s) > 0.

9.2 Algorithms

We now specialize several first-order algorithms to this setting. Recall the set of stochastic policies
Π = {π ∈ Rn×k+ :

∑k
i=1 πs,i = 1 ∀s ∈ {1, · · · , n}}, and note that Π = ∆k−1(1)× · · · ×∆k−1(n)

is the n-fold product of the probability simplex. This form of the policy class will cause certain
policy gradient updates to decouple across states.

Frank-Wolfe. Starting with some policy π ∈ Π, an iteration of the Frank-Wolfe algorithm computes

π′ = arg min
π̄∈Π

〈∇`(π), π̄〉 = arg min
π̄∈Π

〈Qπ, π̄〉ηπ×1 (18)

and then updates the policy to π+ = (1−α)π+απ′. In this case, π′ is exactly a policy iteration
update to π so Frank-Wolfe mimics a soft-policy iteration step, akin to the update in Kakade and
Langford [2002]. Note, the minimization problem in (18) decouples across states to optimize
a linear objective over the probability simplex, so π+(s) ∈ arg mind∈∆k−1 ηπ(s)d>Qπ(s, ·)
is a point-mass that places all weight on arg miniQπ(s, ei).

Projected Gradient Descent. Starting with some policy π ∈ Π, an iteration of the projected gra-
dient descent algorithm with constant stepsize α updates to the solution of a quadratically
regularized problem

π+ = arg min
π̄∈Π

〈∇`(π), π̄〉+
1

2α
‖π̄ − π‖22 = arg min

π̄∈Π
〈Qπ, π̄〉ηπ×1 +

1

2α
‖π̄ − π‖22.

As α → ∞ (the regularization term tends to zero), π+ converges to the solution of (18),
which is exactly the policy iteration update as noted above. For intermediate values of α, the
projected gradient update decouples across states and takes the form: π+

s = Proj2,∆k−1(πs −
αQπ(s, ·)), a gradient step followed by a projection onto the probability simplex. Note that
from an implementation perspective, projections onto the probability simplex involves a
computationally efficient (O(k log k)) soft-thresholding operation [Duchi et al., 2008].

Mirror-descent. The mirror descent method adapts to the geometry of the probability simplex by
using a non-euclidean regularizer. We focus on using the Kullback Leibler (KL) divergence, a
natural choice for the regularizer, under which an iteration of mirror descent updates policy π
to π+:

π+ = arg min
π̄∈Π

〈∇`(π), π̄〉+
1

α

n∑
s=1

DKL(π̄s ||πs) = arg min
π̄∈Π

〈Qπ, π̄〉ηπ×1 +
1

α

n∑
s=1

DKL(π̄s ||πs),
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where KL divergence is defined as DKL(p||q) =
∑k

i=1 pi log(pi/qi). Equivalently, π+ can be
written as the exponentiated gradient update,

π+
s,i =

πs,i · exp{−αηπ(s)Qπ(s, ei)}∑k
j=1 πs,j · exp{−αηπ(s)Qπ(s, ej)}

.

Again, we can see that π+ converges to a policy iteration update as α→∞.

Natural policy gradient and TRPO. We consider the natural policy gradient (NPG) algorithm of
Kakade [2002] applied to the softmax parameterization described above. This is closely related
to the widely used TRPO algorithm of Schulman et al. [2015a]. NPG with softmax policies is
actually an instance of mirror descent with a specific regualrizer. In particular, beginning with
some policy π ∈ Π, an iteration of NPG updates to π+:

π+ = arg min
π̄∈Π

〈∇`(π), π̄〉+
1

α

n∑
s=1

ηπ(s)DKL(π̄s ||πs)

= arg min
π̄∈Π

〈Qπ, π̄〉ηπ×1 +
1

α

n∑
s=1

ηπ(s)DKL(π̄s ||πs),

=

(
πs,i · exp{−αQπ(s, ei)}∑k
j=1 πs,j · exp{−αQπ(s, ej)}

)
s∈{1,··· ,n},i∈{1,··· ,k}

Here, we have used a natural regularizer that penalizes changes to the the action distribution at
states in proportion to their occupancy measure ηπ. This yields a type of soft policy iteration
update at each state.

A potential source of confusion is that natural policy gradient is usually described as steepest
descent in a variable metric defined by a certain fisher information matrix. But it is known to
be equivalent to mirror descent under some conditions [Raskutti and Mukherjee, 2015]. In this
case, readers can check that the exponentiated update above matches the explicit formula for
the NPG update given in Kakade [2002] and Agarwal et al. [2019].

The choice of stepsizes is an important issue for most first order methods. Each a of the algorithms
above can be applied with a sequence of stepsizes {αt} to produce a sequence of policies {πt}. At
iteration t, the rules above actually specify a one dimensional family of updated policies παt+1 that
depends on the choice of stepsize α. An idealized stepsize rule is exact line search, which directly
optimizes over this choice of stepize at each iteration:

αt = arg min
α≥0

`(παt ) (19)

If this minimum is not attained, then all results apply by choosing an ε–optimal solution in (19), for
some arbitrarily small ε.

9.3 Geometric convergence

So far, we have described different vaariants of implementing policy gradients for tabular settings.
Essentially, all of these algorithms make policy iteration updates for sufficiently large stepsizes.
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Intuitively, it makes sense to expect that their convergence behavior closely resemble results for
policy iteration rather than the analysis of gradient descent. We quantify this precisely in Theorem 4
below.

Our first result confirms that all of the algorithms we presented in the previous section will
converge geometrically if stepsizes are set by exact line search on `(·). Again, the idea is that a policy
gradient is a policy iteration update for an appropriate choice of stepsize. Our proof effectively shows
that exact line search updates make atleast as much progress in reducing `(·) as a policy iteration
update. The mismatch between the policy gradient loss `(·), which governs the stepsize choice, and
the maximum norm, which governs policy iteration convergence, is the source of the mins∈S ρ(s)
term in the bound.

Our second and third results show that dependence on the initial distribution can be avoided
by forcing the algorithm to use appropriately large constant stepsizes. The simplest result applies
to the Frank-Wolfe algorithm, which we already showed to be exactly equivalent to a soft policy
iteration update. However, the NPG result is likely more important since variants of this algorithm
are widely used in practice. We show NPG with exact gradient updates will reach an ε optimal policy
in O(log(1/ε)) iterations with sufficiently large stepsizes. The constant error term is inversely related
to the stepsize αt and reflects the fact that NPG updates with finite stepsizes only approximately
resemble the policy iteration updates. As αt →∞, we recover the exact result as one would expect
for policy iteration.

Many caveats apply to these results. The literature claims to effectively approximate natural
policy gradient updates with complex deep neural networks [Schulman et al., 2015a], but it is unclear
whether understanding of other first order algorithms contributes to developing practical algorithms.
Small stepsizes may be critical in practice for controlling certain approximation errors and for
stabilizing algorithms. None of these issues are present in simple tabular RL problems, however, and
we believe it is valuable for researchers to have a clear understanding of rates of convergence in this
idealized case.

Theorem 4 (Geometric convergence). Suppose one of the first-order algorithms in subsection 9.2 is
applied to minimize `(π) over π ∈ Π with stepsize sequence (αt : t ∈ {0, 1, 2, · · · }). Let π0 denote
the initial policy and (πt : t ∈ {0, 1, 2, · · · ) denote the sequence of iterates. The following bounds
apply:

(a) Exact line search. If either Frank-Wolfe, projected gradient descent, mirror descent, or NPG
is applied with step-sizes chosen by exact line search as in (19), then

‖Jπt − J∗‖∞ ≤ (1−min
s∈S

ρ(s) (1− γ)t ‖Jπ0 − J∗‖∞.

(b) Constant stepsize Frank-wolfe. Under Frank Wolfe with constant stepsize α ∈ (0, 1],

‖Jπt − J∗‖∞ ≤ (1− α(1− γ))t‖Jπ0 − J∗‖∞.

(c) Constant stepsize natural policy gradient. Fix any ε > 0. Under NPG with stepsize sequence
αt ≥ 2 log(2)

(1−γ)ε ,

‖Jπt − J∗‖∞ ≤
(

1 + γ

2

)t
‖Jπ0 − J∗‖∞ + ε.
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10 Policy classes closed under approximate policy improvement

So far, we have studied some classical dynamic programming problems that are ideally suited to
policy iteration. The key property we used is that certain structured policy classes were closed
under policy improvement, so that exact policy iteration can be performed when only considering
that policy class. Although simple structured policy classes are common in some applications of
stochastic approximation based policy search [e.g. Karaesmen and Van Ryzin, 2004, L’Ecuyer and
Glynn, 1994, Van Ryzin and Vulcano, 2008], they are not widely used in the reinforcement learning
literature. Instead, flexible policy classes like those parameterized by a deep neural network, a Kernel
method Rajeswaran et al. [2017], or using state aggregation Bertsekas [2019], Ferns et al. [2004],
Singh et al. [1995] are preferred. Here we conclude by presenting some preliminary but interesting
progress toward understanding why, for highly expressive policy classes, any local minimum of the
policy gradient cost function might be near-optimal. We conjecture this theory can at least be clearly
instantiated in special case of state aggregation given in Appendix F.

Given an expressive policy class ΠΘ,

inf
π∈ΠΘ

‖TπJπθ − TJπθ‖1,ηπθ (20)

measures the approximation error of the best approximate policy iteration update in the policy class
to the current policy πθ. If ΠΘ were closed under policy improvement steps, the approximation
error would be zero since there would exist a π ∈ ΠΘ such that TπJπθ(s) = TJπθ(s) for every
s ∈ S. Equation (20) measures the deviation from this ideal case, in a norm that weights states
by the discounted-state-occupancy distribution ηπθ under the policy πθ. Our formal result stated
below in Theorem 5 bounds the optimiality gap at a stationary point by the approximation error in
(20). Our result in Theorem 5 is reminiscent of results in the study of approximate policy iteration
methods, pioneered by Antos et al. [2008], Bertsekas [2011], Bertsekas and Tsitsiklis [1996], Munos
[2003], Munos and Szepesvári [2008], among others. The primary differences are that (1) we directly
consider an approximate policy class whereas that line of work considers the error in parametric
approximations to the Q-function and (2) we make a specific link with the stationary points of a
policy gradient method. The abstract framework of Kakade and Langford [2002] is also closely
related, though they do not study the stationary points of `(·). Recall the definition of the effective
concentrability coefficient, κρ, which relates errors in the Bellman equation to errors in the cost-to-go
functions wieghted under the initial distribution ρ.

Theorem 5. Suppose Condition 2 holds. Then, if θ is a stationary point of `(·),

`(πθ)−min
π∈Π

`(π) ≤ κρ
(1− γ)

min
π∈ΠΘ

‖TπJπθ − TJπθ‖1,ηπθ

Proof. Suppose θ is a stationary point of ` : Θ→ R. Let S denote a random draw from ηπθ . Since
condition 2 holds, Lemma 6 implies

E [(Jπθ − TJπθ) (S)] ≤
(

min
π∈ΠΘ

E [TπJπθ(S)]− E[TJπθ(S)]

)
= min

π∈ΠΘ

‖TπJπθ−TJπθ‖1,ηπθ := ε.
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where the final equality uses TπJπθ � TJπθ for any π ∈ ΠΘ. Then, we have

`(πθ)−min
π
`(π) = (1− γ)

∑
s∈S

ρ(s) (Jπθ(s)− J
∗(s)) = (1− γ)‖Jπθ − J

∗‖1,ρ

≤ κρ‖Jπθ − TJπθ‖1,ρ
≤ κρ

(1− γ)
‖Jπθ − TJπθ‖1,ηπθ

=
κρ · ε

(1− γ)
,

where the first inequality follows from the definition of κρ as given in (14) and the second inequality
uses that ηπθ ≥ (1− γ)ρ (by definition, see (4)).
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11 Notation

Table 1: Table of Notation

γ , Discount factor
S , State space

As ⊂ Rk , Convex set of feasible actions when in state s.
Π , Set of all stationary policies
J , Set of bounded real-valued functions on S.

g(s, a) , Single period expected cost of action a in state s
P (s′|s, a) , Transition probability

gπ , Single period cost function under policy π
Pπ , Markov transition matrix under policy π.

Jπ ∈ J , cost-to-go function under policy π
Qπ : S ×A → R , state-action cost-to-go function under policy π

J∗ ∈ J , optimal cost-to-go function
π∗ , An optimal policy (satisfying Jπ∗ = J∗).

Q∗ = Qπ∗ , state-action cost-to go function associated with an optimal policy.
Tπ : J → J , Bellman operator associated with policy π.
T : J → J , Bellman optimality operator.

ρ , initial distribution with ρ(s) > 0 ∀s ∈ S. A column vector.
ηπ = (1− γ)ρ(I − γPπ)−1 , The discounted state occupancy measure under policy π.

`(π) = ρJπ , Expected discounted cost under a random initial state, policy π.
Θ ⊂ Rd , Convex set of policy parameters

ΠΘ = {πθ : θ ∈ Θ} , Parameterized policy class.
JΘ = {Jπ : π ∈ πΘ} , Set of cost-to-go functions under parameterized policies.

`(θ) = `(πθ) , Overloaded notation for `(πΘ).
B(π′|η, Jπ) , Policy iteration objective defined in (9)

κρ , Effective concentrability coefficient described in Section 7
‖J‖∞ , Max-norm sups |J(s)|
‖J‖1,η , Weighted 1-norm

∑
s η(s)|J(s)|.

∇θ , Gradient operator with respect to θ
α , Free step-size parameter in iterative algorithms
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András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal policies with bellman-
residual minimization based fitted policy iteration and a single sample path. Machine Learning, 71
(1):89–129, 2008.

Jonathan Baxter and Peter L Bartlett. Infinite-horizon policy-gradient estimation. Journal of Artificial
Intelligence Research, 15:319–350, 2001.

Dimitir P Bertsekas and Steven Shreve. Stochastic optimal control: the discrete-time case. 2004.

Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1. Athena scientific
Belmont, MA, 1995.

Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48(3):
334–334, 1997.

Dimitri P Bertsekas. Approximate policy iteration: A survey and some new methods. Journal of
Control Theory and Applications, 9(3):310–335, 2011.

Dimitri P Bertsekas. Feature-based aggregation and deep reinforcement learning: A survey and some
new implementations. IEEE/CAA Journal of Automatica Sinica, 6(1):1–31, 2019.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming, volume 5. Athena Scientific
Belmont, MA, 1996.

Dimitri P Bertsekas and John N Tsitsiklis. Gradient convergence in gradient methods with errors.
SIAM Journal on Optimization, 10(3):627–642, 2000.

Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Global optimality of local search for low
rank matrix recovery. In Advances in Neural Information Processing Systems, pages 3873–3881,
2016.

Vivek S Borkar. Stochastic approximation: a dynamical systems viewpoint, volume 48. Springer,
2009.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for nonconvex
optimization. SIAM Journal on Optimization, 28(2):1751–1772, 2018.

Damek Davis and Benjamin Grimmer. Proximally guided stochastic subgradient method for nons-
mooth, nonconvex problems. SIAM Journal on Optimization, 29(3):1908–1930, 2019.

Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Jason D Lee. Stochastic subgradient method
converges on tame functions. Foundations of computational mathematics, 20(1):119–154, 2020.

33



Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. In Advances in neural information
processing systems, pages 1646–1654, 2014.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections onto the
l 1-ball for learning in high dimensions. In Proceedings of the 25th international conference on
Machine learning, pages 272–279, 2008.

Lawrence C Evans. An introduction to mathematical optimal control theory. Lecture Notes, University
of California, Department of Mathematics, Berkeley, 2005.

Yuguang Fang, Kenneth A Loparo, and Xiangbo Feng. Inequalities for the trace of matrix product.
IEEE Transactions on Automatic Control, 39(12):2489–2490, 1994.

Amir-massoud Farahmand, Csaba Szepesvári, and Rémi Munos. Error propagation for approximate
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reduction for nonconvex optimization. In International conference on machine learning, pages
314–323, 2016a.
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A Background on Bellman operators and policy iteration

We make repeated use of the basic element-wise inequalities

TJ � TπJ and TJπ � Jπ (21)

which hold for any policy π. The first inequality follows since T minimizes over actions, TJ(s) =
mina∈AQ(s, a) (see Equation (3)). The second inequality follows by the first since Jπ = TπJπ.
An important property that we repeatedly make use of is that for bounded cost-to-go functions,
J, J ′ : S → R, both bellman optimality operator T and the Bellman operator Tπ for a stationary
policy π are contraction operators with respect to the maximum norm with modulus γ. Precisely,

‖J − J ′‖∞ ≤ γ‖J − J ′‖∞ ‖TπJ − TπJ ′‖∞ ≤ γ‖J − J ′‖∞. (22)

These operators are also monotone, meaning the element-wise inequality J � J ′ implies TJ � TJ ′
and TπJ � TπJ

′. A simple argument using contractivity of T and Tπ together with the triangle
inequality shows that for any bounded cost function Jπ,

‖Jπ − J∗‖∞ ≤
1

1− α
‖Jπ − TJπ‖∞ (23)

Using the definitions: Jπ = TπJπ and J∗ = TJ∗,

‖Jπ − J∗‖∞ = ‖TπJπ − TJπ + TJπ − J∗‖∞ ≤ ‖TπJπ − TJπ‖∞ + ‖TJπ − TJ∗‖∞
≤ ‖TπJπ − TJπ‖∞ + γ‖Jπ − J∗‖∞

Equation (23) is very useful for our analysis as it indicates that near-solutions to the the Bellman equa-
tion J∗ = TJ∗ must themselves be close to the optimal cost-to-go function J∗. The reinforcement
learning literature widely uses versions of this inequality that are sensitive to the state distribution.
For each bounded function J ,

J−Jπ = J−TπJ+TπJ−TπJπ = J−TπJ+αPπ (J − Jπ) = · · · =
∞∑
t=0

αtP tπ (J − TπJ) . (24)

This expresses the difference of J from Jπ in terms of the gap in Bellman’s equations at the states
visited by the policy π. An especially usesful case of this result arises when π = π∗ is an optimal
policy in which case,

J − J∗ �
∞∑
t=0

αtP tπ∗ (J − TJ) , (25)

where the inequality uses (21) to conclude TJ � Tπ∗J . Related inequalities are sometimes called
the Performance difference lemma in the reinforcement learning literature, after crucial lemma of
Kakade and Langford [2002].

The classic policy iteration algorithm due to Howard [1960] can be expressed compactly in terms
of Bellman operators. Starting with an initial policy π, the algorithm first evalues evaluates the
corresponding cost to go function Jπ, and then finds the policy π+ that attains the minimum in the
Bellman update, π+ = arg minπ̃ Tπ̃Jπ. Equivalently, this can be written as Tπ+Jπ = TJπ. One
finds

Jπ � Tπ+Jπ � T 2
π+Jπ � · · · � Jπ+
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where the first inequality applies (21) and the rest follow by inductively applying Tπ+ to each side
and using the monotonicity property of the Bellman operator. The first inequality is strict unless
Jπ = Tπ+Jπ = TJπ, in which case Jπ = J∗ and π is an optimal policy. From Equation (24) or
its more refined variant (25), we can see that each step of policy iteration leads to a substantial
cost reduction unless the policy is near optimal. We conclude with a proof of a basic extension
of Bellman’s equation used in our analysis, which we restate here. Recall, ηπ to be the discunted
state-occupancy measure under policy π (see (4)).

Lemma 7 (On average Bellman equation). For any π ∈ ΠΘ and S ∼ ηπ,

Jπ = J∗ ⇐⇒ E[Jπ(S)] = E[TJπ(S)]

Proof. First note that standard results in dynamic programming imply Jπ � TJπ and Jπ � J∗

(these in fact hold for any arbitrary policy π and not just for π ∈ ΠΘ).
Let J : S → R be an arbitray cost-to-go function such that J � 0. Then, we have E[J(S)] =

0 ⇐⇒ J = 0. To see this, note that the non-negativity of J implies we must have J(S) = 0
almost surely. Since S ∼ ηπ � (1 − γ)ρ and by assumption, ρ(s) > 0 for all s ∈ S, J(S) = 0
almost surely if and only if J(s) = 0 for all s ∈ S. Applying this with choice of J = Jπ − J∗ or
J = Jπ − TJπ shows the average Bellman equation above is equivalent to the standard result,

Jπ = J∗ ⇐⇒ Jπ = TJπ.

B Background: First order methods.

As stated in Section 8, we consider the optimization problem of the form minx∈X f(x) where
X ⊂ Rd is a non-empty, closed convex set. In addition, we will assume X to be compact and the
function f to be L-smooth over X .

Definition 4 (L-smoothness). A function f : D → R is L-smooth over a set X ⊆ D if it is
differentiable over X and satisfies,

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2 ∀ (x, y) ∈ X

where L > 0 is called the smoothness parameter.

A consequence of smoothness that will be useful throughout our proofs is the following descent
lemma which implies a quadratic upper bound on function values.

Lemma 13 (Descent Lemma). If the function f : D → R is L-smooth over a set X ⊆ D, then for
any (x, y) ∈ X :

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖22.
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B.1 Proof of Lemma 12

The following interpretation of projected gradient updates will be very useful for our proof. Recall
that the projected gradient updates take the form:

xt+1 = ΠX (xt − αt∇f(xt)) (26)

where ΠX (·) is the projection operator defined as ΠX (x) = arg miny∈X ‖y − x‖
2
2. Crucially, the

update step (26) can be shown to be equivalent to the minimizer of a local quadratic approximation:

xt+1 = arg min
x∈X

[
f(xt) + 〈∇f(xt), x− xt〉+

1

2αt
‖x− xt‖22

]
(27)

For convenience, we first restate Lemma 12 below.

Lemma 12 (Convergence rates for gradient dominated smooth functions). Let X ⊂ Rd is a closed
convex set and f be L–smooth on X . Consider the sequence xt+1 = ProjX (xt − α∇f(xt)) where
α ≤ 1/L. Set f(x∗) = minx′∈X f(x′). Then,

1. If f is (c, 0)–gradient-dominated and ‖x− x′‖2 ≤ R <∞ for all x, x′ ∈ X , then

min
t≤T
{f(xt)− f(x∗)} ≤

√
2R2c (f(x0)− f(x∗))

αT

2. If f is (c, µ)–gradient-dominated for µ > 0, then,

f(xt)− f(x∗) ≤
(

1− µα

c2

)t
(f(x0)− f(x∗))

Proof of Lemma 12. Throughout, we assume a constant stepsize, αt = α ≤ 1
L . Recall, by Definition

3 that a function f is defined to be (c, µ)–gradient dominated over X if there exists a constant c > 0
and µ ≥ 0 such that

f(x∗) ≥ f(x) + min
y∈X

[
c 〈∇f(x), y − x〉+

µ

2
‖y − x‖22

]
∀x ∈ X .

Proof of Part (a): We first assume µ = 0 in which case for any x ∈ X , we have

min
y∈X

[c 〈∇f(x), y − x〉] ≤ f(x∗)− f(x) (28)

Therefore, for any x 6= x∗, we have miny∈D 〈∇f(xt), y− x〉 < 0. Let {xt} be the iterates produced
by projected gradient descent. At iterate xt, let ȳ = arg miny∈X 〈∇f(xt), y − xt〉 and denote
δt = miny∈X 〈∇f(xt), y − xt〉 (note that δt ≤ 0). Then,

f(xt+1)− f(xt)
(a)

≤ min
y∈D

[
〈∇f(xt), y − xt〉+

1

2α
‖y − xt‖22

]
(b)
= min

β∈[0,1]

[
〈∇f(xt), xt + β(ȳ − xt)− xt〉+

1

2α
‖xt + β(ȳ − xt)− xt‖22

]
= min

β∈[0,1]

[
β〈∇f(xt), (ȳ − xt)〉+

β2

2α
‖ȳ − xt‖22

]
≤ min

β∈[0,1]

[
βδt +

β2R2

2α

]
=
−αδ2

t

2R2
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where (a) follows by using the equivalence shown in (27) and the quadratic upper bound on the
function values implied by the descent lemma. Equality (b) uses the fact that right hand side of (a)
can be optimized by searching over the steepest descent direction xt → y. Using (28), we get

f(xt+1)− f(xt) ≤
−α

2R2c
(f(x∗)− f(xt))

2

Rearraning, we get our desired result

min
t≤T

(f(xt)− f(x∗))2 ≤ 1

T

T−1∑
t=0

(f(xt)− f(x∗))2 ≤ 2R2c

αT

T−1∑
t=0

f(xt)− f(xt+1) ≤ 2R2c

αT
(f(x0)− f(xT ))

≤ 2R2c

αT
(f(x0)− f(x∗))

Therefore,

min
t≤T
{f(xt)− f(x∗)} ≤

√
2R2c (f(x0)− f(x∗))

αT

Proof of Part (b): Assuming f(·) is (c, µ)–gradient dominated for c, µ > 0, by definition we have
that for any x 6= x∗

min
y∈D

[
c 〈∇f(xt), y − x〉+

µ

2
‖y − x‖22

]
≤ f(x∗)− f(x) < 0

Therefore, miny∈D 〈∇f(xt), y − x〉 < 0. The following simple argument proves our desired result.

f(x∗)− f(xt) ≥ min
y∈D

[
c 〈∇f(xt), y − xt〉+

µ

2
‖y − xt‖22

]
(a)
=

(
c2

µα

)
·min
y∈D

[
〈∇f(x), y − xt〉+

1

2α
‖y − xt‖22

]
(b)

≥
(
c2

µα

)
(f(xt+1)− f(xt))

Rearranging, we get:

f(xt+1)− f(x∗) ≤
(

1− µα

c2

)
(f(xt)− f(x∗)) ≤

(
1− µα

c2

)t+1
(f(x0)− f(x∗))

Inequality (b) follows by interpreting the projected gradient update as the minimizer of a quadratic
approximation (see Equation (27)). For (a), we use the following argument. At iterate xt, let
ȳ = arg miny∈D 〈∇f(xt), y − xt〉 and denote δt = 〈∇f(xt), ȳ − xt〉. Then,

min
y∈D

[
c 〈∇f(xt), y − xt〉+

µ

2
‖y − xt‖22

]
= min

β∈[0,1]

[
c 〈∇f(xt), xt + β(ȳ − xt)− xt〉+

µ

2
‖xt + β(ȳ − xt)− xt‖22

]
= min

β∈[0,1]

[
cβ 〈∇f(xt), ȳ − xt〉+

µβ2

2
‖ȳ − xt‖22

]
= min

β∈[0,1]

[
cβδt +

µβ2

2
‖ȳ − xt‖22

]
=

−c2δ2
t

2µ‖ȳ − x‖22
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where the first equality again uses the argument that minimizer of the left had side can be obtained
by optimizing along the steepest descent direction, xt → ȳ. It also follows that for any α > 0,

min
y∈D

[
〈∇f(x), y − x〉+

1

2α
‖y − x‖22

]
=

−αδ2
t

2‖ȳ − x‖22
which proves (a).

C Further details on LQ control

C.1 Proof of Lemma 3: Properties of the Bellman operator

Recall the statement of Lemma 3.

Lemma 3 (Bellman operators for LQ control). Consider the linear quadratic control problem
formulated in Example 2. Fix the state-weighting w(s) = 1/‖s‖22. For J, J̄ ∈ Jq and a stable linear
policy πθ, the following properties hold:

1. (Closure on the set of quadratic cost functions) TπθJ ∈ Jq and TJ ∈ Jq.

2. (Monotonicity) If J � J̄ then TπθJ � Tπθ J̄ and TJ � T J̄ .

3. (Contraction) ‖TJ − T J̄‖∞,w ≤ γ‖J − J̄‖∞,w and ‖TπθJ − Tπθ J̄‖∞,w ≤ γ‖J − J̄‖∞,w.

Proof. These results can be found (or straighforwadly derived from) in any standard textbook on
dynamic programming, for example Bertsekas [1995]. Details are only provided to aid the readers
who might be unfamilier with some of the relevant material.

We prove each of the three claims in order. Consider any two cost-to-go functions J, J̄ ∈ Jq as:

J(s) = s>Ks J̄(s) = s>K̄s

defined for someK, K̄ � 0. Consider a stable linear policy πθ(s) = θs for all s ∈ Rn and θ ∈ Rk×n.
Recall the set-up for LQ control from Section 5.1 where for action a ∈ Rk, the state evolution follows
s′ = As+Ba and the per-period cost g(s, a) = a>Ra+ s>Cs for some cost matrices R,C � 0.

Part (1) By definition of the Bellman operator for policy πθ, we have:

(TπθJ)(s) = (θs)>R(θs) + s>Cs+ γJ(As+Bθs)

= s>
(
θ>Rθ + C + [A+Bθ]>K[A+Bθ]

)
s (29)

which simply follows by taking a = πθ(s) = θs. Note that θ>Rθ+C + [A+Bθ]>K[A+Bθ] � 0
as R,C,K � 0 and so TπθJ ∈ Jq. Next, by definition,

TJ(s) = min
a∈Rk

[
a>Ra+ s>Cs+ γ(As+Ba)>K(As+Ba)

]
(30)

Clearly, the minimizing action here is a∗ = −γ(R + γB>KθB)−1B>KθAs and therefore TJ =
TπθJ for πθ(s) = θs with θ = −γ(R+ γB>KB)−1B>KθA. Using Equation (29), it is easy to see
that TJ ∈ Jq as well.
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Part (2) These inequalities can be checked immediately from the definitions of the Bellman
operators. For J � J̄ and any s,

TπθJ(s) = (θs)>R(θs) + s>Cs+ γJ(As+Bθs)

≤ (θs)>R(θs) + s>Cs+ γJ̄(As+Bθs) = Tπθ J̄(s)

We can similarly show that TJ(s) ≤ T J̄(s) for all s, by minimizing over a ∈ Rk on both sides of
the following inequality which holds as J � J̄ .[

a>Ra+ s>Cs+ γJ(As+Ba)
]
≤
[
a>Ra+ s>Cs+ γJ̄(As+Ba)

]
Part (3) Let ‖Q‖2 = sups∈Rn

‖Qs‖2
‖s‖22

denote the spectral norm for any matrix Q ∈ Rn×n. Then,

‖J − J̄‖∞,w = sup
s∈Rn

|J(s)− J̄(s)|w(s) = sup
s∈Rn

∣∣s> (K − K̄) s∣∣
‖s‖22

=
∥∥K − K̄∥∥

2
.

From definition of the Bellman operator, we have

‖TπθJ − Tπθ J̄‖∞,w = sup
s∈Rn

1

‖s‖22
· γ
[
J ([A+Bθ]s)− J̄ ([A+Bθ]s)

]
= sup

s∈Rn

1

‖s‖22
· γs>[A+Bθ]>

(
K − K̄

)
[A+Bθ]s

= γ
∥∥[A+Bθ]

(
K − K̄

)
[A+Bθ]

∥∥
2

≤ γ‖A+Bθ‖22
∥∥K − K̄∥∥

2

≤ γ
∥∥K − K̄∥∥

2
.

which uses the fact that indcued operator norms are subultiplicative. The final inequality follows
using ‖A+Bθ‖2 ≤ 1 as we assumed πθ to be a stable linear policy.

Given the contraction property for Tπθ(·) for any stable policy, θ ∈ ΘS, we show the contraction
result for the Bellman optimality operator: TJ = minθ∈ΘS TπθJ ∀ J ∈ Jq. Note that it is sufficient
to search over the set of stable policies as we assumed the system (A, B) to be controllable. Starting
with J ∈ Jq such that ‖J‖∞,w is finite, applying the Bellman operator can only decrease costs from
every state. This implies,

‖TJ − TJ ′‖∞,w = sup
s∈Rn

1

‖s‖2
|TJ(s)− T J̄(s)| = sup

s∈Rn

1

‖s‖22
| min
θ∈ΘS

TπθJ(s)− min
θ∈ΘS

Tπθ J̄(s)|

(a)

≤ sup
s∈Rn

1

‖s‖22
max
θ∈ΘS

|TπθJ(s)− Tπθ J̄(s)|

≤ max
θ∈ΘS

‖TπθJ − Tπθ J̄‖∞,w

(b)

≤ γ
∥∥K − K̄∥∥

2
= ‖J − J̄‖∞,w.

where (b) follows from the contraction property of Tπθ for any θ ∈ ΘS. Inequality (a) follows from
the following short result. Consider any two functions f, g and a set Z ⊆ Dom(f) ∩ Dom(g). Then,∣∣∣∣min

z1∈Z
f(z1)− min

z2∈Z
g(z2)

∣∣∣∣ ≤ max
z∈Z
|f(z)− g(z)| .
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To see this, note

min
z1∈Z

f(z1)− min
z2∈Z

g(z2) = min
z1∈Z

[f(z1) + max
z2∈Z
−g(z2)] = min

z1∈Z
max
z2∈Z

[f(z1)− g(z2)] ≤ max
z∈Z

[f(z)− g(z)]

min
z2∈Z

g(z2)− min
z1∈Z

f(z1) = min
z2∈Z

[g(z2) + max
z1∈Z
−f(z1)] = min

z2∈Z
max
z1∈Z

[g(z2)− f(z1)] ≤ max
z∈Z

[g(z)− f(z)].

C.2 Cost function for LQ control is smooth on sublevel sets

Lemma 14 (Cost function for LQ control). Let Σ = Es∼ρ
[
ss>

]
� 0. Then, for the LQ control

problem in Example 2 and any θ ∈ ΘS,

sup
{
‖∇2`(θ′)‖ : `(θ′) ≤ `(θ)

}
<∞

Let Σ = Es∼ρ
[
ss>

]
� 0. Then, the total cost function for the LQ control problem in Example 2,

`(θ) : ΘS → R, is smooth in θ on sublevel sets.

Proof. To show that `(·) is smooth on sub-level sets, we argue that the sub-level sets of ` are
compact11 and that ` is infinitely differentiable over it. Recall that from Section 5.1 that we can
wrtite the total cost function `(θ) as:

`(θ) =

∞∑
t=0

γt
(
s>t θ

>Rθst + s>t Cst

)
= Es0∼ρ

s>0
 ∞∑
t=0

γt
(
(A+Bθ)t

)> (
θ>Rθ + C

)
(A+Bθ)t︸ ︷︷ ︸

:=Kθt

 s0


=

∞∑
t=0

γtTrace (KθtΣ)

which forms a power series in θ and is hence infinitely differentiable for θ ∈ ΘS (as the total cost is
finite for stable policies).

Next, it is easy to show that sub-level sets of `(·) are compact by showing that they are closed
and bounded. As ` is continuous (we argued above it is infinitely differentiable), by definition it’s
sub-level sets are closed. Also note that for the class of linear policies, πθ(s) = θs, we can show
`(θ) is a coercive function, that is lim‖θ‖2→∞ `(θ) = +∞. To see this, consider

`(θ) = Es0∼ρ

[ ∞∑
t=0

γts>t (θ>Rθ + C)st

]

where st evolves according to linear dynamics, st = (A+Bθ) st−1. Define Σθ := Es0∼ρ
[∑∞

t=0 γ
tsts

>
t

]
which implies, Σθ � Σ = Es0∼ρ

[
s0s
>
0

]
� 0. Therefore,

`(θ) = Trace
(

(θ>Rθ + C)Σθ

)
≥ λmin(Σθ)Trace

(
θ>Rθ + C

)
≥ λmin(Σθ)‖θ>Rθ + C‖2

⇒ ‖θ>Rθ‖2 ≤
`(θ)

λmin(Σθ)
+ ‖C‖2. (31)

11By definition, sub-level sets of `(·) correspond to stable policies, θ ∈ ΘS.
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As ‖R‖2, ‖C‖2 is assumed to be bounded and λmin(Σθ) is uniformly lower bounded (λmin(Σθ) >
λmin(Σ) > 0), it is clear by (31) that lim‖θ‖2→∞ `(θ) = +∞. By definition, the sub-level sets of a
coercive function are bounded (see Peressini et al. [1988] for example). This completes the argument
to show compactness of sub-level sets of `(·).

To argue for smoothness, recall that by definition, any twice differentiable function f : X → R is
smooth on a subset D ⊆ X if∇2f(x) � LI for some finite constant L. It is well known by Extreme
Value Theorem that continuous real-valued functions on compact sets are bounded (see Rudin et al.
[1964] for example). This completes our argument: as `(·) is infinitely differentiable and sub-level
sets of `(·) are compact, ‖∇2`(θ)‖ is bounded on sub-level sets.

D Proof of Theorem 4

We first restate the geometric convergence rate result in Theorem 4.

Theorem 4 (Geometric convergence). Suppose one of the first-order algorithms in subsection 9.2 is
applied to minimize `(π) over π ∈ Π with stepsize sequence (αt : t ∈ {0, 1, 2, · · · }). Let π0 denote
the initial policy and (πt : t ∈ {0, 1, 2, · · · ) denote the sequence of iterates. The following bounds
apply:

(a) Exact line search. If either Frank-Wolfe, projected gradient descent, mirror descent, or NPG
is applied with step-sizes chosen by exact line search as in (19), then

‖Jπt − J∗‖∞ ≤ (1−min
s∈S

ρ(s) (1− γ)t ‖Jπ0 − J∗‖∞.

(b) Constant stepsize Frank-wolfe. Under Frank Wolfe with constant stepsize α ∈ (0, 1],

‖Jπt − J∗‖∞ ≤ (1− α(1− γ))t‖Jπ0 − J∗‖∞.

(c) Constant stepsize natural policy gradient. Fix any ε > 0. Under NPG with stepsize sequence
αt ≥ 2 log(2)

(1−γ)ε ,

‖Jπt − J∗‖∞ ≤
(

1 + γ

2

)t
‖Jπ0 − J∗‖∞ + ε.

Throughout the proof, we use some standard properties of the Bellman operator. For example,
J∗ = TJ∗ and that T, Tπ are a contraction in ‖ · ‖ with modulus γ for any π ∈ Π. Refer to Section
A for details. We denote πt+ to be the policy iteration update to any policy πt ∈ Π.

Part (a): Proof for exact line-search: First, let us revisit the exact line search method applied for
optimizing stepsizes as descibed in Section 9. At any iterate, πt, let δt be a descent direction. Then
exact linesearch solves for

α∗ = arg min
α≥0

`(πtα) := `(πt + αδt)

and updates to πt+1 = πtα∗ . The first-order algorithms we described in Section 9 differ in the
choice of descent directions. For example, Frank-Wolfe method chooses δt =

(
πt+ − πt

)
as the
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descent directon while the projected gradient and natural policy gradient methods use∇`(πt) and
its preconditioned (with the Fisher information matrix) counterpart respectively. We give a unified
proof using a simple observation that updates for all the different first-order algorithms exactly equal
the policy iteration update for some value of α (see Section 9). Therefore, πt+ is a feasible update for
the exact line search method.

Proof. Noting that πtα∗ = πt+1, we have

`(πt+1) = ‖Jπt+1‖1,ρ ≤ ‖Tπt+1Jπt‖1,ρ ≤ ‖TJπt‖1,ρ (32)

where the first equality follows by definition. To see the second inequality, observe that

Tπt+1Jπt � Jπt

Essentially, we cannot increase costs as πt+1 = πt, corresponding to α = 0, is a feasible update.
Then, monotonicity of Tπt+1 implies: Jπt(s) ≥ Tπt+1Jπt(s) ≥ T 2

πt+1Jπt(s) ≥ . . . ≥ Jπt+1(s) using
the definition Jπt+1(s) = limn→∞ T

n
πt+1Jπt(s). The final inequality follows as πt+ is feasible update

for all the four policy gradent methods with linesearch as explained above. Equation (32) gives us a
lower bound on the progress made with line search. Denote ρmin := mins∈S ρ(s). Then,

`(πt)− `(πt+1) ≥ ‖Jπt − TJπt‖1,ρ ≥ ρmin‖Jπt − TJπt‖∞
= ρmin‖Jπt − J∗ − (TJπt − J∗) ‖∞
≥ ρmin {‖Jπt − J∗‖∞ − ‖TJπt − TJ∗‖∞}
≥ ρmin (1− γ) ‖Jπt − J∗‖∞ (33)

where we use that ‖J‖1,ρ ≥ mins∈S ρ(s)‖J‖∞ along with J∗ = TJ∗ and contraction of T . It is
easy to see,

‖Jπt − J∗‖∞ + ‖J∗ − Jπt+1‖∞ ≥ ‖Jπt − Jπt+1‖∞ ≥ `(πt)− `(πt+1) (34)

We get our desired result combining (33) and (34) as well as using the fact that J∗ � Jπt+1 .

Jπt+1 − J∗‖∞ ≤ (1− ρmin (1− γ)) ‖Jπt − J∗‖∞ . . . ≤ (1− ρmin (1− γ))t+1 ‖Jπ0 − J∗‖∞

Part (b): Proof for constant stepsize Frank-Wolfe: Recall from Section 9, Frank-Wolfe exactly
equals soft-policy iteration:

πt+1(s) = (1− α)πt(s) + απt+(s)

where we denote πt+ to be the policy iteration update to πt. Note that starting from a feasbile policy
π0 ∈ Π, we always maintain feasibility for α ∈ (0, 1]. Hence, for any state s

Tπt+1Jπt(s)− TJπt(s) = 〈πt+1(s), Qt(s, ·)〉 − 〈πt+(s), Qt(s, ·)〉
= (1− α)〈πt(s), Qt(s, ·)〉 − (1− α)〈πt+(s), Qt(s, ·)〉
= (1− α) [Jπt(s)− TJπt(s)]
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Using TJπt � Jπt , we also get

Tπt+1Jπt(s) = (1− α)Jπt(s) + αTJπt(s) ≤ Jπt(s)

Monotonicty of Tπt+1 implies: Jπt(s) ≥ Tπt+1Jπt(s) ≥ T 2
πt+1Jπt(s) ≥ . . . ≥ Jπt+1(s) using the

definition Jπt+1(s) = limn→∞ T
n
πt+1Jπt(s). Therefore,

Jπt+1(s)− TJπt(s) ≤ Tπt+1Jπt(s)− TJπt(s) = (1− α) [Jπt(s)− TJπt(s)]

Subtracting J∗(s) from both sides and rearranging terms,

Jπt+1(s)− J∗(s) ≤ (1− α) (Jπt(s)− J∗(s)) + α (TJπt(s)− J∗(s))

The above inequality holds for any s, therefore

‖Jπt+1 − J∗‖∞ ≤ (1− α)‖Jπt − J∗‖∞ + α‖TJπt − J∗‖∞ ≤ [(1− α) + γα] ‖Jπt − J∗‖∞

where we used that J∗ = TJ∗ and ‖TJπt − TJ∗‖∞ ≤ γ‖Jπt − J∗‖∞ (as T (·) is a contraction).
Iterating over the above equation gives us our final result.

‖Jπt+1 − J∗‖∞ ≤ (1− α(1− γ)) ‖Jπt − J∗‖∞ ≤ (1− α(1− γ))t ‖Jπ0 − J∗‖∞

Part (c): Proof for constant stepsize natural policy gradient: Recall that for θ ∈ Rn×k, the
softmax policy parameterization takes action i in state s with probability πθ(i|s):

πθ(i|s) =
eθs,i∑k
j=1 e

θs,j
i = 1, . . . , k.

As shown in Section 9, the natural policy gradient (NPG) updates with a constant stepsize α take the
simple form:

πt+1(i|s) =
πt(i|s) · e−αQt(i,s)∑k
j=1 π

t(j|s) · e−αQt(j,s)
, (35)

where we use the shorthand notation πt(·) to denote πθt(·) and Qt(s, i) to denote Qπθt (s, i).
Our proof strategy follows essentially shows that for any state s ∈ S, the NPG update decrease

the probability of sub-optimal actions by a multiplicative factor. Informally, the set of sub-optimal
actions (per state) can be understood as the set of actions with action gap12 larger than some threshold.
Essentially, this shows the NPG update is equivalent to a soft policy iteration update upto some small
additive error. We divide the proof into three steps.

Step 1: NPG update for sub-optimal actions: Fix some state s ∈ S. Without loss of generality,
we assume the following ordering on the Q-values: Qt(s, 1) < Qt(s, 2) . . . < Qt(s, k) which

12The action gap of any action i ∈ {1, . . . , k} is the difference between Q-values of the action and Q-value of the
optimal action.
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implies that action 1 is optimal in state s under policy πt. For any c ∈ (0, 1), define O−t (s) and
O+
t (s) as:

O−t (s) :=

{
i | Qt(s, i)−Qt(s, 1) ≥ log(1/c)

α

}
O+
t (s) :=

{
i | Qt(s, i)−Qt(s, 1) ≤ log(1/c)

α

}
For simplicity, we will take c = 1

2 although all our results hold for any c ∈ (0, 1). Denote
ε := log 2

α . The set O−t (s) can be interpreted as the set of sub-optimal actions with the action gap,
Qt(s, i)−Qt(s, 1), larger than the threshold ε. Similarly, O+

t (s) can be interpreted to be the set of
nearly optimal actions according to the policy πt. The following lemma shows that the NPG updates
decrease the probability of playing sub-optimal actions by a multiplicative factor.

Lemma 15. For any state s, π
t+1(i|s)
πt(i|s) ≤

1
2 ∀ i ∈ O

−
t (s).

Proof. The proof follows a simple argument. By definition, for any i ∈ O−t (s):

α
(
Qt(s, i)−Qt(s, 1)

)
≥ log(2)

⇒ α
(
Qt(s, i)−Qt(s, 1)

)
≥ log(2)− log

(
πt(1|s)

)
which follows as πt(1|s) ∈ (0, 1). Rearranging, we get

log
(
πt(1|s)e−αQt(s,1)

)
+ log

(
1

2

)
≥ −αQt(s, i)

This implies,

log

 k∑
j=1

πt(j|s)e−αQt(s,j)
+ log

(
1

2

)
≥ log

(
πt(1|s)e−αQt(s,1)

)
+ log

(
1

2

)
≥ −αQt(s, i).

which holds as all the terms in the summation are positive, πt(j|s)e−αQt(s,j) > 0 ∀ j ∈ {1, 2, . . . , k}
and log(·) is a monotonic transformation. Our result holds by noting

1

2

 k∑
j=1

πt(j|s)e−αQt(s,j)
 ≥ e−αQt(s,i) ⇒ πt+1(i|s)

πt(i|s)
=

e−αQ
t(s,i)∑k

j=1 π
t(j|s)e−αQt(s,j)

≤ 1

2
.

Step 2: NPG updates as soft policy iteration: Recall that the policy iteration update, πt+(s) =
arg mini∈{1,2,...,k} Q

t(s, i), which puts the entire mass on the best action (according to Q-values)
and zeros out the probability of playing other actions. On the other hand, Lemma 15 shows how the
NPG update decays the probabilities of sub-optimal actions (in the set O−t (s)) by a multiplicative
factor instead of zeroing them out13. Thus intuitively, the NPG update resemble a soft policy iteration
update for the set of actions O−t (s). We formalize this intuition in the following lemma which
characterizes the progress made by an NPG update vis-a-vis the policy iteration update.

13This defintion of sub-optimal actions based on action gap threshold, ε = log(2)/α, is essentially an artifact that we
are taking gradient steps with finite stepsizes. As α→∞, the threshold ε→ 0 making the NPG update equivalent to a
soft-policy iteration update.
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Lemma 16 (Progress quantification). Let Jπt(s) denote the cost-to-go function for policy πt from
any starting state s. Then,

Tπt+1Jπt(s)− Jπt(s) ≤
1

2
· (TJπt(s)− Jπt(s)) + ε

Proof. Recall, we assumed that: Qt(s, 1) < Qt(2) . . . < Qt(s, k) which implies that the policy
iteration update, π+

t puts the entire mass on action 1. That is, πt+(1|s) = 1 and πt+(i|s) = 0 ∀ i 6= 1.
Consider,

Tπt+1Jπt(s)− TJπt(s) = 〈πt+1(·|s)− π+
t (·|s), Qt(s, ·)〉

= (πt+1(1|s)− 1)Qt(s, 1) +
k∑
j=2

πt+1(j|s)Qt(s, j)

= −
k∑
j=2

πt+1(j|s)Qt(s, 1) +
k∑
j=2

πt+1(j|s)Qt(s, j)

=
k∑
j=2

πt+1(j|s)
(
Qt(s, j)−Qt(s, 1)

)
=
∑
j∈O−t

πt+1(j|s)
(
Qt(s, j)−Qt(s, 1)

)
+
∑
j∈O+

t

πt+1(j|s)
(
Qt(s, j)−Qt(s, 1)

)
=
∑
j∈O−t

πt+1(j|s)
πt(j|s)

πt(j|s)
(
Qt(s, j)−Qt(s, 1)

)
+
∑
j∈O+

t

πt+1(j|s)
(
Qt(s, j)−Qt(s, 1)

)︸ ︷︷ ︸
≤ε

≤ 1

2

∑
j∈O−t

πt(j|s)
(
Qt(s, j)−Qt(s, 1)

)
+ ε

≤ 1

2

 k∑
j=2

πt(j|s)(Qt(s, j)−Qt(s, 1))

+ ε

=
1

2

 k∑
j=2

πt(j|s)Qt(s, j)−
k∑
j=2

πt(j|s)Qt(s, 1)

+ ε

=
1

2

(πt(j|s)− 1
)
Qt(s, 1) +

k∑
j=2

πt(j|s)Qt(s, j)

+ ε

=
1

2
〈πt(·|s)− π+

t (·|s), Qt(s, ·)〉+ ε

=
1

2
(Jπt(s)− TJπt(s)) + ε (36)

where we used that π
t+1(j|s)
πt(j|s) ≤

1
2 ∀ j ∈ O

−
t (s) as shown above in Lemma 15 along with the fact

that
(
Qt(s, j)−Qt(s, 1)

)
≤ ε ∀ j ∈ O+

t (s) which follows by definition. Subtracting Jπt(s) from
both sides in Equation (36) and rearranging terms gives our desired result

Tπt+1Jπt(s)− Jπt(s) ≤
1

2
· (TJπt(s)− Jπt(s)) + ε
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Step 3: Completing the proof: Lemma 16 clearly quantifies the relationship between an NPG
update with constant stepsize α and a soft policy iteration update with an additive error ε. With this
connection, we give a simple proof of geometric convergence for the natural policy gradient method.
We claim that Jπt+1(s) ≤ Jπt(s). To see this, note that for any stepsize α, the NPG update for state
s can be equivalently written as:

πt+1(s) = arg min
a∈∆k−1

[
Qt(s, a) +

ηπt(s)

α
DKL(a||πt(s))

]
As a = πt(s) is feasible for the optimization problem above,

Tπt+1Jπt(s) = Qt(s, πt+1(s)) ≤ Qt(s, πt(s)) = Jπt(s)

By monotonicty property of Tπt+1 , we have Jπt(s) ≥ Tπt+1Jπt(s) ≥ T 2
πt+1Jπt(s) ≥ . . . ≥ Jπt+1(s)

by noting that Jπt+1(s) = limn→∞ T
n
πt+1Jπt(s). From Lemma 16, we get

Jπt+1(s)− Jπt(s) ≤ Tπt+1Jπt(s)− Jπt(s) ≤
1

2
· (TJπt(s)− Jπt(s)) + ε

Subtracting J∗(s) from both sides and rearranging terms,

Jπt+1(s)− J∗(s) ≤ 1

2
Jπt(s) +

1

2
TJπt(s)− J∗(s) + ε

=
1

2
(Jπt(s)− J∗(s)) +

1

2
(TJπt(s)− J∗(s)) + ε

which implies,

‖Jπt+1 − J∗‖∞ ≤
1

2
‖Jπt − J∗‖∞ +

1

2
‖TJπt − J∗‖∞ + ε

≤
[

1

2
+
γ

2

]
‖Jπt − J∗‖∞ + ε

where we used that ‖TJπt − J∗‖∞ = ‖TJπt − TJ∗‖∞ ≤ γ‖Jπt − J∗‖∞ which follows from the
contraction property of, T (·). Rewriting

(
1
2 + γ

2

)
=
(
1− 1

2(1− γ)
)

and iterating over the above
equation gives us our final result.

‖Jπt+1 − J∗‖∞ ≤
(

1− (1− γ)

2

)
‖Jπt − J∗‖∞ + ε

≤
(

1− (1− γ)

2

)t
‖Jπ0 − J∗‖∞ + ε

t−1∑
i=0

(
1− (1− γ)

2

)i
≤
(

1− (1− γ)

2

)t
‖Jπ0 − J∗‖∞ +

2ε

(1− γ)

As α→∞, constant error term ε→ 0 and therefore NPG update is exactly the policy iteration step.
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E Omitted Proofs

E.1 Proof of Lemma 5

For the reader’s convenience, we restate the claim.

Lemma 5 (Policy gradient theorem). `(θ) is differentiable and

∇`(θ) = ∇θ B(θ | ηπθ , Jπθ)
∣∣∣∣
θ=θ

=
∑
s∈S

ηπθ(s)

[
∇θQπθ(s, πθ(s))

∣∣∣∣
θ=θ

]
.

Proof. We have already shown

`(θ) = `(θ) + ηθ
(
TθJθ − Jθ

)
+
[
(ηθ − ηθ)

(
TθJθ − TθJθ

)]
= `(θ) + ηθJθ +

∑
s∈S

ηθ(s)Qπθ(s, πθ(s))︸ ︷︷ ︸
(a)

+
[
(ηθ − ηθ)

(
TθJθ − TθJθ

)]︸ ︷︷ ︸
(b)

where the second equality applies the basic relation between Q functions and Bellman operators,
(Tπ′Jπ)(s) = Qπ(s, π′(s)). We show the gradient ∇`(θ)|θ=θ exists and calculate it, treating sepa-
rately the terms (a) and (b).

Step 1: Recall the Leibniz rule:
Recall the Leibniz rule states that, for any base measure µ and function f ,

∫
S f(θ, s)dµ(s) is

continuously differentiable with respect to θ, with

∂

∂θi

∫
S

f(θ, s)dµ(s) =

∫
S

∂

∂θi
f(θ, s)dµ(s),

provided ∂
∂θi
f(θ, s) is continuous and integrable, meaning

∫
S

∣∣∣ ∂∂θi f(θ, s)
∣∣∣ dµ(s) < ∞. Here we

make repeated use of this fact when µ is either the counting measure or µ(s) = ηθ(s).
Step 2: ∂

∂θi
Qπθ(s, πθ(s)) is continuous in θ and satisfies sups∈S,θ∈Θ

∣∣∣ ∂
∂θi
Qπθ(s, πθ(s))

∣∣∣
Write,

Qπθ(s, πθ(s)) = g(s, πθ(s)) +
∑
s′∈S

P (s′|s, πθ(s))Jθ(s
′).

This first term, g(s, πθ(s)), is easily seen to be continuously differentiable, since g(s, a) is continu-
ously differentiable with respect to a and πθ(s) is continuously differentiable with respect to θ. In
addition,∣∣∣∣ ∂∂θi g(s, πθ(s))

∣∣∣∣ =

∣∣∣∣∣〈 ∂∂θiπθ(s) , ∂

∂a
g(s, a)

∣∣∣∣
a=πθ(s)

〉∣∣∣∣∣ ≤ sup
s∈S,θ∈Θ

∥∥∥∥ ∂

∂θi
πθ(s)

∥∥∥∥
2

∥∥∥∥∥ ∂∂ag(s, a)

∣∣∣∣
a=πθ(s)

∥∥∥∥∥
2

<∞

is bounded uniformly by Assumption 1.
Now consider the second term. Observe that θ 7→ P (s′|a, πθ(s)) is also continuously differen-

tiable by the chain rule. Its partial derivatives are integrable, since∑
s′∈S

∣∣∣∣ ∂∂θiP (s′|s, πθ(s))Jθ(s
′)

∣∣∣∣ ≤ ‖Jθ‖∞∑
s′∈S

∣∣∣∣ ∂∂θiP (s′|s, πθ(s))
∣∣∣∣ <∞
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where Assumption 1 implies the infinite sum is finite. This shows θ 7→
∑

s′∈S P (s′|s, πθ(s))Jθ(s
′)

is continuously differentiable with

∂

∂θi

∑
s′∈S

P (s′|s, πθ(s))Jθ(s
′) =

∑
s′∈S

∂

∂θi
P (s′|s, πθ(s))Jθ(s

′)

Assumption 1 shows these partial derivatives are uniformly bounded, with,

sup
s∈S,θ∈Θ

∣∣∣∣∣ ∂∂θi
∑
s′∈S

P (s′|s, πθ(s))Jθ(s
′)

∣∣∣∣∣ < ‖g‖∞1− γ
sup

s∈S,θ∈Θ

∣∣∣∣∣∑
s′∈S

∂

∂θi
P (s′|s, πθ(s))

∣∣∣∣∣ <∞,
where we used the bound ‖Jθ‖∞ ≤ ‖g‖∞/(1− γ).

Step 3 Calculating the derivative of term (a).
The result of step (2), together with the Leibniz rule implies we can exchange the summation and
derivative, to find

∂

∂θi

∑
s∈S

ηθ(s)Qπθ(s, πθ(s)) =
∑
s∈S

ηθ(s)
∂

∂θi
Qπθ(s, πθ(s))

and this partial derivative is continuous in θ.
Step 4: Show that limθ→θ

∥∥TθJθ − TθJθ∥∥∞ = 0 .
We have,∣∣TθJθ(s)− TθJθ(s)∣∣ =

∣∣Qπθ(s, πθ(s))−Qπθ(s, πθ(s))∣∣ ≤ ‖θ − θ‖ sup
s∈S,θ∈Θ

∣∣∇θQπθ(s, πθ(s))∣∣ <∞
where the derivative on the right hand side is bounded uniformly by Step 1.

Step 4: Show that the operator η → ηPθ is Lipschitz with respect to the maximum norm, meaning
that there exists c <∞ such that for any distribution η over S and any θ, θ ∈ Θ

‖ηPθ − ηPθ‖∞ ≤ c‖θ − θ‖.

We have,

‖ηPθ − ηPθ‖∞ = sup
s′∈S

∣∣∣∣∣∑
s∈S

η(s)
(
P (s′|s, πθ(s)− P (s′|s, πθ(s)

)∣∣∣∣∣
≤ sup

s,s′∈S

∣∣P (s′|s, πθ(s)− P (s′|s, πθ(s))
∣∣

= sup
s,s′∈S

∣∣P (s′|s, πθ(s)− P (s′|s, πθ(s))
∣∣

≤

(
sup
s,s′∈S

sup
θ̃∈Θ

‖∇P (s′|s, πθ̃(s))‖2

)
︸ ︷︷ ︸

:=c

‖θ − θ‖2.

That c <∞ is a direct consequence of Assumption 1. The final equality can be derived by Taylor’s
theorem, which ensures that for each s, s′ ∈ S there exists θ̃ ∈ {tθ + (1− t)θ : t ∈ [0, 1]} on the
line segment joining θ and θ such that

P (s′|s, πθ(s)− P (s′|s, πθ(s)) = 〈∇θ̃P (s′|s, πθ̃(s)) , θ − θ〉.
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The right hand side is then bounded by Cauchy Swartz.

Step 5: Treat term (b) by showing∇θ
[
(ηθ − ηθ)

(
TθJθ − TθJθ

)] ∣∣∣∣
θ=θ

= 0 .

To show this, we show
∥∥ηθ − ηθ‖∞ = O(‖θ − θ

∥∥
2
), which together with step 4 shows,

lim
θ→θ

∥∥(ηθ − ηθ)
(
TθJθ − TθJθ

)∥∥
∞

‖θ − θ‖2
= 0,

implying our claim. We have
ηθ = (1− γ)ρ+ γηθPθ

That is, ηθ is the unique solution to the fixed point equation

ηθ = Fθ(ηθ)

where Fθ(η) := (1 − γ)ρ + ηPθ. Viewed as a left operator η 7→ ηPθ is a mapping from `1 to `1
defined by

(ηPθ(s
′)) =

∑
s∈S

η(s)P (s′|s, πθ(s)).

This shows ‖ηPθ‖∞ ≤ ‖η‖∞, i.e. Pθ is a non-expansion in the maximum norm. From this, we have
that Fθ is a contraction with modulus γ with respect to the maximum norm since

‖Fθ(η′)− Fθ(η)‖∞ = γ‖(η′ − η)Pθ‖∞ ≤ γ‖η′ − η‖∞.

Contractivity implies,

‖ηθ − ηθ‖∞ =
∥∥Fθ (ηθ)− Fθ (ηθ)

∥∥
∞

≤
∥∥Fθ (ηθ)− Fθ (ηθ)

∥∥
∞ +

∥∥Fθ (ηθ)− Fθ (ηθ)
∥∥
∞

≤ γ‖ηθ − ηθ‖∞ +
∥∥Fθ (ηθ)− Fθ (ηθ)

∥∥
∞ ,

which can be rewritten as

‖ηθ − ηθ‖∞ ≤
1

1− γ
∥∥Fθ (ηθ)− Fθ (ηθ)

∥∥
∞ ≤ c‖θ − θ‖

where the inequality follows from step 4.

E.2 Proof of Theorem 2

For the reader’s convenience, we restate Condition 3 and Theorem 2.

Condition 3. Suppose the state space factors as S = S1∪· · ·∪SH ∪SH+1, where for a state s ∈ Sh
with h ≤ H ,

∑
s′∈Sh+1

P (s′|s, a) = 1 for all a ∈ As. The final subset SH+1 = {τ} contains a
single costless absorbing state, with P (τ |τ, a) = 1 and g(τ, a) = 0 for any action a. The parameter
space is the product set Θ = Θ1 × · · · ×ΘH , where a policy parameter θ = (θ1, . . . , θH) ∈ Θ is
the concatenation of H sub-vectors. For any fixed s ∈ Sh, πθ(s) depends only on θh.

Theorem 2. Suppose Conditions 3 and 4 hold. Further assume that ρ is supported over each Sh
for h ≤ H . If the parameterized policy class ΠΘ contains an optimal policy π∗, then any stationary
point θ of ` : Θ→ R satisfies Jπθ = J∗.
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Proof. For simplicity, assume there is a unique optimal policy, π∗. For any h ∈ {1, · · · , H} and
θh ∈ Θh, let πθh : Sh → A denote the policy for period h. Similarly, πθ∗h denotes the optimal
policy for period h. Let θ is a stationary point of `(·). The product structure of the policy class:
Θ = Θ1 × · · ·ΘH implies that for all h ≤ H ,

∂

∂θh
`(θ) = 0 ⇐⇒ ∂

∂θh
B(θ|ηπθ , Jπθ) = 0

using the policy gradient theorem in lemma 5. By definition, Jπθ(s) = J∗(s) = 0 for s ∈ SH+1 (as
SH+1 contains a single, costless absorbing state). Our argument follows by backward induction.

Base Case: We first show that Jπθ(s) = J∗(s) for s ∈ SH . To see this, note that for any s ∈ SH
and action a, we have Qπθ(s, a) = Q∗(s, a) = g(s, a). This is because Jπθ(τ) = J∗(τ) = 0.
Therefore,

∂

∂θH
B(θ|ηπθ , Jπθ) = 0⇒ ∂

∂θH
B(θ|ηπθ , J

∗) = 0

Hence, for S ∼ ηπθ such that S ∈ SH

E[Jπθ(S)] = min
θH∈ΘH

E[Q∗(S, πθH (S))] = E[Q∗(S, πθ∗H (S))] = E[J∗(S)]

where the first equality follows by assumption that θ → B(θ|ηπθ , J∗) has no suboptimal stationary
points and the second eqaulity uses the assumption that policy class Πθ contains the optimal policy.
As ρ(s) > 0 for all s ∈ SH , our desired resutlt follows.

Induction step: We now show that if Jπθ(s) = J∗(s) ∀ s ∈ Sh+1 for any h < H , then Jπθ(s) =
J∗(s) for all s ∈ Sh. By the definition, for any state s ∈ Sh and action a,

Qπθ(s, a) = g(s, a) + γ
∑

s′∈Sh+1

P (s′|s, a)Jπθ(s
′) = g(s, a) + γ

∑
s′∈Sh+1

P (s′|s, a)J∗(s′) = Q∗(s, a),

Again, ∂
∂θh
B(θ|ηπθ , Jπθ) = 0 (which holds as θ is a stationary point) implies ∂

∂θh
B(θ|ηπθ , J∗) = 0.

By exactly the same argument as above,

E[Jπθ(S)] = min
θh∈Θh

E[Q∗(S, πθh(S))] = E[Q∗(S, πθ∗h(S))] = E[J∗(S)]

for any S ∼ ηπθ such that S ∈ Sh. Our result follows by noting that ρ(s) > 0 for all s ∈ Sh.

The following lemma shows how Condition 4 holds for the finite horizon inventory control
problem described in Example 5.

Lemma 17. Consider the finite horizon inventory control problem in Example 5. Let J∗ be the
cost-to-go function corresponding to the optimal policy. Then, for any η supported over S, the
weighted policy iteration objective B(θ|η, J∗) has no suboptimal stationary points.
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Proof. Let Q∗(s, a) be the Q-function corresponding to the optimal policy. It can be easilly shown
that Q∗(s, a) is convex in a (using results in chapter 3 of Bertsekas [1995])14. We want to show
that for any θ such that ∇B(θ|η, J∗) = 0, the base-stock policy πθ is optimal. For S ∈ Sh, we have
∂
∂θh

πθ(S) = 0 if S > θh. Therefore,

∂

∂θh
B(θ|η, J∗) =

∂

∂θh
Es∼η [Q∗(s, πθ(s))] =

∫
S<θh

[
∂

∂a
Q∗(S, a)

∣∣∣
a=πθ(s)

∂

∂θh
πθ(s)

]
η(S)

Note that Q∗(S, a) is convex with a minimum at a = πθ∗h(S). Thus, ∂
∂aQ

∗(S, a)
∣∣∣
a=πθ(S)

> 0 for

θh < θ∗h (as we are ordering more) and ∂
∂aQ

∗(S, a)
∣∣∣
a=πθ(S)

< 0 otherwise. Using this along with

the fact that ∂
∂θh

πθ(S) = 1 for S < θh, we get

∂

∂θh
B(θ|η, J∗) = 0 ⇐⇒ ∂

∂a
Q∗(S, a)

∣∣∣
a=πθ(S)

= 0 ∀S < θh (37)

Convexity of Q∗ along with (37) implies that πθ(S) is optimal for S < θh which in turn implies that
the thresholds must match, i.e. θh = θ∗h (as πθ(S) > 0 for S < θh).

E.3 Concentrability coefficients

Lemma 8. Let π∗ denote any optimal stationary policy. Then,

κρ ≤ sup
s∈S

ηπ∗(s)

ρ(s)

Proof. Fix some Jπ ∈ JΘ, where dependence on π is there to make transparent that this must be a
cost-to-go function of some policy. Let J∗ = Jπ∗ , Then, the variational form of Bellman’s inequality
in (1) gives

Jπ − J∗ = (I − γPπ∗)−1 (Jπ − Tπ∗Jπ) � (I − γPπ∗)−1 (Jπ − TJπ)

Left multiplying by ρ, using the definition ηπ∗ = (1− γ)ρ(I − γPπ∗)−1 (see Equation (4) in Section
3) and that Jπ − TJπ � 0 and Jπ � J∗ gives the result:

‖Jπ − J∗‖1,ρ = ρ (Jπ − J∗) ≤
1

(1− γ)
ηπ∗ (Jπ − TJπ ) ≤

(
sups∈S

ηπ∗ (s)
ρ(s)

)
(1− γ)

ρ (Jπ − TJπ )

=

(
sups∈S

ηπ∗ (s)
ρ(s)

)
(1− γ)

‖Jπ − TJπ‖1,ρ.

Lemma 11 (Concentrability in LQ control). Consider the linear quadratic control problem in
Example 2. Suppose Σ = Es∼ρ[ss>] � 0. Then, κρ ≤ n · λmax(Σ)

λmin(Σ) .
14This follows as the optimal cost-to go function, J∗(·) and the per step costs (of ordering and holding/backlogging) are

convex.
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Proof. Recall that for the LQ control problem, we assume the system to be controllable and search
in the space of stable linear policies, ΠΘS . The induced set of finite cost-to-go functions is

JΘ = Jq = {J : J(s) = s>Ks ∀ s ∈ S}

for some K � 0. We showed that for J ∈ JΘ, we have J ∈ Jq, TJ ∈ Jq, and of course J∗ ∈ Jq
(see Section 5.1 for details). Importantly, for any J ∈ Jq, we also showed that the Bellman operator
is a contraction in the weighted maximum norm, ‖J‖∞,w = sups∈Rn |J(s)|w(s) for w(s) = ‖s‖22
implying ‖J‖∞,w = ‖K‖2 where ‖K‖2 is the spectral norm.

Fix J ∈ Jq with J(s) = s>Ks for some K � 0. Let S ∼ ρ and let v1, · · · vn denote an
orthonormal basis of eigenvectors of Σ = E[SS>] and λ1 ≤ · · · ≤ λn denote the corresponding
eigenvalues. Our proof uses the following standard result in matrix algebra (see Fang et al. [1994]
for example). For any two positive semidefinite symmetric matrices A,B:

λmin(A)Trace(B) ≤ Trace(AB) ≤ λmax(A)Trace(B) (38)

where λmin(A), λmax(A) are the minimum and maximum eigenvalues of A respectively. We have

‖J‖1,ρ = E[S>KS] = Trace(KΣ) ≤ λn(Σ)Trace(K) ≤ nλn(Σ)‖K‖2 = nλn(Σ)‖J‖∞,w
(39)

where the first inequality uses (38) and the second inequality uses that Trace(K) =
∑n

i=1 λi(K) ≤
nλn(K) = n‖K‖2. Similarly, in the reverse direction, we have

‖J‖1,ρ = E[S>KS] = Trace(KΣ) ≥ λ1(Σ)Trace(K) ≥ λ1(Σ)‖K‖2 = λ1(Σ)‖J‖∞,w (40)

which againn uses (38) and the fact that Trace(K) =
∑n

i=1 λi(K) ≥ λn(K) = ‖K‖2. Equations
(39) and (40) establish norm equivalence for J ∈ Jq.

λ1(Σ)‖J‖∞,w ≤ ‖J‖1,ρ ≤ nλn(Σ)‖J‖∞,w.

Using Lemma 9, we have κρ ≤ n · λn(Σ)
λ1(Σ) as desired.

Lemma 10 (Concentrability in optimal stopping). Suppose S = SC ∪ {T} consists of a finite
set of continuing states SC and terminal state T that is absorbing (P (T |T, a) = 1) and costless
(g(T, a) = 0). There are two actions A = {0, 1}, stop (a = 0) and continue (a = 1). Consider the
policy that never stops πC(s) = 1 for each s ∈ SC and suppose the induced Markov process has
stationary distribution µ = µPπC . Then, for the choice ρ = µ, κρ ≤ 1.

Proof. We show that the Bellman opetaror T is a contraction with modulus γ in ‖ · ‖1,µ. The proof
follows immediately using Lemma 9. Note that for any scalars (x1, x2, y), we have |min{y, x1} −
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min{y, x2}| ≤ |x1 − x2|. Then,

‖TJ − TJ ′‖1,µ =
∑
s∈SC

µ(s)
∣∣TJ(s)− TJ ′(s)

∣∣
=
∑
s∈SC

µ(s)

∣∣∣∣∣min

{
g(s, 0) , γ

∑
s′∈S

P (s′|s, 1)J(s′)

}
−min

{
g(s, 0) , γ

∑
s′∈S

P (s′|s, 1)J ′(s′)

}∣∣∣∣∣
≤ γ

∑
s∈SC

µ(s)

∣∣∣∣∣∑
s′∈S

P (s′|s, 1)
(
J(s′)− J ′(s′)

)∣∣∣∣∣
≤ γ

∑
s∈SC

µ(s)
∑
s′∈S

P (s′|s, 1)
∣∣J(s′)− J ′(s′)

∣∣
= γ

∑
s′∈SC

µ(s′)
∣∣J(s′)− J ′(s′)

∣∣
= γ‖J − J ′‖1,µ.

For ρ = µ, we have C, c = 1 in Lemma 9 implying κρ ≤ 1.

F An example of state aggregation

State aggregation is the simplest form of value function approximation employed in reinforcement
learning and comes with strong stability properties Gordon [1995], Tsitsiklis and Van Roy [1996],
Van Roy [2006]. It is common across several academic communities [e.g Rust, 1997, Whitt, 1978].
Numerous theoretical papers carefully construct classes of MDPs with sufficient smooth dynamics,
and upper bound the error from planning on a discretized state space [e.g Ortner and Ryabko, 2012].
The following example considers a continuous state, finite action problem which reduces to the
tabular MDP case (in Example 3) with state aggregation. It is not unreasonable to expect that an
appropriate partitioning of the state space results in the policy class (class of stochastic policies over
finite aggregated states) being approximately closed under policy improvement.

Example 6 (State aggregation). We consider a problem with finite number of deterministic actions
k and take A = ∆k−1 to be the set of probability distributions over actions. Let the state space,
S ⊂ Rn, be a bounded convex subset of eucidean space where the dimension n is thought to be
small. We consider a partition of the state space into m disjoint subsets, S = ∪mi=1Si and the set
of stochastic policies over these subsets Π = {π ∈ Rm×k+ :

∑k
i=1 π(Sj , i) = 1 ∀j = {1, · · · ,m}}

such that π(s, i) = π(Sj , i) ∀ s ∈ Sj . Our result applies by assuming the partion is effective
such that the approximation error, infπ∈Π ‖Tπ′ − TJ‖1,ηπ , is small for any cost-to-go function
J : S → R.
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