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This technical report provide some further details related to our paper [Bhandari and Russo, 2019]. This
helps separate our main contribution from either (i) slight adapatations of known results or (ii) technical details
of specific examples that are somewhat orthogonal to the paper’s main insights. The first part proves results
related to the convergence of projected gradient descent in smooth (but possibly nonconvex) optimization.
Similar results can be found in nonlinear optimization textbooks like Bertsekas [1997] or Beck [2017], but
we include careful standalone proofs here. The second part provides some further technical results related to
specific examples on which we instantiate our general results. Primarily, the effort here is on certifying that
various functions are differentiable. We also extend our treatment of the optimal stopping example, providing
stronger results.

The document should be read as a direct continuation of Bhandari and Russo [2019]. We refer to equations
and citations from that paper throughout.

A Convergence proofs for first order methods.

To start, let us define some standard notions from first order optimization. For a convex set X' C R4, we say
a function f : X — Ris k-Lipshitz if || f(z) — f(y)l|, < kl|lz — yl|, for every x,y € X'. We say a function
is L-smooth if f is differentiable throughout & and V f is L-Lipschitz. A consequence of smoothness that
will be useful throughout our proofs is often called the descent lemma. It implies a quadratic upper bound on
function values. The proof follows by Taylor expansion and the mean-value theorem [Bertsekas, 1997].

Lemma 20 (Descent Lemma). If the function f : D — R is L-smooth over a set X C D, then for any
(z,y) € X:

L
f) < f@) + (VF(@).y = 2) + Sy = 2]
The following interpretation of projected gradient updates will be very useful for our proof. Recall the

notation for orthogonal projection: Projy(z) = argmin,cy ||y — l||§ The projected gradient descent
iteration can be equivalently written as

. . 1
Zi11 = Projy (v — cuV f(a4)) :argrgln f(xzy) + <Vf(:vt),:v—xt>+ﬂ|\x—xt||g . (37)
S t

giving a “proximal” interpretation of projection as minimizing a local quadratic approximation. See Beck
[2017] for a simple proof.



A.1 Asymptotic convergence to stationary points: proof of Lemma 2
For convenience, we first restate the claim.

Lemma 2. Consider the optimization problem min,¢x f(z) where X C R% is a closed convex set. Assume
f is bounded below and its —sublevel set {x € X : f(x) < B} is bounded for each € R. Consider the
sequence Ty+1 = Projy (x — oV f(xy)) fork € N.

1. [Beck, 2002, 2017] Assume f is differentiable on an open set containing X and V f is Lipschitz
continuous on X with Lipschitz constant L. If a € (0,1/L), the sequence {xy} has at least one limit
point and any limit point x o, is a stationary point of f(-) on X satisfying f(xr) 4 f(Xo)-

2. Given a fixed initial iterate xq, suppose f is continuously twice differentiable on an open set containing
the sublevel set {x € X : f(x) < f(xo)}. Fora sufficiently small o > 0, the sequence {xy,} has at least
one limit point and any limit point ., is a stationary point of f(-) on X satisfying f(x) | f(T0).

Proof. Part 1 follows from the simple proofs in [Beck, 2002, 2017]. We show the claim in part 2. Throughout,
let ||| denotes the Euclidean norm of a vector 2 and || A|| = max| <2 || Az|| be induced operator norm
of a matrix A. Note that the sub-level set S := {z € X' : f(z) < f(zo)} is compact (continuity of f(-)
implies its closed and we assume it to be bounded). Also, for a sufficiently small €, f(-) is twice continuously
differentiable over the compact set,

Se:={x+y:zes,ly| <€}

which follows by our assumption that f(-) is twice continuously differentiable on an open set containing S.
We denote G = max,cs | Vf(z)| and L = max,cg, |[V2f(z)||. Note that G and L are finite since ||V f||
and || V2 f|| are continuous over the compact sets S and S,. Fix the step-size « = min{e/G,1/L}. For any
x € Sy, define 1 = Projy (z — oV f(x)). For this choice of step-size, 2 € S, since

|27 = 2l = [[Projx (z — aV f(2)) = Projx(2)|| < [laVf(z)|| < aG <,
which follows as projection operators are non-expansive. The optimality conditions for projection onto a
convex set yield the standard property that & = Proj, (x) if and only if (£ — 2,y — &) > O forally € X.

Using this and some algebra, we get

(@ —aVf(z) -2tz -2") <0 = |z —a"|* -~ a(Vf(z),2 —2") <0.

Aszt e S,
f@®) < fla) +(Vf(x), 2t —a) + §||x+ —z|? [smoothness of f(-) over S]
<f@)+ (5 - 5) et - al?
< f(z). [ <1/L]

Since the projected gradient update reduces cost, we know = € S. Repeating this argument inductively
shows that f(zr11) < f(xx) and z; € S for all k. Since {x}} is contained in a compact set .S, it has a
convergent sub-sequence, {x, } with some limit z,. We have ,

lim f(zx) = lim f(zx,) = f(2),
k—o0 i—00
where the first limit exists since { f (zy)} is monotone-decreasing and bounded below and the final inequality

uses continuity of f(-). The proof to show that any limit point is a stationary point follows from [Beck, 2002,
2017]. See also [Bertsekas, 1997, Figure 3.3.2]. We omit this for brevity. Od



A.2 Convergence rates under gradient dominance: Proof of Lemma 3.

We first restate the claim.

Lemma 3 (Convergence rates for gradient dominated smooth functions). Consider the problem, min,cx f(x)
where X C R? is nonempty. Assume ¥ f is L—Lipschitz continuous on X. Denote f* = inf ey f(2).
Consider the sequence x11 = Projy (x; — oV f(xy)).

1. Let X C R® be bounded. Set R = sup,, ¢y |x—2'||2 and k = sup,c x ||V f(2)||2. If o < min{3, 1}
and { is (¢, 0)—gradient-dominated, then,

flar) — <[220 T

2. Assume X = R¥ and o = 1/L. If f is (c, j1)-gradient-dominated for j1 > 0, then,

fr) - 1< (1= 25) (G - ).

Proof of Lemma 3. Recall, by Definition 2 that a function f is defined to be (c, u)—gradient dominated over
X if there exists a constant ¢ > 0 and p > 0 such that

1) 2 f() +min [e(V5 @)y — o)+ Ly -2l vaex.

ye

Proof of Part (a): We assume p = 0 in which case for any x € X', we have

min [c(Vf(z),y — )] < f(z") = f(2) (38)

yekX

Therefore, for any = # x*, we have mingep (Vf(z,),y — x) < 0. Let {z;} be the iterates produced
by projected gradient descent. At iterate x;, let § = argmin,c (Vf(2¢),y — 2;) and denote J; =
minge»(Vf(z:),y — ). Note that §; < 0 and |6;| < ||V f(zy)|llly — ]| < kR as f is assumed to

be k-Lipschitz. We take a constant stepsize, oy = a < min{%, %} Then,

(a)
o) = S < mig (9700 —m)+ 5l =l

Q min (95 (), w0+ 6@ w1) — ) + 5l + BF — w0) — il

Belo,1] |
= min 3950, (5~ 0) + g — el
selo] | v YT %0 tl
| B%R? —ad?
< 0 = 39
- ﬁlen[%)l,ll] _ﬁ e+ 2av 2R? (39)
where the minimizer 8* = —§;a/R? < ka/R < 1as o < min{3, +} (we assume R > 1 without loss

of generality as we can take any upper bound while minimizing in (39)). Here (a) follows by using the
equivalence shown in (37) and the quadratic upper bound on the function values implied by the descent lemma.
Equality (b) uses the fact that right hand side of (a) can be optimized by searching over the steepest descent
direction z; — y. Using (38), we get

f(@ig1) = flze) < BYer) (f(z) - f(iFt))2



Rearranging, we get our desired result

T—1 R2 2 T—1
gréi:rrl(f(:rt) % (%) < 2aTC Z f(ze) = fle)
= t:O t=0
2R2 2
aTC (f(x0) — f(xT))
2R%c2

Since also f(xr) < f(zr—1) < --- f(z1), we have

flor) — f(a*) < min {F(w) — f") <

Proof of Part (b): We refer readers to the proof in Karimi et al. [2016], which can be dated back to Polyak
[1963]. O

B Example Details

B.1 Stability in discounted LQ control: Proof of Lemma 15
We first recall the claim.
Lemma 15. In the LQ control problem formulated in Example 2, £(0) < oo if and only if § € Og.

Proof. The average cost can be written as

o0

> 4 (s! 0RO+ C] bt)]

t=0

£(6) = (1 — ~)ER

where the expectation is over sy ~ p and it is implicit that the state evolves according to the linear dynamical
system s;y1 = (A + Bf)s; fort =0,1---. We can bound ¢(6) above and below as,

Amin (0RO + C)EL? [Z ”ﬁ&“é| < (1=7)7H(0) < Amax(0RO + C)EJ*

i IIﬁstllgl :

t=0

Since s; = [A + B0)]" s, applying Lemma 14 at each timestep with a choice of M = (v/X[A + Bf])! yields

Amin ZII YIA+BO)' | <Ef lz II\/_stIIQ] < Amax (2 ZII V[A+ BO) -

t=0

We recall Gelfand’s formula, which says that for any square matrix M with spectral radius p(M ) and any
matrix norm || - ||, we have ||M*[|*/* — p(M) as t — oc. This implies 72 [|(\/7 [A + BO))*||% is finite if
and only if \ /7 [A 4+ B6)] has spectral radius strictly less than one. O

B.2 Further results on optimal stopping

This section continues the analysis from the appendix of the main paper. It is intended t be read side-by-side
with the notation and results there.



Condition 2.B: Gradient dominance. We now establish a gradient dominance result that strengthens the
previous analysis. We first recall the claim.

Lemma 17 (Gradient dominance for optimal stopping). Consider the optimal stopping problem formulated
in Example 5. For any 7 € llg, the function 0 — B(0|n., J;) is (B8, 0)—gradient-dominated where =
maxXzex,ycy dx (y)/ mingex yey Gz (y)

Proof. Fix any m € Ilg. As we formulate the optimal stopping as a reward maximization problem, following
our notion of gradient dominance in Definition 2, we want to show that

max (VoB(6]ny, Jx), 0" = 60) > % (B(OF |nx, Jx) — BB, ) (40)

where 67 is the parameter of a policy iteration update to 7, i.e. 07 = argmaxgcq B(0|1r, Jx). As shown in
(34), 6} = max{Ymin, ¢z (z)}. We first lower bound the left hand side of (40) as,

9 / _— —’ . / —_
épél(}_){(VgB(ﬂr/,,, J), 0 —0) = E &126% 00, (0, — 0.)

S

= max (Cﬂ'(‘r) - ‘91) : 77;(35)(]1(1%) : (9/1 - ‘91)

> (Lanin_a0)) 3 et { s lea(o) - 02)- 0~ 01|

reX
(41)
where second equality uses the derivative calculation in (35). We now upper bound the right hand side of (40):

B(9+|77m Jﬂ') - B(9|777r7 Jw)

Ymax

=Y k@) [ [@ell@0). 10> 6) - Qel(2,0), 10 > )] aulu)dy

reX

Ymin
Ymax

< < max qgc’(y/)> Z ﬁ;(l’) / [Qﬂ'((x7 y)? ]]-(y > 9:)) - Qﬂ'((x7y) ’ ]]-(y > Hm))] dy.

T’ eEX,y' €Y

TEX .
=G4 (05 ,05)
The result follows if we can conclude,
max [(cy(z) — 0,) - (0, — 0,)] > G (0] ,6,), (42)

0,€y

which we do below by separately considering two cases. For this purpose, it is helpful to use a more explicit
formula for G (07, 0,.), which follows directly from the formula for the @ function given in this section’s
preliminaries:
fi <0t
GI(9;79 ) /:9 Tr )dy’ o HI B
f9+ x))dy, forf, > 0T

Case (1):  Assume that ¢, (%) € (Ymin, Ymax) in which case 0 = ¢, (x). Then,

Gm(ei_vem) = % (Cﬂ-(.l’) - 996)2 < (Cﬂ'(x) - 0 ) < glg§ (Cﬂ-(.l’) - 996) ' ('9/1 - 91)

where the formula for G, (6}, 0,.) follows by calculating the integral and the final inequality uses that a choice
of 0!, = c.(x) is feasible. The establishes (42).



Case (2): Now assume that ¢ () € (Ymin, Ymax) in Which case we know ¢, (z) < ymin (since ¢, (z) <
YYmax) and therefore 9;“ = Ymin. One can check that

0

GaltF,02) = [ (5 exla))dy < (62 o)) O ) < s ca(w) — 02) - 6L~ 02)

Ymin

where again the final inequality is immediate since 6/, = ym;n is a feasible choice. This establishes (42). O

Smoothness results: Condition 0 and Lemma 18 Additional notation. We simplify notation to write

00 2= Nrgs My = Np» L0 = Tr,» and Jy := Jr,. We define Je fy Jo(2,9)q. (y)dy to be the expected

cost-to-go function from context x. Similarly, denote gj(z) := jy (y > 0.) yg.(y)dy to be the expected

reward earned from context z. Take Jy(7) = 0 and g, (1) = 0 Recall that v(z) is the probability the initial

state (2o, yo) has zp = x. We extend v to be a probability distribution over X U {7} by defining v(7) = 0.
We let P € RUXI+1>x(XI+1) denote the transition matrix over X' U {7} under 7y, defined as

Pi@le) = p(@le) [ 1 < 0t Fitrle) = [ 102 b)acdy, e =1, @)
for all 2/, 2 € X. One can write key quantities in “vector form” as

Jy=T-vP) " gy &  mp=(Q -y —~P)} (44)

where v € RI** is a row vector g, € RI*I* is a column vector. The matrix (I —~P7) is invertible as P is
a stochastic matrix.

Verifying Condition 0. We establish the main condition needed to invoke the policy gradient formula in
Lemma 6. That %B (§|7)9, Jp) exists and is continuous in 6 is an immediate consequence of (35) together
with the continuity of g, (). We also need to verify that B(6|n;, Jg) is continuously differentiable as a function
of @. Since J)(7) = 0,

B(0lng, Jo) = > _ my(= /Qm (,9), 70 (7, 1)) g (v)dy = > nfy(x)J5(x).

zeX reX

Observe that P is continuously differentiable in 0, as q,(-) is assumed to be continuous. Therefore, (I —
vP;)~! is also continuously differentiable and 15(+) is as well.

Verifying Lemma 18. We now establish the following smoothness result for the policy gradient loss £(-),
which is useful for invoking convergence rate results for first order methods.

Lemma 18. For the optimal stopping problem in Example 5, maxgce | V2L(0)| < oc.

Proof. Using the policy gradient theorem as shown in Lemma 6 and the derivative calculations in (35), we
have

B(Ong, Jo)|
0=0

= (Cﬂ'e (‘T) - 91) ﬁé(x)%(@x)

D
00, Z( )= 90,

We argued above when verifying Condition O that 7 () is continuously differentiable. By assumption, ¢, (6)

is continuously differentiable in ,,. Therefore, V/(6) has a continuous derivative if ¢, () is continuously
differentiable in §. To show this, recall that by definition,

Crp () =7y Z / Jo(2',y")qw (v )dy = v Z o |z) Jy(x Ve e X. (45)

r'eXx z’'eX



While verifying Condition 0 above, we argued that (I — yP})~! is is continuously differentiable. It is also
easily shown that gj is continuously differentiable. Due to (44), this implies .J; is continuously differentiable.
Hence using (45), we find that ¢, is continuously differentiable in 6.

We have shown V2/(6) exists and is continuous. Since © is compact, the Extreme Value theorem implies
maxgeo || V2(0)]|2 exists and is finite. O

B.3 Finite horizon inventory control

We consider the inventory control problem as described in Example 6. To review notation, recall that
in this setting, the inventory level evolves as: x;11 = ¢ + a; — w; for non-negative orders a; and i.i.d
demands w; € [0, wmax]. We let s; = (a4, hy) denote the state at time ¢ and consider the class of base-
stock policies which orders inventory, 7y (s;) = max{0, 05, — z;} in state s;. We consider the policy class,
Il = {mp : O € O} with bounded parameter space © = [0, 2wp.x] which implies the inventory levels,
x¢, at every period are bounded in 7 = [—wWpax, 2Wmax|- We assume the initial distribution factorizes as,
p(dz, h) = v(h)gn(x)dzo, where v(h) > 0 forevery h € {1,..., H} and g,(-) is a twice differentiable PDF
supported over Z for each h. Clearly, this choice of p satisfies the regularity condition in Assumption 3. The
problem setup also clearly follows the factorization structure assumed in Condition 3. Here, we verify the
differentiability condition along with Condition 4, both of which are needed for Theorem 3.

Reminder on the Leibniz rule. We appeal to the Leibniz rule, which states sufficient conditions for
differentiating the integral of a function. For a bounded set ¥ C R, consider the function F' : ¥ — R given by

F() = E[f (1. 5)] = /S F(b. 5)P(ds)

where f : U x & — R is areal valued function, P is a probability measure supported over S and for each
¢ € U, the function f(1, ) is P-integrable, i.e. E[|f(1), s)|] < co. Let D4(1)) be the set of points s € S such
that f(-, s) is non-differentiable at ¢). By the Leibniz rule, F is differentiable at v if (i) Ds (1)) has zero measure
under P, i.e. P[Dy(¢)] = 0 and (ii) f'(¢, -) is P-integrable, in which case F'(¢) = [5 f'(14, s)P(ds). By
applying the same steps again, we can calculate the second derivative of F'(-) as well.

The Leibniz rule is useful as a threshold policy, my(z) = max{0,0 — z}, is differentiable everywhere
except at one point, z = 6.

Condition 0: continuous differentiability. We make the abbreviation 9 = my, Jyp = J, and Qp = Q,.
To establish Condition 0, we need to show that the function B(6% |, Jo) = [ Qo(s, mo+(s))nz(ds), is (i)
continuously differentiable as a function of 1 when # = @ and (ii) continuously differentiable in # when
6F = 6. The approach is to (somewhat tediously) rewrite B(-) in terms of a single multi-dimensional integral
that appears in (47) below. From there, the result follows by applying the Leibniz rule to differentiate under
the integral.

We write:

B(9+|T}§7 Jg) = (1 — ’y)Egﬁ Z'YtQG(St»ﬂ-QJr (bt))‘|

Lt=0

rH—ho
=(1—v)E;? Z thg(st,ﬂm(st))]

t=0

H—ho

=(1-NEF | S E7 [v'Qolse, mo+ (1)) | ho

t=0

=Bt (0% |15, Jo)



The first equality is the definition of the state occupancy measure. The second equality uses that the process
transitions to a terminal state after stage hy = H + 1 is reached. The final equality is uses the tower property
of conditional expectation — there the outer expectation is over hg € {1,--- , H} drawn from the initial
distribution and the inner expecation is over the state s; = (zy, hg + t), and in particular the inventory level
x4, that is reached ¢ periods later under the policy 7.

We show that each individual term, By, (07|15, Jg), is continuously differentiable in @ or in F. This
completes the result, since B(67 |7, Jo) a finite mixture of such terms. Notice that this expression involves
three different policies that are applied at different timesteps:

1. 7 is applied prior to timestep ¢ and it is these dynamics that determine s;.
2. o+ is applied during timestep ¢ only. (That is the meaning of the action in the () function.)

3. mg is applied from timestep ¢ + 1 until the final stage is reached. (That is the meaning of the subscript of
the @ function.)

Based on this, we write 6 = (91, e ,ght_l, 9,’; yOn,+1, -+ ,0m). Since we condition on hg and treat a fixed
t throughout the remainder of the proof, we omit dependence on these quantities in notation. Then, one can
H—hg

write
Z 7 g St7at ] )

where we used the observations 1-3 above together with the definition of a @)-function as an expected
disctounted sum of single-period costs g(-). In this inventory control problem,

Byt (0" [ng, Jo) =

g(St,CLt) = C- Q¢ + ]E[T(ZCt “+ ay — wt) | xt,at] = C- Uy “+ E[T(.Tt+1) | zt,at],

where 7 : R — R is defined as r(z) = bmax(0, z) + pmax(0, —z) and denotes the holding/backlogging
costs. The conditional expectation in the middle equation integrates over the i.i.d draw of the demand w;
and the second equation uses form of inventory dynamics z;4+1 = xy + a; — w;. By the tower property of
conditional expectation, we can rewrite

H—ho
Bhot(07 |ng, Jo) = Ep’ Z Y (erar+r(zi41)) ‘ ho] . (46)
=t

Finally, we are ready to put this in the form of a single multi-dimensional integral. For any sequence of
of inventory levels write & = (g, - - , T_py+1). Set G(Z,0) = f‘tho ¢ ( O, — 2T+ T(Tt+1))
representing the cost incurred for an arbitrary sequence of inventory levels ' assuming the ordering costs
are based on the values [0),, — z;]T = max{0,60),, — z;} prescribed by the base-stock levels 6. Now, to
assign probabilities over the sequence Z, recall that conditioned on h, the initial inventory level x is drawn
from a PDF ¢,(-). Let f(-) denote the PDF of the demand distribution. Both PDFs are assumed to be twice
differentiable. Then,

Bho 10" 1, Jo) = / G(z.0)p(7 | B)d7 1)

where
H—ho

p(T | 6) = ano(z0) [] flwerr — e —[6n, —x]")
t=0

is the probability density function of 2. Here we have used that x41 = 2 + a; — w; to relate the transitions
of the inventory level to demand realizations.

Now, we can justify that G(&, §)p(&, §) is almost surely twice differentiable with bounded first and second
derivatives, so the Leibniz rule implies (47) is twice differentiable (and hence continuously differentiable).



Notice that G(Z, #) and p(Z, §) may fail to be differentiable at values of Z where x; = 6}, for some t,
but the set of such sequences of inventory levels has zero Lebesgue measure. Boundedness of first and
second derivatives of G(Z, 5) is immediate since it involves piece-wise linear functions of §. Boundedness
of first and second derivatives of p(& | #) can be shown from the assumption that f(-) and gy, (-) are twice
continuously differentiable and both Z and 6 take values in bounded sets. (See Example 6 where it is noted
that x4 € [—Wmax, 2Wmax] almost surely.).

Remark 2. It is also possible to complete the argument by claiming that the discounted sum inside (46)
is differentiable pathwise, i.e for each realization of the random initial inventory level xy and the demand
realizations (except on a set of measure zero). A benefit of this approach is that it does not require differentia-
bility of f(-), whereas directly differentiating p(& |§) in (47) does. See [Bertsekas, 1997, Section 2.6] for an
introduction on how to calculate pathwise derivatives using the chain rule. Glasserman and Tayur [1995]
applies this technique rigorously to an inventory control problem.



